996 research outputs found

    Optimal measurement strategies for linear stochastic systems

    Get PDF
    Iterative digital computer algorithm for solving optimization problems for linear stochastic system

    Nonlinear and adaptive control

    Get PDF
    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies

    Application of modern control theory to scheduling and path-stretching maneuvers of aircraft in the near terminal area

    Get PDF
    A design concept of the dynamic control of aircraft in the near terminal area is discussed. An arbitrary set of nominal air routes, with possible multiple merging points, all leading to a single runway, is considered. The system allows for the automated determination of acceleration/deceleration of aircraft along the nominal air routes, as well as for the automated determination of path-stretching delay maneuvers. In addition to normal operating conditions, the system accommodates: (1) variable commanded separations over the outer marker to allow for takeoffs and between successive landings and (2) emergency conditions under which aircraft in distress have priority. The system design is based on a combination of three distinct optimal control problems involving a standard linear-quadratic problem, a parameter optimization problem, and a minimum-time rendezvous problem

    Survey of decentralized control methods

    Get PDF
    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented

    Adaptive control: Myths and realities

    Get PDF
    It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed

    Multivariable control systems with saturating actuators antireset windup strategies

    Get PDF
    Preliminary, promising, results for introducing antireset windup (ARW) properties in multivariable feedback control systems with multiple saturating actuator nonlinearities and integrating actions are presented. The ARW method introduces simple nonlinear feedback around the integrators. The multiloop circle criterion is used to derive sufficient conditions for closed-loop stability that employ frequency-domain singular value tests. The improvement in transient response due to the ARW feedback is demonstrated using a 2-input 2-outpurt control system based upon F-404 jet engine dynamics

    Design of waveguides and transmission lines by the distributed maximum principle

    Get PDF
    Maximum principle for distributed systems applied to design of waveguides and transmission line
    corecore