2 research outputs found

    Research advances of electrochemical micro/nanofabrication based on confined etchant layer technique

    Get PDF
    与机械加工相比, 电化学加工技术具有无刀具磨损、无热效应、无机械损伤、加工效率高等优点, 而且适用于柔性、脆性及超硬材料,; 具备传统方法难以实现的复杂结构加工能力, 因而在航空航天、汽车、微电子等领域有着重要应用, 日益成为一种重要的工业制造技术.; 随着超大规模集成电路(ULSI)、微机电系统(MEMS)、微全分析系统(mu-TAS)、现代精密光学系统等高技术产业的迅速发展,; 功能性结构/器件的微型化和集成化的要求越来越高. 由于传统电化学只适用于金属材料, 为了应对微纳制造的时代要求, 拓展电化学加工的材料普适性,; 1992年田昭武院士提出了具有我国自主知识产权的约束刻蚀剂层技术(CELT). 一般的, 约束刻蚀包括3个步骤:; (1)通过电化学、光化学或光电化学的方法在模板电极表面生成刻蚀剂;; (2)通过后续的均相化学反应或自由基衰变反应将刻蚀剂约束在微/纳米厚度的液层内; (3)将模板电极逼近加工基底,; 当约束刻蚀剂层接触被加工基底时, 通过刻蚀反应实现微纳加工. 最近, 联合课题组通过仪器、原理和方法3个方面的努力, 引入外部物理场调制技术,; 实现一维铣削、二维抛光、三维微/纳结构加工, 大幅提升了CELT的技术水平.Compared with mechanical machining, ECM has several advantages, such as; avoiding tool wear, none thermal or mechanical stress on machining; surfaces, as well as high removal rate. Moreover, ECM is capable of; making complex three-dimensional structures and is appropriate for; flexible, fragile, or fissile materials even materials harder than the; machining tool. Thus, ECM has been widely used for various industrial; applications in the fields of aerospace, automobiles, electronics, etc.; ECM methods can be classified usually as electrolytic machining based on; anodic dissolution and electroforming based on cathodic deposition of; metallic materials. Recently, high technology industry, such as; ultralarge scale integration (ULSI) circuits, microelectromechanical; systems (MEMS), miniaturized total analysis systems (mu-TAS) and; precision optics, has developed more and more rapidly, where; miniaturization and integration of functional components are becoming; significant. Nowadays, the feature size of interconnectors in ULSI; circuits has been down to 20 nanometers, predicted by Moore's law.; Confined etchant layer technique (CELT) was proposed in 1992 to; fabricate three-dimensional micro- and nanostructures (3D-MNS) on; different metals and semiconductors, which has been developed an; effective machining method with independent intellectual property; rights. Generally, there are three procedures in CELT: (1) generating; the etchant on the surface of the tool electrode by electrochemical or; photoelectrochemical reactions; (2) confining the etchant in a depleted; layer with a thickness of micro- or nanometer scale; (3) etching process; when the tool electrode is fed to the workpiece, which applicable for 1D; milling, 2D polishing, and 3D microfabrication with an accuracy at micro; or nanometer scale. External physical-field modulations have recently; been introduced into CELT to improve its machining precision. In this; review, the advances of CELT in principles, instruments and applications; will be addressed as well as the prospects.国家自然科学基金; 机械制造系统工程国家重点实验室开放课题资助项

    Sailing to the Ocean of Electrochemistry: the First Step of Experiment

    No full text
    电化学是研究电能和化学能相互转化的规律的科学。电能和化学能之间的相互转换,是通过电极/电解质溶液表界面的结构变化和电荷转移反应来实现的。以电化学能源器件为例,前者为超级电容器,能量存储和释放主要通过界面双电层的表界面结构变化来实现;后者为化学电源,能量存储和释放主要通过电极活性物质的表界面化学反应来实现。所以,研究一个电化学体系时,主要关注两个问题,即表界面结构和表界面电荷转移反应。而表界面结构直接影响表界面电荷转移反应的性质,因此,从电化学实验的角度,表界面的构筑是至关重要的,包括电极的制备和表征、电极修饰材料的制备及组装、溶剂和支持电解质的选择和优化、电化学实验环境等等。本文旨在向广大电化学初学者讲述电化学实验的准备工作以及对实验现场数据的基本判断,帮助大家在实验中及时发现问题,及早采取措施,高效率地获取可信的实验数据。Electrochemistry is the science on the conversion between chemical energy and electric energy, which is realized by the structure change of the electrified surface and interface, and/or the surface and interfacial charge transfer reactions. Taking the electrochemical energy devices as example, the former is the supercapacitor where the energy storage and release are performed by the structure change of the electric double layer; the latter is the battery where the energy storage and release are performed by the redox reaction of the electrode active materials. When investigating an electrochemical system, we have to pay attentions on two issues: the surface and interfacial structures and the charge transfer reactions wherein, and the former has crucial effects on the properties of the latter. Thus, the design and construct of electrode surface and interface are essential in electrochemical experiments, including the preparation and characterization of electrode, the modification and assembly of composite electrode, the choice and optimization of solvent and supporting electrolyte, the experimental environment, etc. The purpose of this paper is to give an introduce on the preparations of electrochemical experiments and to help the juniors to judge the quality of experimental data. This would be helpful for the improvements of data reliability and work efficiency.国家自然科学基金项目(21827802);国家自然科学基金项目(22021001)通讯作者:詹东平E-mail:[email protected]:Dong-PingZhanE-mail:[email protected].固体表面物理化学国家重点实验室,中国福建能源材料科学与技术创新实验室,电化学技术教育部工程研究中心,厦门大学化学化工学院化学系,福建 厦门 3610052.厦门大学航空航天学院机电工程系,福建 厦门 3610051. State Key Laboratory of Physical Chemistry of Solid Surfaces; Fujian Science & Technology Innovation Laboratory for Energy Materials of China; Engineering Research Center of Electrochemical Technologies of Ministry of Education; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen 361005, Fujian, China2. Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361005, Fujian, Chin
    corecore