42 research outputs found

    ์ง€์งˆ ์ด์ค‘์ธต ์ƒ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ์ž…์ž ๊ธฐ๋ฐ˜ ๋‚˜๋…ธ๋ฐ”์ด์˜ค ๊ฒ€์ง€ ๋ฐ ์ปดํ“จํŒ…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2019. 2. ๋‚จ์ขŒ๋ฏผ.Supported lipid bilayer is a two-dimensional lipid bilayer self-assembled on a hydrophilic substrate with two-dimensional fluidity. By introducing plasmonic nanoparticles with strong scattering signals into the supported lipid bilayer, it is possible to observe and track thousands of nanoparticles and their interactions at a single-nanoparticle level in real time. In this thesis, I expand the nanoparticle-lipid bilayer platform by engineering plasmonic nanoparticles to construct a complex nanoparticle network system and develop multiplexed bio-detection and bio-computing strategies. Chapter 1 describes a supported lipid bilayer platform incorporating plasmonic nanoparticles. Section 1 introduces the optical properties and biosensing application of plasmonic nanoparticles, and Section 2 introduces tethering technique, characteristics, and advantages for introducing nanoparticles into supported lipid bilayer platforms. In Chapter 2, I introduce a system that can distinguish nine types of nanoparticle assembly reactions occurring simultaneously by introducing optically encoded plasmonic nanoparticles that scatter red, blue, and green light into supported lipid bilayers. I performed multiplexed detection of nine types of microRNAs, which are important gene regulators and cancer cell biomarker. In Chapter 3, I develop a bio-computing platform that recognizes molecular inputs, performs logic circuits, and generates nanoparticle assembly/disassembly output signals. Complex logic circuits are designed and implemented by combining two strategies: (i) interfacial design that constructs a logic circuit through DNA functionalization of the interface of nanoparticles, and (ii) a network design that connects assembly/disassembly reactions. In Chapter 4, I develop a bio-computing calculator capable of performing arithmetic logic operations. I use the nanoparticle-lipid bilayer platform as the hardware that stores, processes, and outputs information, and constructs software that contains logic circuit functions through DNA solution. An information storage nanoparticle stores solution-phase molecular input signals on the surface of nanoparticles. The bio-computing lipid nanotablet recognizes an arithmetic logic circuit programmed with DNA information and generates outputs a result of a kinetic difference between nanoparticle assembly reaction according to the storage state of the input signal.์ง€์ง€ํ˜• ์ง€์งˆ ์ด์ค‘์ธต์€ ์นœ์ˆ˜์„ฑ ๊ธฐํŒ ์œ„์— ์กฐ๋ฆฝ๋œ 2์ฐจ์›์˜ ์ง€์งˆ ์ด์ค‘์ธต์œผ๋กœ 2์ฐจ์› ์ƒ์˜ ์œ ๋™์„ฑ์„ ๊ฐ€์ง„๋‹ค. ์ง€์ง€ํ˜• ์ง€์งˆ ์ด์ค‘์ธต์— ๊ฐ•ํ•œ ์‚ฐ๋ž€ ์‹ ํ˜ธ๋ฅผ ์ง€๋‹ˆ๋Š” ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ์ž…์ž๋ฅผ ๋„์ž…ํ•˜๋ฉด ์ˆ˜์ฒœ ๊ฐœ์˜ ๋‚˜๋…ธ์ž…์ž์™€ ๊ทธ ์ƒํ˜ธ์ž‘์šฉ์„ ๋‹จ์ผ ๋‚˜๋…ธ์ž…์ž ์ˆ˜์ค€์œผ๋กœ ์‹ค์‹œ๊ฐ„ ๊ด€์ฐฐ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋‚˜๋…ธ์ž…์ž-์ง€์งˆ ์ด์ค‘์ธต ํ”Œ๋žซํผ์—์„œ์˜ ๋‚˜๋…ธ์ž…์ž ์ข…๋ฅ˜ ๋ฐ ๊ฐœ์งˆ ๋ฐฉ๋ฒ•์„ ํ™•์žฅํ•˜์—ฌ ๋ณต์žกํ•œ ๋‚˜๋…ธ์ž…์ž ๋„คํŠธ์›Œํฌ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๊ณ , ๋ฐ”์ด์˜ค ๊ฒ€์ง€, ๋ฐ”์ด์˜ค ์ปดํ“จํŒ… ์‘์šฉ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. 1์žฅ์—์„œ๋Š” ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ์ž…์ž๊ฐ€ ๋„์ž…๋œ ์ง€์ง€ํ˜• ์ง€์งˆ ์ด์ค‘์ธต ํ”Œ๋žซํผ์„ ์„ค๋ช…ํ•œ๋‹ค. 1์ ˆ์—์„œ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ์ž…์ž์˜ ๊ด‘ํ•™์  ํŠน์„ฑ๊ณผ ์‚ฐ๋ž€์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•œ ๋ฐ”์ด์˜ค์„ผ์‹ฑ ์‘์šฉ ์—ฐ๊ตฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ  2์ ˆ์—์„œ๋Š” ์ง€์ง€ํ˜• ์ง€์งˆ ์ด์ค‘์ธต ํ”Œ๋žซํผ์— ๋‚˜๋…ธ์ž…์ž์˜ ๋„์ž… ๋ฐฉ๋ฒ•, ํŠน์ง•, ์žฅ์ , ๋ถ„์„๋ฐฉ๋ฒ• ๋“ฑ์„ ์†Œ๊ฐœํ•œ๋‹ค. 2์žฅ์—์„œ๋Š” ๋นจ๊ฐ•, ์ดˆ๋ก, ํŒŒ๋ž‘ ๋น›์„ ์‚ฐ๋ž€ํ•˜๋Š” ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ , ์ง€์ง€ํ˜• ์ง€์งˆ ์ด์ค‘์ธต์— ๋„์ž…ํ•˜์—ฌ ๋™์‹œ์— ์ผ์–ด๋‚˜๋Š” 9์ข…๋ฅ˜์˜ ๋‚˜๋…ธ์ž…์ž ๊ฒฐํ•ฉ ๋ฐ˜์‘์„ ๊ฐ๊ฐ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ํ”Œ๋žซํผ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ธํฌ ๋‚ด ์ค‘์š”ํ•œ ๋‹จ๋ฐฑ์งˆ ๋ฒˆ์—ญ ์กฐ์ ˆ๋ฌผ์งˆ์ด์ž ์•” ๋ฐ”์ด์˜ค๋งˆ์ปค์ธ ๋งˆ์ดํฌ๋กœRNA๋ฅผ ๋™์‹œ ๋‹ค์ค‘ ๊ฒ€์ง€ํ•œ๋‹ค. 3์žฅ์—์„œ๋Š” ์ง€์ง€ํ˜• ์ง€์งˆ ์ด์ค‘์ธต ์ƒ์— ๋„์ž…๋œ ๋‚˜๋…ธ์ž…์ž๋ฅผ ๋‹ค์ข…์˜ DNA๋กœ ๊ธฐ๋Šฅํ™”ํ•˜์—ฌ ํŠน์ • DNA ๋ถ„์ž ์ž…๋ ฅ ์‹ ํ˜ธ ์ธ์‹, ๋…ผ๋ฆฌํšŒ๋กœ ์ˆ˜ํ–‰, ๋‚˜๋…ธ์ž…์ž ๊ฒฐํ•ฉ/๋ถ„๋ฆฌ ์ถœ๋ ฅ ์‹ ํ˜ธ ์ƒ์„ฑํ•˜๋Š” ๋ฐ”์ด์˜ค ์ปดํ“จํŒ… ํ”Œ๋žซํผ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ๋‚˜๋…ธ์ž…์ž์˜ ๊ณ„๋ฉด์„ DNA๋กœ ๋””์ž์ธํ•˜์—ฌ ๋…ผ๋ฆฌ ํšŒ๋กœ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ธํ„ฐํŽ˜์ด์Šค ํ”„๋กœ๊ทธ๋ž˜๋ฐ๊ณผ ๋‚˜๋…ธ์ž…์ž์˜ ๊ฒฐํ•ฉ/๋ถ„๋ฆฌ ๋ฐ˜์‘์„ ์—ฐ๊ฒฐํ•˜์—ฌ ๋„คํŠธ์›Œํฌ๋ฅผ ๋””์ž์ธํ•˜์—ฌ ๋…ผ๋ฆฌ ํšŒ๋กœ๋ฅผ ์ง‘์ ํ•˜๋Š” ๋„คํŠธ์›Œํฌ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ์กฐํ•ฉํ•˜์—ฌ ๋ณต์žกํ•œ ๋…ผ๋ฆฌ ํšŒ๋กœ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ์ˆ˜ํ–‰ํ•œ๋‹ค. 4์žฅ์—์„œ๋Š” ์ง€์ง€ํ˜• ์ง€์งˆ ์ด์ค‘์ธต์— ๋„์ž…๋œ ๋‚˜๋…ธ์ž…์ž ํ‘œ๋ฉด์— ์šฉ์•ก ์ƒ ๋ถ„์ž ์ž…๋ ฅ์‹ ํ˜ธ๋ฅผ ์ €์žฅํ•˜๋Š” ์ •๋ณด ์ €์žฅ ์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ๋ชจ๋“  ์ข…๋ฅ˜์˜ ์‚ฐ์ˆ ๋…ผ๋ฆฌ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ๋ถ„์ž ๊ณ„์‚ฐ๊ธฐ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ๋‚˜๋…ธ์ž…์ž-์ง€์งˆ ์ด์ค‘์ธต ํ”Œ๋žซํผ์„ ์ •๋ณด์ €์žฅ, ์ˆ˜ํ–‰, ์ถœ๋ ฅํ•˜๋Š” ๋งค์ฒด์ธ ํ•˜๋“œ์›จ์–ด๋กœ ์ด์šฉํ•˜๊ณ , DNA ๋ถ„์ž ์กฐํ•ฉ ์šฉ์•ก์„ ์‚ฐ์ˆ ๋…ผ๋ฆฌํšŒ๋กœ ๊ธฐ๋Šฅ์„ ๋‹ด๊ณ ์žˆ๋Š” ์†Œํ”„ํŠธ์›จ์–ด๋กœ ๊ตฌ์„ฑํ•œ๋‹ค. ๋ฐ”์ด์˜ค ์ปดํ“จํŒ… ์นฉ์€ DNA ์ •๋ณด๋กœ ํ”„๋กœ๊ทธ๋ž˜๋ฐ๋œ ์‚ฐ์ˆ ๋…ผ๋ฆฌํšŒ๋กœ๋ฅผ ์ธ์‹ํ•˜์—ฌ ์ž…๋ ฅ์‹ ํ˜ธ์˜ ์ €์žฅ ์ƒํƒœ์— ๋”ฐ๋ผ ๋‚˜๋…ธ์ž…์ž ๊ฒฐํ•ฉ ๋ฐ˜์‘์— ๋ฐ˜์‘์†๋„์— ์ฐจ์ด๋ฅผ ์ผ์œผํ‚ค๊ณ  ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค.Chapter 1. Introduction: Plasmonic Nanoparticle-Tethered Supported Lipid Bilayer Platform 1 1.1. Plasmonic Nanoparticles and Their Bio-Applications 2 1.1.1. Introduction 4 1.1.2. Fundamentals of Plasmonic Nanoparticles 8 1.1.3. Plasmonic Nanoparticle Engineering for Biological Application 11 1.1.4. Plasmonic Nanoparticles for Rayleigh Scattering-Based Biosensing 16 1.1.5. References 21 1. 2. Supported Lipid Bilayer as a Dynamic Platform 24 1.2.1. Introduction 26 1.2.2. Basic Setups and Strategies 29 1.2.3. Nanoparticle-Tethering Techniques 33 1.2.4. Real-Time Imaging and Tracking of Single Nanoparticles on SLB 39 1.2.5. Observation of Interactions between Single Nanoparticles 44 1.2.6. References 50 Chapter 2. Multiplexed Biomolecular Detection Strategy 53 2.1. Introduction 55 2.2. Experimental Section 60 2.3. Results and Discussion 66 2.4. Conclusion 77 2.5. Supporting Information 79 2.6. References 83 Chapter 3. Nano-Bio Computing on Lipid Bilayer 84 3.1. Introduction 85 3.2. Experimental Section 88 3.3. Results and Discussion 98 3.4. Conclusion 120 3.5. Supporting Information 124 3.6. References 161 Chapter 4. Development of Nanoparticle Architecture for Biomolecular Arithmetic Logic Operation 163 4.1. Introduction 165 4.2. Experimental Section 167 4.3. Results and Discussion 171 4.4. Conclusion 177 4.5. References 179 Abstract in Korean 180Docto

    ๋ฉ”์‹œ์ง€ ์œ ํ˜•๊ณผ ํ•™์Šต์ž ํŠน์„ฑ์— ๋”ฐ๋ฅธ ๊ธฐํ›„๋ณ€ํ™” ์ธ์‹ ๋ฐ ํƒœ๋„ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ต์œก๊ณผ(์ง€๋ฆฌ์ „๊ณต), 2013. 8. ๋ฅ˜์žฌ๋ช….์ง€๊ตฌ์˜จ๋‚œํ™”๋กœ ๋ฐœ์ƒํ•˜๋Š” ๊ธฐํ›„๋ณ€ํ™”๋Š” ์ธ๋ฅ˜์˜ ์ƒ์กด์„ ์ขŒ์šฐํ•˜๋Š” ์ค‘์š”ํ•œ ์‚ฌํšŒ๋ฌธ์ œ๋กœ ๋ถ€๊ฐ๋˜๊ณ  ์žˆ๋‹ค. IPCC๋Š” 4์ฐจ ์ข…ํ•ฉ๋ณด๊ณ ์„œ์—์„œ ์ธ์œ„์ ์ธ ์˜จ๋‚œํ™”๋Š” ๊ธฐํ›„๋ณ€ํ™”์˜ ์†๋„์™€ ๊ทœ๋ชจ์— ๋”ฐ๋ผ ์ง€๊ตฌ์— ๋Œ๋ฐœ์ ์ธ ์˜ํ–ฅ์„ ๋ผ์น˜๊ฑฐ๋‚˜ ๋ณต๊ตฌ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ƒํƒœ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜๋„ ์žˆ๋‹ค๊ณ  ๋ฐํžˆ๊ณ  ์žˆ๋‹ค. ์ด์ œ ๊ธฐํ›„๋ณ€ํ™”์˜ ์‹ฌ๊ฐ์„ฑ์„ ์•Œ๋ฆฌ๊ณ  ๊ธฐํ›„๋ณ€ํ™”๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•œ ์‹ค์ฒœ์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋‹ค์–‘ํ•œ ๊ต์œก ํ”„๋กœ๊ทธ๋žจ์ด ํ•„์š”ํ•˜๋‹ค. ๊ทธ ๋™์•ˆ์—๋„ ์ง€์  ์˜์—ญ๊ณผ ์ •์˜์  ์˜์—ญ์—์„œ ์ฑ…์ž„ ์žˆ๋Š” ํ™˜๊ฒฝํ–‰๋™์„ ๊ธฐ๋ฅด๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ ธ ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ๊ต์œก์  ์‹œ๋„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์‹ค์ œ๋กœ ํ•™์Šต์ž์—๊ฒŒ์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์ธ์‹๊ณผ ํƒœ๋„ ๋ณ€ํ™”๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ์ง€ ์•Š๋‹ค. ์ตœ๊ทผ ๊ธฐ์กด์˜ ์„ค๋ช…์‹ ์„œ์ˆ ์–‘์‹์— ๋Œ€ํ•œ ๋Œ€์•ˆ์œผ๋กœ ์ข€ ๋” ์นœ๊ทผํ•˜๊ฒŒ ๋‹ค๊ฐ€๊ฐˆ ์ˆ˜ ์žˆ๋Š” ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ์„œ์ˆ ์–‘์‹์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ปค์ง€๊ณ  ์žˆ๋‹ค. ์ด์•ผ๊ธฐ ์ฆ‰ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€ ๋ฐ ๊ทธ ์„ค๋“์  ํšจ๊ณผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋ฌธํ•™, ์—ญ์‚ฌํ•™, ๋งˆ์ผ€ํŒ… ๋ฐ ๋ธŒ๋žœ๋”ฉ, ๊ต์œกํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐํ›„๋ณ€ํ™”๋ฅผ ์ฃผ์ œ๋กœ ํ•˜์—ฌ ํ•™์Šต์ž ํŠน์„ฑ ์ฆ‰ ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹์˜ ๊ด€์ ์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์ธ์‹๊ณผ ํƒœ๋„ํ•จ์–‘์— ๋” ํšจ๊ณผ์ ์ธ ๋ฉ”์‹œ์ง€ ์œ ํ˜•์ด ์กด์žฌํ•  ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ  ์ด์— ๋Œ€ํ•œ ๋…ผ์˜๋ฅผ ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ง€๊ตฌ์˜จ๋‚œํ™”์˜ ์›์ธ ๋ฐ ์˜ํ–ฅ, ๊ธฐํ›„์ •์˜, ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋Œ€์‘ํ–‰๋™์„ ์ด‰๊ตฌํ•˜๋Š” ๋‚ด์šฉ์œผ๋กœ ๋น„ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€์™€ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€์˜ ํšจ๊ณผ ๋ฐ ํ•™์Šต์ž์˜ ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹์— ๋”ฐ๋ฅธ ์กฐ์ ˆํšจ๊ณผ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด์•˜๋‹ค. ๋ณธ ์‹คํ—˜์—์„œ๋Š” ๊ธฐํ›„๋ณ€ํ™”๋ฅผ ๋‚ด์šฉ์œผ๋กœ ํ•˜๋Š” ํ…์ŠคํŠธ๋ฅผ ๋‘ ๊ฐ€์ง€ ์œ ํ˜•์˜ ์‹คํ—˜๋ฌผ๋กœ ์ œ์ž‘ํ•˜์—ฌ ํ•™์Šต์ž์—๊ฒŒ ์ œ์‹œํ•˜์˜€๋‹ค. ํ•˜๋‚˜๋Š” ์ด์•ผ๊ธฐ ๊ตฌ์กฐ๊ฐ€ ์—†๋Š” ๋น„ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€์ด๊ณ  ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์ด์•ผ๊ธฐ ๊ตฌ์กฐ๊ฐ€ ์žˆ๋Š” ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€์ด๋‹ค. ํ•™์Šต์ž์˜ ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹์— ๋”ฐ๋ผ ๊ฐ๊ฐ์˜ ๋ฉ”์‹œ์ง€์—์„œ ๋‚˜ํƒ€๋‚œ ๊ธฐํ›„ ๋ณ€ํ™” ์ธ์‹ ๋ฐ ํƒœ๋„๋ฅผ ๋น„๊ตํ•˜์—ฌ ํ•™์Šต์ž ํŠน์„ฑ์— ๋”ฐ๋ผ ๋” ํšจ๊ณผ์ ์ธ ๋ฉ”์‹œ์ง€ ์œ ํ˜•์ด ์žˆ๋Š”์ง€ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€๋Š” ๋น„ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€์™€ ์ •๋ณด ์ˆ˜์ค€์„ ๋™์ผํ•˜๊ฒŒ ์œ ์ง€ํ•˜์˜€๊ณ  ์„œ์šธ ์‹œ๋‚ด ๊ณ 1 ์žฌํ•™์ƒ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์กฐ์ž‘๋œ ํ…์ŠคํŠธ๋ฅผ ์ œ์‹œํ•˜๊ณ  ์‹คํ—˜์„ 2ํšŒ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ฉ”์‹œ์ง€ ์œ ํ˜•๊ณผ ํ•™์Šต์ž ํŠน์„ฑ์— ๋”ฐ๋ฅธ ๊ธฐํ›„๋ณ€ํ™” ์ธ์‹ ๋ฐ ํƒœ๋„ ์—ฐ๊ตฌ๊ฒฐ๊ณผ, ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹์ด ๋ชจ๋‘ ๋†’์€ ์ง‘๋‹จ์—์„œ๋Š” ๋ฉ”์‹œ์ง€ ์œ ํ˜•์— ๋”ฐ๋ฅธ ๊ธฐํ›„๋ณ€ํ™” ์ธ์‹ ๋ฐ ํƒœ๋„์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€์˜ ํ‰๊ท ์ ์ด ๋” ๋†’์€ ๋ฐฉํ–ฅ์„ฑ์€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹ ์ค‘ ํ•˜๋‚˜์˜ ์š”์†Œ๊ฐ€ ๋†’์€ ์ง‘๋‹จ์—์„œ๋Š” ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€๊ฐ€ ๋น„ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€๋ณด๋‹ค ๊ธฐํ›„๋ณ€ํ™” ์ธ์‹ ๋ฐ ํƒœ๋„ ํ•จ์–‘์— ๋” ํšจ๊ณผ์ ์ด์—ˆ๋‹ค. ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹์ด ๋ชจ๋‘ ๋‚ฎ์€ ์ง‘๋‹จ์—์„œ๋Š” 1์ฐจ ์‹คํ—˜์—์„œ๋Š” ๋ฉ”์‹œ์ง€ ์œ ํ˜•์— ๋”ฐ๋ฅธ ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๊ณ , 2์ฐจ ์‹คํ—˜์—์„œ๋Š” ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€๊ฐ€ ๋” ํšจ๊ณผ์ ์ธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ด์•ผ๊ธฐ ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•œ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€ ์œ ํ˜•์€ ํ•™์Šต์ž์˜ ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹์— ๋”ฐ๋ผ ๊ทธ ํšจ๊ณผ๊ฐ€ ์กฐ์ ˆ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ธฐํ›„๋ณ€ํ™” ์ธ์‹ ๋ฐ ํƒœ๋„ ๊ต์œก์—์„œ ๋น„ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€์™€ ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๋ฉ”์‹œ์ง€๋ฅผ ํ•™์Šต์ž์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ์„ ๋ณ„์ ์œผ๋กœ ์ œ์ž‘, ํ™œ์šฉํ•  ํ•„์š”๊ฐ€ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐํ›„๋ณ€ํ™”์˜ ์ธ์‹ ๋ฐ ํƒœ๋„ ๊ต์œก์— ์ ํ•ฉํ•œ ํ…์ŠคํŠธ์˜ ๋ฉ”์‹œ์ง€ ์œ ํ˜•์„ ํ•™์Šต์ž์˜ ์ธ์ง€์š•๊ตฌ์™€ ์‚ฌ์ „์ง€์‹์˜ ๊ด€์ ์—์„œ ๋‹ค๋ฃจ๊ณ  ์žˆ์ง€๋งŒ ๊ทธ ์™ธ์˜ ๋‹ค๋ฅธ ๋งค์ฒด๋‚˜ ํ•™์Šต์ž์˜ ๋‹ค๋ฅธ ํŠน์„ฑ์— ๋”ฐ๋ฅธ ๊ธฐํ›„๋ณ€ํ™” ๊ต์œก ์ž๋ฃŒ ๊ฐœ๋ฐœ์— ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Climate change resulting from global warming has emerged as a critical social issue. IPCC announced that artificial global warming may cause accidental effects or even irreparable damages on the Earth depending on the pace and scale of it. Therefore, a wide range of educational programs are required to let people know the seriousness of climate change and make them act responsibly. Researchers have been interested in the topics of how to facilitate students responsible environment-friendly behaviors in cognition and affection. However, changes in learners awareness and attitude have not been enhanced sufficiently, despite diverse educational attempts. Recently, educators have noted the effectiveness of narratives in education. A variety of research areas including literature, history, marketing, and education has witnessed the increase in the use of story-telling, or narrative message, and further has emphasized its persuasive effects. In this respect, this study assumed that a more effective message type would exist for enhancing students awareness and attitude towards climate change, in relation to learner characteristics such as the need for cognition and prior knowledge. This research examined the different effects of narrative and non-narrative texts on students opinions about climate change according to the level of the need for cognition and prior knowledge. Except the type of message, the two texts included the same contents regarding the cause and effects of climate change, climate justice, and acts for climate. In the experiment, the developed two types of texts were presented to participants. The level of content and information was equivalent for the two texts. Then, the research investigated which text was more effective in promoting the participants awareness and attitude towards climate change. High school students in Seoul participated in the experiment. This study included two experiments using the same format, only the experimental materials changed. As a result, no statistically significant difference existed for the participants who scored high both for the need for cognition and prior knowledge. For the participants who achieved high scores only for one variable, that is, high for the need for cognition or high for prior knowledge, the narrative text was more effective. Finally, for the participants who had low scores for both variables, the result was not consistent. In the first experiment, no difference was detected, but the narrative text was more effective in the second experiment. The findings of this study indicate that the effects of narrative type texts varied depending on the level of the need for cognition and prior knowledge. Hence, educators instructing climate change should choose texts carefully, considering students characteristics. Future research needs to explore the influences of other variables such as different learner characteristics which were not examined in this study and different types of materials.โ… . ์„œ๋ก  1 1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 2. ์—ฐ๊ตฌ ๋ชฉ์  2 โ…ก. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 4 1. ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ์ด๋ก ๊ณผ ์ •๊ตํ™” ๊ฐ€๋Šฅ์„ฑ ๋ชจ๋ธ 4 1) ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ ๊ฐœ๋… 4 2) ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ 7 3) ๋‚ด๋Ÿฌํ‹ฐ๋ธŒ์˜ ์„ค๋“ํšจ๊ณผ 9 4) ์ •๊ตํ™” ๊ฐ€๋Šฅ์„ฑ ๋ชจ๋ธ๊ณผ ๊ด€์—ฌ๋„ ์ด๋ก  11 2. ๊ธฐํ›„๋ณ€ํ™”์™€ ์นœํ™˜๊ฒฝ ํ–‰๋™ 15 1) ๊ธฐํ›„๋ณ€ํ™”์˜ ๊ฐœ๋… 15 2) ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ 16 3) ์นœํ™˜๊ฒฝํ–‰๋™๊ณผ ํ™˜๊ฒฝํ–‰๋™๋ชจํ˜• 17 โ…ข. ์—ฐ๊ตฌ์˜ ์„ค๊ณ„ 22 1. ๊ฐ€์„ค์˜ ์„ค์ • 22 2. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• ๋ฐ ์ ˆ์ฐจ 24 1) ์—ฐ๊ตฌ๋‹จ์›์˜ ์„ ์ • ๋ฐ ์—ฐ๊ตฌ์ ˆ์ฐจ 24 2) ์‹คํ—˜๋„๊ตฌ ๊ฐœ๋ฐœ ๋ฐ ์‹คํ—˜ ์‹ค์‹œ 25 3) ์กฐ์‚ฌ๋Œ€์ƒ ๋ฐ ์‹คํ—˜ ์ ˆ์ฐจ 27 3. ๋ณ€์ธ์˜ ์กฐ์ž‘ ๋ฐ ์ธก์ • 28 1) ๋…๋ฆฝ๋ณ€์ธ 28 2) ์ข…์†๋ณ€์ธ 32 3) ์—ฐ๊ตฌ๋ชจํ˜• 33 4. ์ธก์ •๋„๊ตฌ์˜ ํƒ€๋‹น๋„ ๋ฐ ์‹ ๋ขฐ๋„ ๋ถ„์„ 34 โ…ฃ. ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ ๋ฐ ํ•ด์„ 35 1. ์‘๋‹ต์ž์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 35 2. ์กฐ์ž‘ ์ ๊ฒ€ 36 1) ๋ฉ”์‹œ์ง€ ์œ ํ˜• 36 2) ์ •๋ณด์˜ ์œ ์šฉ์„ฑ 37 3) ์ •๋ณด์˜ ์ดํ•ด๋„ 39 3. ๊ฐ€์„ค์˜ ๊ฒ€์ • 41 1) ์˜ ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 41 2) ์˜ ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 44 3) ์˜ ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 47 4) 1์ฐจ ์‹คํ—˜๊ณผ 2์ฐจ ์‹คํ—˜ ๋น„๊ต 49 โ…ค. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก  51 1. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์˜ ์š”์•ฝ ๋ฐ ๋…ผ์˜ 51 2. ์—ฐ๊ตฌ์˜ ์˜์˜, ํ•œ๊ณ„์  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๋ฐฉํ–ฅ 54 ์ฐธ๊ณ ๋ฌธํ—Œ 56 ๋ถ€๋ก 1 62 ๋ถ€๋ก 2 66 Abstract 76Maste

    ๋Œ€์‚ฌ๊ณตํ•™๊ธฐ๋ฐ˜ ํšจ๋ชจ์˜ ๋ฐœํšจ์ €ํ•ด์ œ ๋‹ค์ค‘ ๋‚ด์„ฑ ์ฆ๋Œ€

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์ƒ๋ช…๊ณตํ•™๋ถ€(์‹ํ’ˆ์ƒ๋ช…๊ณตํ•™์ „๊ณต), 2015. 8. ์„œ์ง„ํ˜ธ.Fermentation inhibitors present in lignocellulose hydrolysates are inevitable obstacles for achieving economic production of biofuels and biochemicals by various microorganisms. In this thesis, it was shown that spermidine (SPD) functions as a chemical elicitor for enhanced tolerance of Saccharomyces cerevisiae against fermentation inhibitors. In addition, the feasibility of constructing an engineered S. cerevisiae strain capable of tolerating toxic levels of the major inhibitors without exogenous addition of SPD was explored. Specifically, expression levels of the genes in the SPD biosynthetic pathway were altered. Also, OAZ1 coding for ornithine decarboxylase (ODC) antizyme and TPO1 coding for a polyamine transport protein were disrupted to increase an intracellular SPD level through alleviation of feedback inhibition on ODC and prevention of SPD excretion, respectively. Especially, the strain with combination of OAZ1 and TPO1 double disruption and SPE3 overexpression not only contained a spermidine content of 1.1 mg SPD/g cell, which was 171% higher than that for the control strain, but also exhibited 60% and 33% shorter lag-phase periods than that of the control strain under the medium containing furan derivatives and acetic acid, respectively. While it was observed that a positive correlation between intracellular SPD contents and tolerance phenotypes among the engineered strains accumulating different amounts of intracellular SPD, too much SPD accumulation is likely to cause metabolic burden. Therefore, genetic perturbations for intracellular SPD levels should be optimized in terms of metabolic burden and SPD contents to construct inhibitor tolerant yeast strains. It was also found that the genes involved in purine biosynthesis and cell wall and chromatin stability were related to the enhanced tolerance phenotypes to furfural. In addition, the potential applicability of the S. cerevisiae strains with high SPD contents was examined by extending its application to repeated-batch fermentation and xylose utilization in the presence of fermentation inhibitors. In one application, during the sixteen times of repeated-batch fermentations using glucose as a sole carbon source, the S. cerevisiae strains with high SPD contents maintained higher cell viability and ethanol productivity than those of the control strain. As another application, XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway were introduced to the engineered strains with high SPD contents. These xylose-fermenting engineered S. cerevisiae strains with high SPD contents exhibited 38 ~ 46% higher ethanol productivity than that of the control strain in the synthetic hydrolysates. Interestingly, the engineered strain also showed improved xylose fermentation in the absence of fermentation inhibitors. The robust strains constructed in this study can be applied to producing chemicals and advanced biofuels from cellulosic hydrolysates. SPD has been used to combat skin ageing, stimulate human hair growth, treat type 2 diabetes, and increase fruit shelf life. Therefore, construction of a SPD production system using S. cerevisiae has a potential for economic uses. In order to facilitate the enhanced production of SPD, the endogenous SPE1, SPE2, and SPE3 genes involved in the polyamine biosynthetic pathway were overexpressed to increase polyamine contents. Also, the gene involved in feedback inhibition (OAZ1) was disrupted to increase SPD titer further. To export intracellular SPD into culture medium, TPO1 encoding polyamine transporter protein was overexpressed using a multi-copy vector. It was observed that SPD production yield from xylose (4.0 mg SPD/g xylose) was 3.1-fold higher than that from glucose. In a glucose limited fed-batch fermentation, the SR8 OS123/pTPO1 strain consumed 37.4 g/L xylose and produced 224 mg/L spermidine with a yield of 2.2 mg SPD/g sugars.CONTENTS 1. Literature review 1 1.1. Introduction 2 1.2. Construction of inhibitor tolerant Saccharomyces cerevisiae strains 7 1.3. Spermidine 16 1.4. Biosynthesis of spermidine in S. cerevisiae 19 1.5. Objectives of the dissertation 22 2. Effects of spermidine on tolerance of Saccharomyces cerevisiae 32 2.1. Summary 33 2.2. Introduction 34 2.3. Materials and methods 36 2.4. Results 40 2.4.1. Effects of polyamines on tolerance of S. cerevisiae against furan derivatives 40 2.4.2. Effects of spermidine on tolerance of S. cerevisiae to acetic acid and lignocellulose hydrolysates 43 2.5. Discussion 45 3. Construction of engineered strains with improved tolerance against multiple inhibitors and ethanol 56 3.1. Summary 57 3.2. Introduction 59 3.3. Materials and methods 61 3.4. Results 66 3.4.1. Construction of engineered Saccharomyces cerevisiae stains with high spermidine contents 66 3.4.2. Effects of disruption of TPO1 coding for polyamine excretion protein on tolerance of S. cerevisiae 69 3.4.3. Identification of genes involved in tolerance against furan derivatives 71 3.5. Discussion 76 4. Application of engineered Saccharomyces cerevisiae strains with high spermidine contents to enhancing ethanol fermentation performance 105 4.1. Summary 106 4.2. Introduction 108 4.3. Materials and methods 111 4.4. Results and discussion 116 4.4.1. Effects of high spermidine content on repeated-batch fermentation 116 4.4.2. Introduction of xylose assimilation pathway to the engineered strains with high spermidine contents 119 4.4.3. Fermentation of xylose-fermenting S. cerevisiae strains with high spermidine contents in simulated hydrolysates containing furfural, HMF, and acetic acid 122 4.4.4. Fermentation of xylose-fermenting S. cerevisiae strains with high spermidine contents in corn stover hydrolysate 124 4.4.5. Improved xylose fermentation of S. cerevisiae by high spermidine contents in the absence of fermentation inhibitors 125 5. Production of spermidine in engineered Saccharomyces cerevisiae 138 5.1. Summary 139 5.2. Introduction 140 5.3. Materials and methods 142 5.4. Results 147 5.4.1. Construction of engineered S. cerevisiae producing spermidine 147 5.4.2. Optimization of fermentation conditions for improving spermidine production 148 5.4.3. Spermidine production from xylose by the SR8 strain with the spermidine overproduction pathway 151 5.5. Discussion 153 6. Conclusions 168 References 171 Appendix 1. The data from the heat maps presented in Fig. 3.14 198 1.1. D452-2 VS SPD 199 1.2. D452-2 VS DT 203 1.3. DT VS SPD 204 2. Simple amino acid tags improve both expression and secretion of Candida antarctica lipase B in recombinant Escherichia coli 206 3. Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II 267 ๊ตญ๋ฌธ ์ดˆ๋ก 303Docto

    ํ•˜๋‚˜์˜ Best effort ๊ณ„์ธต๊ณผ ๋‘ ๊ฐœ์˜ Guaranteed performance ๊ณ„์ธต์„ ๊ฐ€์ง„ ๋ง์—์„œ์˜ ํšจ๊ณผ์ ์ธ ๋Œ€์—ญํญ ํ• ๋‹น

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฐ์—…๊ณตํ•™๊ณผ,2001.Maste

    A Study on the plasmid DNA isolation and electrotransformation of lactic acid bacteria

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :ๅ‹•็‰ฉ่ณ‡ๆบ็ง‘ๅญธ็ง‘,1995.Docto
    corecore