2 research outputs found

    Evaluation of purification technique of disaster rough rice by sterilization model system and development of complex liquid core hydrogel beads

    No full text
    Rice(Oryza sativa. L.)is one of the important crops in Taiwan. In 2014, the total cultivation area was 271,051 hectare. Taiwan have rice plants lodging and rice germination problems which is affected by typhoon and torrential rain every year,due to Taiwan's location in the west north Pacific. It makes farmers lose severely. The use of disaster rough rice become problems which is needed to be solve from agricultural authorities, farmers and academics. In this study water cultivation was used to simulate the paddy soaked by rain water in the field. We evaluate the component changed of disaster rough rice and coat by microencapsulation technology. In order to development and utilization value of disasters rice. In this study, the analysis of disaster rough rice and rough rice as a control group with general. The results were as follows: After disaster rough rice and rough rice soaking, the internal hydrolysis enzyme (amylase, protease) is activated. The stach of endosperm is hydrolyzed to produce reducing sugars which is small molecular substance. With germination time increase, the phytic acid content have decreased. After hydrolysis reaction, the production of enzyme hydrolysis can offer main nutrient of seedling growth. With germination time increased, the chlorophyll, dietary fiber, total phenol, flavonoid and antioxidant capacity of seedling have increase trend. Overall, at the same time germination, germination rough rice functional component will be higher than germination disaster rough rice. In lodging test, total counts of microorganisms from lodging 0 days had 4.30 * 106 CFU / g → lodging eight days 3.97 * 108 CFU / g. The disaster paddy purification is divided into physical, chemical and physical chemical purification. Effect of purifying disaster rough rice surface microorganisms, temperature treatment is good physical purification and 3.5% hydrogen peroxide is good chemical treatment. In the overall, effect on the physical chemical purification process is best, total counts of microorganisms decreased the rapidly. Preparation of chlorophyll -liquid core microparticles, the microparticles prepared from 2%HMP CC and 0.2% CMC CC have good appearance, hardness and loading efficiency except swelling capacity. In simulated gastrointestinal, microparticles prepared from 2%HMP CC can release little chlorphyll content in stomach, but chlorphyll release fastly in intestine. Microparticles preparaed from 0.2% CMC CC have good control release effect in gastrointestinal. During preparation of complex liquid core hydrogel beads, The flow rate will affect the size of the particle size of the hydrogel beads. Hydrogel beads of small size have good rate to success. Complex liquid core hydrogel beads, liquid ratio Rsa% : 35% of the hydrogel beads with small particles have better physical strength and appearance than the other groups. Complex liquid core hydrogel beads, liquid ratio Rsa% : 45% of the hydrogel beads with large particles have better physical strength and appearance than the other groups. The hope of experiment results can provide reference for processing and application of disaster paddy. Create additional value of disaster rough rice.稻米(Oryza sativa. L.)為台灣重要糧食作物之一,2014年總栽種面積271,051公頃,台灣因地理位置處於西北太平洋上,因此每年常受到颱風、豪雨影響,發生稻株倒伏、稻穗發芽等問題,造成重大損失,有關災害稻穀之加工、利用成為農政單位、農民、學術界重要待解決問題及研究議題。本研究主要以水耕方式栽種稻穀,模擬稻田中受災害稻穀被雨水浸泡的情形,並評估發芽災穀之成分變化,最後以微膠囊技術進行包覆,希盼能開發災害稻穀之利用價值。 本實驗以災害稻穀進行分析,另以一般稻穀當作控制組,其實驗結果如下: 災害稻穀、一般稻穀經浸水後,隨發芽時間增加,內部水解酵素(澱粉酶、蛋白酶)會被激活,胚乳中澱粉物質逐漸被酵素水解成小分子的還原醣等物質,植酸也會隨之減少,而其水解後產物可提供幼苗生長所需的主要養分,幼苗隨發芽時間增加,其葉綠素、膳食纖維、總多酚、類黃酮及抗氧化能力均有上升的趨勢;整體而言,在相同發芽時間下,一般稻穀在發芽後機能成分皆會高於災害稻穀。 倒伏試驗中,災害稻穀總生菌含量從倒伏0至8天由4.30 * 106 CFU / g→增加到3.97 * 108 CFU / g;另災害稻穀淨化處理分成物理、化學及物化淨化,在淨化災害稻穀表面微生物之效果上,物理、化學性淨化方面分別以高溫、3.5%過氧化氫處理效果最好,整體效果以物理及化學混合式淨化處理較佳,總生菌數含量下降最快。 葉綠素-liquid core微粒子製備上,2% HMP CC、0.2% CMC CC組別,製備之球粒膨潤力較差,但外觀較佳呈圓球形,其硬度及包覆率也最佳,而在腸胃道模擬中,2% HMP CC雖在胃道中僅釋放些許葉綠素,但在模擬腸道中卻在短時間內崩散並釋出葉綠素,而0.2% CMC CC組別製備之晶球,在腸胃道皆可以達到緩釋效果。 複合粒中粒(liquid core)晶球,在製備過程中,流速大小會影響晶球之粒徑大小,其中在製備小顆粒晶球時,製備成功率較高,小顆粒晶球以外液比例在35%之晶球硬度、外觀較佳,大顆粒晶球以外液比例在45%之晶球硬度較佳,希盼本次實驗結果可供未來災害稻穀的處理及應用之參考依據,並創造災害稻穀的附加利用價值。摘要 I Abstract III 目次 V 圖表索引 XI 表次 XI 圖次 XII 壹、前言 1 貳、文獻回顧 3 一、水稻育苗(Rough rice seedling) 3 (一)背景概況 3 (二)水稻生長及氣候環境 6 1.低溫 6 2.雨水 7 3.高溫 7 4.風害 8 5.乾旱 8 (三)水稻育苗方法 9 1.種子選擇 10 2.選種方法 10 3.種子消毒 11 二、稻穀(Rough rice) 11 (一)稻穀的結構 11 (二)稻穀的發芽 18 (三)稻穀發芽的影響因子 18 1.光線 18 2.水分 19 3.溫度 19 4.氧氣 19 (四)發芽過程之生理變化 20 1.呼吸速率 20 2.蛋白質(酵素)合成 20 3.澱粉分解 21 4.蛋白質分解 21 三、葉綠素(Chlorophyll) 21 (一)基本結構 21 (二)分類 22 (三)葉綠素降解 22 (四)葉綠素營養價值 22 四、農田倒伏(Lodging) 24 (一)倒伏之影響 24 (二)倒伏之原因 25 (三)倒伏之汙染 25 五、淨化處理(Purification technique) 26 六、微膠囊包覆技術(Microencapsulation technique) 30 (一)微膠囊技術之定義及種類 30 (二)液蕊晶球(Liquid core hydrogel bead) 31 1.晶球之成型機制 31 2.晶球之製備方法 32 (三)微膠囊製備方法 32 (四)微膠囊常用之材料 47 1.海藻酸鈉(Sodium alginate) 47 2.高甲氧基果膠(High methoxyl pectin) 49 3.幾丁聚醣(Chitosan) 52 參、研究目的 58 肆、實驗架構 59 伍、材料與方法 60 一、實驗材料 60 (一)災害稻穀及一般稻穀 60 (二)製備晶球之材料 60 (三)黃麴毒素檢驗套組 60 (四)微生物培養材料 60 二、實驗方法 63 (一)災害稻穀發芽處理 63 1.發芽前處理 63 2.舖盤發芽 63 (二)災害稻穀發芽之採收 64 1.冷凍乾燥 64 2.分離 64 3.去殼 64 4.粉碎處理 64 (三)發芽稻穀之物理性質檢測 68 1.長度測定 68 2.重量測定 68 3.稻穀橫切面觀察 68 4.胚乳微細構造觀察 68 5.發芽率 69 6.浸漬水pH值 69 (四)發芽稻穀之化學性質檢測 69 1.基本成分分析 69 2.機能成分分析 71 (五)災害稻穀田間倒伏試驗、淨化試驗及微生物檢測 82 1.稻穀倒伏步驟及取樣 82 2.災害稻穀物理淨化技術處理 83 3.災害稻穀化學淨化技術處理 84 4.災害稻穀微生物及毒素檢測 85 (六)稻苗萃取液-微粒子晶球之製備及品質監測 90 1.稻苗萃取液製備 90 2.葉綠素-liquid core微粒子製備: 91 3.晶球製備之膠體品質評估: 92 4.晶球品質特性評估: 92 (七)微膠囊晶球溶離試驗: 94 1.藥品的配製 94 2.模擬釋放試驗 95 3.模擬胃腸液連續釋放試驗 95 (八)粒中粒(liquid core)晶球製備及品質分析 96 1.粒中粒(liquid core)晶球製備 96 2.晶球品質評估 96 (九) 統計分析 98 陸、結果與討論 100 第一章、災害稻穀-發芽生理及機能活性物質分析 100 一、發芽稻穀及災害稻穀比較 101 二、發芽稻穀的物性因子之變化 101 (一)發芽稻穀---長度(length) 101 (二)發芽稻穀---重量(weight) 102 (三)發芽稻穀---剖面結構(sectional structure) 103 (四)發芽稻穀---微細構造(microstructure) 110 (五)浸泡水的pH值 110 三、發芽稻穀--秧苗及胚乳機能成分變化及抗氧化特性評估 111 (一)胚乳---基本成分(chemical components) 111 (二)胚乳---澱粉(starch) 112 (三)胚乳---還原醣(reducing sugars) 113 (四)胚乳---總醣(total sugars) 114 (五)胚乳---植酸(phytic acid) 114 (六)胚乳--- α -澱粉酶(α – amylase)活性 128 (七)胚乳---蛋白酶(protease)活性 128 (八)胚乳---總多酚(total phenolics) 129 (九)胚乳---類黃酮(flavonoids) 130 (十)秧苗---總多酚(total phenol) 135 (十一)秧苗---類黃酮(flavonoids) 135 (十二)秧苗---葉綠素(chlorophyll) 136 (十三)秧苗---膳食纖維(dietary fiber) 137 第二章 災害稻穀-殺菌模式系統評估淨化效果及修飾 144 一、不同倒伏時間下稻穀之品質及生菌數探討 145 (一)外觀 145 (二)總生菌數及黴菌與酵母菌 145 (三)黃麴毒素檢驗 146 二、物理淨化處理下之災穀之品質&生菌數探討 149 (一)外觀 149 (二)微細構造 149 (三)色澤 149 三、化學淨化處理下之災穀之品質及生菌數探討 159 (一)外觀 159 (二)微細構造 159 (三)色澤 160 四、淨化處理之災穀之發芽率及總生菌數探討 168 (一)發芽率 168 (二)總生菌數 168 第三章 葉綠素-liquid core微粒子製備及釋放特性評估 173 一、葉綠素-liquid core微粒子的最適造粒條件 175 (一)葉綠素-liquid core微粒子製備之膠體黏度及比重分析 175 (二)葉綠素-liquid core微粒子外觀及微細構造 175 (三)葉綠素-liquid core微粒子粒徑、膨潤力及硬度 176 (四)葉綠素-liquid core微粒子熱焓分析 180 (五)葉綠素-liquid core微粒子傅立葉轉換紅外線分析 180 (六)葉綠素-liquid core微粒子X光繞射分析 187 (七)葉綠素-liquid core微粒子包覆率分析 187 二、葉綠素-liquid core微粒子釋放特性 189 (一)外觀 189 (二)葉綠素釋放量 190 第四章 複合liquid core粒中粒晶球研發及釋放特性分析 194 一、內、外液配方黏度及比重之影響 195 二、複合liquid core粒中粒晶球製備之探討 196 (一)粒徑 196 (二)外觀 196 (三)硬度 197 (四)膜成型性的影響 200 (五)腸胃道模擬釋放評估 200 柒、結論 206 捌、參考文獻 20

    The+Formability+Index+and+Quality+Evaluation+of+Ca-pectin+Hydrogel+Beads

    No full text
    Low methoxyl pectin and calcium ion have high-viscosity coacervation and are used to prepare jam and hydrogel product. Recently, the microencapsulation technique is quite popular for the production of a compound of pectin and calcium ion and is often used in the health-care, biotech and pharmaceutical field. The compound is usually used as tablet binder, coating agent, drug encapsule, drug delivery carrier, improvement of control release and so on. In this study, we use the low methoxyl pectin as the material to study the formability and quality index of Ca-pectin hydrogel bead treated by different pectin concentrations (2.5, 5.0 and 7.5 %), calcium chloride concentrations (0.05, 0.1, 0.5 and 1.0 M) and curing times (0.5, 5.0 and 20.0 min). The research result showed that the overall wet and dry hydrogel bead have increasing trend in higher completeness, higher hardness, and decreasing trend in less shrinkage, smaller particle size, lower water content and lower swelling capacity along with the increasing in the pectin concentration, calcium ion concentration and curing time. In the thermograms, the increase in the pectin concentration, calcium ion concentration and curing time lead to an increase in the onset temperature (To), peak temperature (Tp) and enthalpy (ΔH). The increased air flow (0~3 L/min) in the compressor would cause the particle size (2.70mm~0.32mm) and swelling capacity (-8.45%~9.0%) of the Ca-hydrogel to decrease. Moreover, there was more shrinking on the surface with more combination of pectin and calcium.低甲氧基果膠與鈣會形成高黏度的凝膠作用,常供果醬及凝膠產品之製備;“鈣化果膠複合物”是保健、生技、製藥界近年十分熱門之微膠囊化技術及材料;其常被應用於錠劑之結著、包覆劑;藥物包埋、輸送及釋放改善等研究。本實驗以低甲氧基果膠為材料,探討果膠(2.5、5.0、7.5%)、氯化鈣(0.05、0.1、0.5、1.0 M)濃度及不同固化時間(0.5、5、20 min)對果膠鈣晶球成型性及各項粒子品質因子分析;實驗結果如下:果膠鈣晶球成型性隨果膠及氯化鈣濃度提高及固化時間延長,整體濕、乾球粒之外型完整性較佳,收縮少;粒徑較小,硬度提高,含水量及膨潤力降低,熱性質項目有較高之起始溫度(To),尖峰溫度(Tp)及熱焓值(ΔH)。另外利用空壓機搭配流量計提高空氣流速(0~3L/min),可製得濕球粒之粒徑(2.70~0.32mm)、膨潤力(-8.45~9.0%),成型較佳之晶球粒子;另隨果膠-鈣結合愈多其外表微細構造有較多收縮之紋路
    corecore