
This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 1, number 4

Volume Author/Editor: NBER

Volume Publisher:

Volume URL: http://www.nber.org/books/aesm72-4

Publication Date: October 1972

Chapter Title: The Discrete Time Linear-Quadratic-Gaussian Stochastic Control Problem

Chapter Author: Michael Athans

Chapter URL: http://www.nber.org/chapters/c9447

Chapter pages in book: (p. 446 - 488)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6701244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


p

.lnnalc o/ Leon,'ntu cu,d Social .tfe, s'iretnent. I 4. I 972

THE DISCRETE TIME LINEARQUADRATIC-CJASSIt
STOCHASTIC ('ONT ROL PROBLEM *

1W Mt(IIAIl. AillASt

The psrpose of this paper is to retlew in a tutorial joshioti tia' rule of the !ittear-quadratk sto
control problem in descrete tittie 551cm design. 'Ihe design approach is instIl sileil 1 oiisidcritig the

cotittol of a ,to,ilinear uncertain plant ithon t a iiesired input output resplilcie sts nem e. It ts deittotis Ira ted

how a design philosophy htjed on (a) di'terministu opnttal control. h deter ,ittni.stic pert urha rioti (0,11 rol,

stochastic state i'sii,naiion. and (d) linearized stochastic control, leads to an overall closed loop control

sistein, The emphasis ofihte paper is on (J!r philosophy o/ the design process, the nioih'lhng issue, and the
formulation sf the problem: the results are given for the .ssikc of coin ph'teness. hnz no prsiils are nt hide,!.

The' systematic. off-line, nature of the design process is stressed throughout.

1. INTROI)UCTION

l'his paper was motivated by the fact that most stochastic optimization problems iii

economics arc host naturally described by difference equations. For this reason, it

appeared appropriate that a summary paper describing a unified design philosophy

based on advances in modern control theory. would contribute to the interchange

of ideas between economists, management scientists. and control theorists. This

paper then is a discrete-time version ofthe continuous time results (see reference I)
presented at the Princeton workshop. This paper focuses on the non-engineering

aspects and interpretations of the theory.
It should he stressed that trends in stochastic controlresearch by engineers has

been greatly influenced by two factors
a need to minimize on-line computations. and
the requirements in many aerospace applications that the control system he

realized by analog hardware.
In economic applications these requirements are not present, since the time

period between decisions does allow for extensive digital computer calculations.

Thus. one does have the luxury of examining more sophisticated decision and con-

trol algorithms, which however have increased computational requirements.
Nonetheless, it is important to know what are the "bread-and-butter" tools in
control practice, which requires a very modest amount of on-line digital computa-

tion. It is the purpose ofthis paper to state, in a summary form, this simple approach

to the control of nonlinear stochastic systems.
The basic problem in engineering control system design almost invariably

involves the on-line (i.e., real-time) feedback control of an uncertain, usually non-

linear, physical process. The engineer, usually likes to work with, and benefits from.

a systematic approach to the design problem such systematic approaches are often

the outcome of past design experience.
* This research was carried out at the Decision and Control Sciences Group of the M.I.T.

Electronic Systems Laboratory with support extended by NSF under grant GK-25751.

The author wishes to express his sincere appreciation to Professor Gregory Chow and Mr.

Kenneth Garhade of Princeton University. and to Professor S. Phillip Cooper and Dos Pekelnian of

the University of Chicago Business School whose discussions and comments greatly contributed to

the motivation for and preparation of this paper.
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Clearly, a "universal" system design approach must take into account
the desired specilications
actuator and sensor Constraints
measurement errors
actuator errors
design sensitivity due to plant parameter var!ations
effects of unpredictable disturbances
on-hne vs. oil-line coniputatiomil requirements
design simplicity

The purpose ofthis paper is to indicate how the available theory oloplimal control
and estimation for the so-called Linear-Quadratic_Gaussiaii problem provides
such a unified design procedure. in particular, we wish to stress the advantages ofthis design process from the viewpoint of ease ofconiputation since the theory pro-vides us with equations that can be readily solved by modern (ligital computers.
Thus, the success of the design process hinges on the capability of the designer to
understand the physics of the problem and his ability to translate ph sical require-ments and constraints into matheniatical language. Once this crucial "modelling''
has been done, the digital computer algorithms will readily generate the quantita-tive details ofthe design.

Towards this goal, this paper is structured in the following manner. In Section2 we discuss the problem under consideration in the most general terms and weoutline the design philosophy that we shall adopt. In Section 3 we discuss the
deterministic aspects of the design problem, introduce the notions of the ideal
input-state nominal time functions, dynamic linearization, provide the motiva-tion for using quadratic criteria, and state the solution of the deterministic linear-

quadratic problem. In Section 4, we analyze the deterministic design from the view-point of uncertiinty' and sensor constraints This leads us to the problem of esti-
mating the state variables of the uncertain physical process. on the basis of past
measurements via the Kalman-Bucy theory. In Section 5 we "hook-up" together
the stochastic estimator of Section 4 with the deterministic controller of Section 3to obtain the desired compensator that translates actual sensor measurements tocommanded control inputs. Sectio!1 6 contains a discussion ofthe results. Section 7presents a brief overview of the adaptive control problem.

Ofcourse, all the results outlined in this paper are available in one form ortheother in the control literature. Hence, the hoped for contribution of this paper isthat of unification, so that one can see how seemingly diverse topics in controltheory can be combined to yield a systematic computer-aided design tool. Thus, theemphasis will be on philosophy, interpretation and critical discussion of the inter-play between physical processes and the n1atheinaticjl models required to applythe powerful tools of modern control theory. We also hope to convey the fact thatthis approach to design involves both "art and science", so that creativity andknow-how are (as always) the key ingredients of success.

2. mr PhySiCAl PRoIris\l ANI) rue Dusl(;\ Puiiu)soply
We commence our specific discussion with a brief description of the problemof controlling a physical dynamic process and a definition of the control problem.

450



2.1. Plfl'SU'al Phu,it, Act hotel's, Sensors

\Ve shall deal with the interconnected entity of a physical piaflt driven by
actuators: measurements can he made by sensors.

2.1.1. Actuators: The actuators are actual "devices'' that translate com-
manded inputs, time sequences that can be specilied by the designer. te.g., com-
manded government expenditures into actual plant inputs (e.g., actual government
expenditures). This translation is not exact this is modelled by the actuator
uncertainties. It is assumed that the actual plant inputs cannot he measured, at
least at the times that the decisions have to be made.

2.1.2. Plant : The plant is a physical device that translates the actual plant

inputs as well as other plant disturbances (e.g., probabilistic exogeneous variables)
into a set of time sequences which we shall call the physical state rariables of the

plant (e.g., consumption. unemployment rate, interest rates, etc.). For our purposes,
the plant state variables are the key physical variables that govern and specify
completely the current behavior of the system. In economic applications they are

the current and lagged values of the appropriate endogeneous variables. In the
language of urban dynamics the state variables correspond to the level variables.

2.1.3. Se,Lcors : We assume that it is either impossible or not desirable for
physical or economic reasons, to measure all the plant state variables. The physical

sensors are devices that indicate which physical variables (state variables and/or
combinations thereof) can be indeed measured. However, the actual sensor
measurement signals are dillerent than the signals that are sensed : these errors are

modelled by the inclusion of the sensor error and uncertainty signals, which take
into account the measurement accuracy of any given sensor.

2.2. Control System Object ires

The desired behavior of the physical process as a whole is often judged on the
basis of the actual time-evolution of all or some of the physical plant state variables.

Of course, due to the sensor constraints one may not he able to deduce exactly

what the plant is doing at each and every instant of time. Nonetheless, the plant

state variables rather than the measurements are the key quantities that enter in

the control problem formulation.
In many cases, the time evolution of the plant state variables may possess cer-

tain undesirable characteristics. These may be due to the effect of the plant dis-
turbances and/or actuator errors, due to inherent plant instability or sluggish
response. In such cases, one must be able to control the time evolution of the plant

state variables by the adjustment of the time evolution of the commanded inputs.
(which are the only variables that can be externally adjusted).

It is appropriate to remark at this point that the issue of unreliable measure-

ments has been somewhat ignored in the mathematical economics literature. There

is evidence to suggest that the measurements can he unreliable (see for example

references [2] and [3]). On the engineering side, during the past decade, noisy
measurements have been treated as the rule rather than the exception: this has
contributed to certain distinct evolutionary developments in the research contri-

butions of these two areas. 1-lence, the control system objective can be loosely

stated as follows:
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Find the ti,ne-evolut ion of the commanded inputs (decision variables, policy
variables) such that the time evolution of the physical plant state variables is
satisfactory for the task at hand.

2.3. Control System Structure

Since the control objective hinges on the time-evolution of the physical state
variables, and since we cannot sense them directly in view of the sensor constraints.
it is intuitively obvious that the actual values of the commanded inputs at the
present time must somehow (at least, partially) depend upon the current, and
perhaps past, values of the sensor measurements.

Thus, we are admitting right at the start that some feedback is necessary.
This leads us to visualizing that we must construct a physical device which we
shall call the compensator, whose task will be to translate the actual sensor meas-
urement signals into the actual commanded inputs to the physical process.

We can now reformulate the control objective of Section 2.2, as follows:

Find the compensator, driven by the sensor measurement signals (mu generating
the conlma,l(jecl inputs to the physicalprocess, such that tiic' time evolution oft/ic
p/i rsical plant state variables is satis :ctoryJr tile task at hand.

2.4. The Design Phi losophi'

It should be clear that the design of the compensator must hinge on
Natural dynamics of the physical process both in the absence of uncertainty
(deterministic) and in the presence o! uncertainty (stochastic)
The level ofthe uncertainty in the physical process (flow big are the probable
actuator errors? I-low large are the plant disturbances? How accurate are
the sensors?)
The precise notion of what characterizes, for any given application, a
satisfactory time-evolution of the physical plant state variables.

In point of fact, our ability to construct such a compensator, must depend
upon our ability to predict (exactly or approximately) what the physical plant state
variables will be doing for any given

commanded input time-sequences
actuator errors, viewed as time-sequences
plant disturbances viewed as time-sequences

Clearly the design issue is clouded because it involves the interplay between the
natural dynamics of the physical process, the stochastic nature of the uncertainties,and the effects of the deterministic commanded inputs. Nonetheless, one can adopt
a design philosophy that involves the following three basic steps:
Step 1. Deterministic Ideal Response Analysis and Design
Step 2. Stochastic Estimation Analysis and Design
Step 3. Stochastic Feedback Control System Design
In the rest of the paper, we shall elaborate on precisely what we mean by this three-part approach.

2.4.1. Deterministic Ideal Response Analysis and Design (Step 1). In this step,we pretend that there is absolutely no uncertainly. That is, we suppose that

452

*



actuator errors do not exist
* there are no plant disturbances

we can measure exactly all the physical plant state variables and output
variables

the actuator and plant dynamics are known exactly
all parameter values are known exactly

Under these assumptions, we can predict exactly what the plant state and output
variables will do for any given commanded inputs. If this is the case, then somehow
(and this will be treated in detail in Section 3) we should be able to determine:

the ideal commanded inputs viewed as time-sequences which will give rise to an
ideal set of plant state variable time-sequences for the application at hand.

In short, the basic end product of this first step of the design process, is the speci-
fication of an ideal deterministic commanded-input state-variable pair that incor-
po rates the specifications of the application and the natural constraints and dynamics

of the physical process.
2.4.2. Stochastic Esti,nation Analysis and Design (Step 2). In this part of the

design process, we reintroduce the uncertainty into our problem. In particular, wc
take into account that we cannot measure all of the plant state variables and that
any measurement is subject to sensor errors.

The basic question that we answer at this step of the design process is the
following:

Construct a device (state estimator,fllter) that generates on the basis of the past
sensor measurements a set of time-sequences which are as close (IS possible to
the true values of the physical plant state and output variables at any instant of
time.

The way that this "state estimator" is constructed is the subject of Section 4. The
reason that this step is essential to the design process becomes apparent in the next
step.

2.4.3. Stochastic Feedback Control System Design (Step 3). Let us recapitulate
for a moment on what we have constructed up to now. From Step I we have:

(la) an ideal deterministic set of commanded input time sequences
(lb) an ideal deterministic set of desired plant state variable and output time

sequences.
From Step 2 we have:

(2a) a set of estimated plant state and output variable time sequences (which
are hopefully close to the true plant state and output variables in the
uncertain stochastic environment.)

We now have the capability to compare the estimated state variables (from 2a)
to the desired state variables (from 2b), at each and every instant of time. Their
differences constitute a set of estimated deviations of the actual plant state variables
from their idealdesired values at each instant of time. Thus, we have an approximate
idea on how close is the response of the physical process to its desired one.

In general, due to the presence of uncertainties and plant disturbances, one
would expect to observe such an estimated deviation. One can now reformulate the
control objective as follows:
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Design the compensator such that all estimated (lepjat ions of the Plant st(e
cariables from their ideal desired comes are eio.se to zero jar all instants O/jjn1'

It should be clear that if we keep applying the ideal deterministic
commanded

input time functions (from Step la) that the above objective will not be met, Since
the deterministic input was found under assumptions (no uncertainty!) that ai-eviolated. Hence, one would expect that the actual conimanded inputs to the
physical process must be somewhat different than the ideal deterministic inputs
found in Step 1.

One can imagine that this is accomplished by constructing a set of controlcorrection signals (generated on the basis of the estimated deviations of the state
variables from their desired values) such that the actual commanded input to the
physical process is the sum, at any instant of time, of the ideal inputsobtained inStep I and of the control corrections.

2.5. Why Not Dynamic Programming?

Since we are obviously dealing with a stochastic optimal feedback control
problem, and since the only theoretical tool which is available to analyze this classof problems is dynamic programming (see reference 4), one may wonder why one
does not attack the problem directly using the dynamic programming algorithm.The reason that dynamic programming is not used, is simply due to the curse ofdimensionality (which is far more severe for stochastic problems as compared to
deterministic problems). Thus, to obtain numerical solutions for realistic problems,we simply do not have, now and in the foreseeable future, digital computers withsufficient fast-access memories to solve this class of problems, It is for this very
reason that the "suboptimal" three part approach to stochastic system design has
gained popularity among engineering practitioners; at the very least, the computa-tional requirements of this design approach are perfectly within the capabilitiesof modest digital computers.

3. DETERMINISTIC IDEAL RESPONSE ANALYSIS AND DESIGN (STEP I)

3.1. Introduction

As indicated in Section 2.4.1 the first step in the proposed design processassumes (only temporarily!) that the physical process operates in the absence ofuncertainty. In this section we elaborate on the steps and techniques which cul-minate in the deterministic ideal pair of inputs and associated state variableresponse sequences.
Our objective here is to indicate that additional "rionphysical" uncertaintiescan be introduced even if the physical process is assumed to operate in an otherwisedeterministic physical environment These "nonphysical" uncertainties are theresults of modelling approximations They lead to a structure similar to that of theoverall stochastic problem even ifall physical plant state variables can be measuredexactly.
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3.2. Deterininistu Modelling

it is essential for the overall design process that the physical process be
modelled in aquantitative manner.4 Thisof cotit requires a blending of natural or

man made laws, experimentation, econoniel rics, etc., so as to determine the iioitiina

parameter values of the physical process.
Quite often assumptions that are made at this point are:

Actuator dynamics are neglected
Sensor dynamics are neglected
The plant is modelled as a lumped system.

3.2.1. Actuator-Plant Mode!. tinder these assumptions the actuator and plant are

modelled by a nonlinear time varying vector difference equation:

(3.1) x(t -I- 1) f(x(t),u(t), t);x(0) = x0 t = 0,1,2,...

where:
x(t) is the plant state rector, an n-dimensional vector with components

x1(t), x2(t)......(t), for each value of the discrete time

u(t) is the plant control rector, an ,n-dimensional vector with components
,i1(t), 142(t).....u,,,(t), for each value of the discrete time i

x0 = x(0) is the initial state vector at the initial time t = 0

f(x(t), u(t), t) is the plant nonlinearity, a vector-valued nonlinear function

with components f1(x(t), u(t), t), f2(x(t). u(t), r ...../,(x(t), u(t), 1).

Remarks:
In general, actuator dynamics, if significant, can be absorbed together with

the plant dynamics, thus increasing the dimensionality of the state vector

x(t).
The function f(,.,) contains parameters whose values (nominal) are

assumed known.
The function f(. . ) is assumed (for technical reasons) continuous and at

least twice differentiable with respect to its arguments x(t), u(t), and t.

The effects of known exogeneous variables, known time-varying param-

eters, etc., is absorbed in the time dependence of f(x(t), u(t), t).

3.2.2. Sensor model. We let the output vector y(l) denote the r-dimensional vector

that represents the variables that can be measured. Thus the components y(t),

y2(t),... , y,(t) ofy(t) denote the scala r variables that can be measured by the sensors,

at each instant of time t.
We assume that each output variable is at most a nonlinear combination of the

state variables. This is modelled by

(3.2) y(t) = g(x(l), I)

where g(x(t), r) is called the output nonlinearity, a vector-valued function with

components g1(x(t), t), g2(x(t), t).....g,(x(r), i)

* We do not mean to minimize the difficulties associated with this step. Modelling is an extremely

ditficult process The dynamics of aerospace systemS are very simple and well understood as compared

say to the dynamics of chemical process control systems or socio.economlc systems. This is one of

the reasons that most of the successful applications of the L-Q-G techniques have been 10 aerospace

systems up to this time.
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Remarks
Sensor dynamics. if significant, can he incorporated in the plant Cquatioii
(3.1).
The vector g(x(t). 1) is assumed to he continuous and at least twice diliereii-
tiable (once more for technical reasons).

3.3. ideal Input-State-Output Responses

Under our assumptions the following is true
Given

the current value state vector x(t)
the control input sequence u(r), r = t, + 1, t -- 2..

Then
one can compute exactly the unique future state sequence x(t),

= i + 1,1 4. 2,...

one can compute exactly the unique future output sequence y(t). t =
i + 1,1 + 2....

This capability allows us to determine the ideal cleternunistic input-state pair for
any given initial state x0. In general, one is interested in the operation of the system
over a finite time interval t = 0, 1. 2,...T. On the basis of the deterministic model
one then defines:
Ideal Dci erniinistic Input Time Sequence: {u0(t )}, t = 0, I, 2.......
Ideal Deterministic State Sequence: { x0(t)}, t = 0, 1, 2.......
ideal Deterministic Output Time Sequence : y0(t), t = 0, 1, 2.......

(3.3) x0(t + 1) = f(x0(t),u0(t),t);x(0) = x0

Yo(i) = g(x0(t), t)

3.3.1. Computation of ideal input-state response. The design procedure
requires that to each initial state x0 we associate an input-state pair of time
sequences {u0(t)} and x0(t)}, r = 0, 1.2.....T. The interpretation of {x(t)} is that
it represents the desired state evolution of the system, provided that the system
initial state is x9.

In principle, {u0(t)} and {x0(t)} can be obtained by "experience" coupled with
digital computer simulation. However, there is a systematic approach to the deter-
mination of {u0(t)} and {x0(i)} via the solution of a nonlinear deterministic optimal
control problem. This involves the definition by the designer of a (nonquadratic
in general !) scalar valued cost functional (objective function).

(3.4) 1 = (x(T)) + Lx(r), u(t), 1)

which incorporates any requirements on the terminal state x(T) by means of the
penalty function (x(T)), and any state 'ariah1e constraints, control variable con-
straints, and optimality criteria in the function L(x(t), u(1), r). In this case then one
can formulate a discrete-time deterministic optimal control problem of the form.

Given the system (3.1) and the initial state x0. Find u0(t)} and the resultant
x0(t)} sue/i that the cost functional (3.4) is minimized.
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Remark
It is possible to formulate and solve deterministic optinial control problems

with "hard or soft" constraints on x(T), {U(i)}, and {x(t)}. However, these con-
straints will be violated in the stochastic version of the problem. because of the
unpredictable disturbances. It is for this reason that in this step, the deterministic

optimal control problem is formulated in an unconstrained manner.

3.3.2. The discrete matrix mimmuin prinepk'. The deterministic discrete

optimal control problem can be in principle solved by dynamic programming: in
practice this is, however, not possible due to the curse of dimensionality.

The appropriate theoretical tool is the so-called discrete minimum principle,

which is the extension of Pontryagin's maximum principle for COfltifluOUS time

systems (see reference 5), to discrete-time systems. Appropriate references for the
discrete minimum principle are 6 to 8. We remark that the discrete maxtmum
principle is essentially equivalent to the KuhnTucker theorem.

In the control literature, the dynamics of the system (3.1) are written in a some-

what different form so as to make the discrete version of the minimum principle
bear strong resemblance to the continuous time version. The statement of the
problem and of the discrete version of the minimum principle are as follows:

Problem
Given a system described by the vector dilTerence equation*

(3.4) x(t + 1) - x(t) = f(x(t), u(t), t): x(0) = x0

and the cost functional, with T fixed

1- I

(3.5) 1 = ç5(x(T)) + L(x(t). u(t), 1)

Find the optimal control sequence, denoted by {u*(q}, t = 0, 1, 2.....T - 1
such that I is minimized.

The Hamiltonian
It is convenient to define the scalar valued lunction H, called the Hamiltonian,

as follows:

(3.6) H = H(x(t), u(t), p(t + 1), t) L(x(t), u(t), t)

+ p'(t ± l)f(x(t),u(t).t)

In (3.6) the sequence {p(t)}, t = 0, 1, 2.....'1 is called the cost ate sequence;p(t), the

cost ate vector at time t, is an n-dimensional column vector (the same dimension as

the state vector).

The Discrete Pvlinimum Principle
Assume that an optimal control sequence exists. Let {u*(t)} denote the optimal

control sequence, let {x*(t)} denote the optimal state sequence. Then there exists

a corresponding costate sequence {p*(t)} such that the following conditions hold.

* Note that . ) in (3.4) is riot the same as the f( . ) in (3!)
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A (anoni a! Di//erence I:qu(IIIOJN
Stale Di'namies

(3.7j vt t I)

('oslo! e I)vna,ni '.'

(3$) P'(' + I) pt(')

B. Boundar (and Uion.s
At the initial time I = 0:

(3.9)

At the terminal time '1':

(3.10)

C'. .iliiii;:,:at ion a! liwniltonian

(3.11) /I(x*(,). u*(t), p*(, + 1),t) I!(x*(l). u(t), p*(j + I), t)

k)r each t = 0, 1. 2,...,T - I and all u(t)cR,,. tJnder
appropriate smoothnessconditions. (3.11) implies

(3.12)

(3.13)

(-II

1

= f(x411). u*() 1)

('11 1/.. If
Ix(tj Ix)!) * --

1x(t)) p(t + !

p*( '!' ()(X) 'I'))

(X( 1)

Ill =0
('IJ(t)

*

121!
= positive seniide(jnjte m x in matrix('Ll(t) *

Remarks

The I)recise conditions tinder which the discrete flhinimum principle isderived will not he given here : see reference [6].
The discrete minimum principle yields, in general, a set of necessary con-ditions for optimality. Sulliciency requires additional (convexity type)assumptions.

3.3.3. Cmnpuajflj aIgoriti,n. The control literature abounds with a hostof computationt1 algorithms that use the necessary conditions of the minimumprinciple, which can he used to obtain in an iterative manner numerical solutions tothe optimal control problem.
The detailed description of these algorithms falls beyond the scope of thispaper. The interested reader should consult references [9], Chapter 7, [tO], [II] and[12]. Such methods as steepest descent, conjugate directions, conjugate gradient,quasilinearj,j011 Newton's method etc., are extremely popular. We note thatmany of these algorithms are presented in the cited literature for the continuous-time optimal control prohlen however their transjjteration to the discrete timecase is trivial.
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3.3.4. Recapitulation. The solution of the deterministic optima I control proh-
1cm, using the discrete minimum principle and the associated computational
algorithms, can be used to compute (he ideal input {o0(t)}, state x((t), and output
{y0(t)} sequences. We remark that this requires ofT/inc COmpulaton.

3.4. Control Under the Deterministic Assumption

Let us now examine the interrelationship between our deterministic mathe-
matical model and the physical process which appears in a deterministic environ-
ment.

Let {uQ), {x(t)}, {y(1)} denote the true input, state, and output sequences of
the physical process. By assumption, all can be measured exactly. Let us imagine
that we conduct the following experiment. We let

(3.14) a(z) = ii0(t), t = 0, 1,2.....T -
that is, we excite the physical system with the ideal input found in Section 3.3. Let
us then measure the true state x(t) and output y(t) ofthe physical system.

The natural question that arises is:

Is x(t) = x0(r) ]br all t = 0, 1,2.......

is y(t) = y0(t) for all t = 0, I. 2.....F?
In general, the answer is: no. The reason is that x0(t) and Y0U) were computed
using a mathematical model of the physical process. However, the designer has to
make some approximations (often intentionally) to arrive at the mathematical
model, often neglecting to include second-order effects. Even if the equations were
exact "structurally", the values of the parameters used in the mathematical model
are nominal ones and the true values may be slightly different. In addition, the actual
initial state of the system x(0) may differ slightly from the ideally assumed one,
x(0).

It then follows that errors in the deterministic nodel may by themselves con-
tribute to deviations of the true physical plant state x(t) from its ideal deterministic
one x0(t). In fact, small initial deviations, caused by the difference x(0) - x0(0),
may get worse and worse as time goes on.

3.5. Deterministic Perturbation Control Problem

If we agree that our design objective is to keep the actual plant state x(fl near
its ideal desired value x0(t), for all t = 0, I.....T, then it is clear that the actual
plant input sequence {u(t)} must be different from the precomputed ideal input
sequence {u0(i)}.

This leads to define the following quantities
State perturbation vector; öx(t):

(3.15) x(t) x(r) - x0(1)

Output perturbation vector; öy();

(3.16) y(t) y(t) - y0(t)

Control Correction Vector; u(t):

(3. 17) u(t) u(t) - u0(t)

459



We can imagine that the control correction vector, u(t), is generated by adeterministic controller which is possibly driven by
the stale perturbation sequence, {x(t)}
the output perturbation sequence, y(t)}

Thus, even in this deterministic case, one must use fredha('k control to lake care of
errors that are primarily associated with errors in modelling. We remark that thisis one of the primary reasons for feedback, namely to make the System response berelatively insensitive to parameter variations.4

The control objective can then be stated as follows:
Given &x(t) and öy(t),find öu(r), t = t, t + 1 ,...,suc/z that fiaure Stale pertur-
bation vectors. x(t), are "small"Jór all i t + 1,..., T.

3.6. The Linear-Quadratic Approach to the Deterministic Controller Design

Since the compensator to be designed involves a relationship between öx(t),u(t), and &y(i), it is natural to ask at this point how these quantities are related.1 he sought for relationship can be obtained by Taylor series expansions which leadto the use ofdynamic linearization ideas.

3.6.1. The linearized perturbation model. The deterministic model for oursystem is still employed (since we have no other!). Thus, we assume that the true
control u(t), true state x(t), and true output y(t) are related by
(3.18) x(t + 1) = f(x(t),u(,()
(3.19) y(t) = g(x(t), t)

Similarly the ideal nominal control u0U), state x0(t), and output y0(t) are related by
(3.20) x0(t + 1) = f(x0(t), u0(t), t)
(3.21) y0(t) g(x0(t), t)

Expanding f(x(t), u(t), t) and g(x(t),t) about x0(r), u0(t) in a Taylor series expansionwe obtain

j3f(3.22) f(x(t)). ii(t), t) f(x0(i), u0(t), I) +
0.

4 u(t) + r10(xfr), u(t), t)('U

(3.23) g(x(t), t) = g(x0(t), t) + x(t) + j0(x(t), I)

where 0(öx(t), u(t), 1) and ji0(x(t), t) denote the higher order terms in the Taylorseries expansions
From the above we readily deduce that

(3.24) x(t + 1) A0(()x(t) + B0(t)&(t) 4 0(&x(i), u(t), t)
(3.25)

öy(t) = C0(f)öx(t) + f10(öx(t), t)
* Parameter

anatIons will also be discussed iii Section 7 of this paper.
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In the above we use the notations:
(3.26)

A A A
(1) - X){f)

uoU)

is ann x n time-varying matrix which is obtained by evaluating the elements of the
Jacobian matrix öf/ôx along the known (precomputed) time sequences {x0(t)} and
{u0(t)}.

(3.27)
?f (f
(U0 U xol)

uc(n

is an n x ni time-varying matrix which is obtained by evaluating the elements of
the Jacobian matrix f/au along the known (precomputed) time sequences {x0(t)}
and {u0(t)}.

(3.28) C0(t)
0x o OX0(1J

is an r x n time-varying matrix which is obtained by evaluating the elements of
the Jacobian matrix ôg/ôx along the known desired state sequence {x0(t)}. The
equations (3.24) and (3.25), including the highest-order-terms represent the exact*
relationship between öx(t), u(t), and &y(t).

The linearized perturbation model is obtained by setting the higher order terms
equal to zero in equations (3.24) and (3.25) to obtain

(3.29) x(t + 1) = A0(t)öx(t) + B0(t)u(t)

(3.30) öy(t) = C0(t)öx(t)

which is a standard state description of a linear discrete-time-varying system.
Remark:

The linear perturbation model (3.29) and (3.30) represents only an approxi-
mate relationship between x(t), &u(t), and öy(t), while (3.24) and (3.25) represents
an exact model.

3.6.2. Justification of the quadratic criterion. As we have indicated before, the
modelling aspects of a problem represent an extremely important part of the design
process. The type of model is up to the designer; its relative accuracy is not of
primary importance as long as one knows what are the effects of the approxima-
tions to be made. Up to this point, the fact that the mathematical model x(t + I) =
f(x(t), u(t), t) was only an approximation to reality, forced us to introduce feedback
and to seek the feedback controller.

At this stage, we are also faced with a similar problem. The designer may wish
to use the approximate linear perturbation model (3.29) and (3.30) ra her than the
more accurate nonlinear model (3.24) and (3.25). It is really up to him to do so, pro-
vided that he can anticipate the effects of this choice upon the overall design.

The fact thai must be kept in mind is that one cannot simply ignore the higher
order terms and hope that they are indeed going to be small.

In order to trust the validity of the linear model the designer must guarantee
that : the higher order terms 0(öx(t), u(t), t) and 0(x(t), r) are indeed "small".

* Assuming that x(z -t- 1) = flx(:), u(i),:) and (:) = g(x(r), t) are exact!

461



To see how this philosophy leads to the USC of quadratic criteria and the linear-
quadratic deterministic optima! control problem, it becomes necessary to examine
in more detail the higher order tcrms.

If we use Taylor's theorem which allows us to truncate a Taylor series at art
arbitrary point we can represent exactly the higher order terms as klIows:

r2f . )l
(3.31) x0(x(t), u(r), t) V th'1tIl

(3.32)

1- öu'(t)
ii

('U2(t)

Do(x(r), t) =

Lx2t
i2 . I

öu(t) + Thx'(t) u(1)
()X(t)eU(t).

'I

I

x(t)j

where

4 are the natural basis vectors in R (i.e., 4 = [I 0. . . 03).
The several second derivative (Hessian) fiat rices are evaiLiated at values
(t), U(t) which are in general diffrrent than x0(i) and ti(() the values of
(t) and U(t) are, of course, not provided by Taylor's theorem.

The advantage of viewing the higher order terms in this context is that one
can readily see that they are quadratic in x(t) and u(i). It is also clear that they
involve certain unknown parameters since we do not know what (t) and ü() are!

This approach now leads to the following philosophy:
To trust the ualiditv oft/ic linear model, one should select the öu(t)} sue/I f/ia!

(3.33) 0(öx(t), u(t), t)3 = minimum

T- I
(3.34) It1(x(t), t)I minimum.

:=0
Since ( . ) and ( - ) are quadratic in x(t) and u(t), one way of guaranteeing
this is to select öu(t) so that the "standard" quadratic cost Jilnctjonal*

T- I
(3.35) J0 = 5x'(T)Q0(T) 3x(T) + [x'(t)Q0(i) öx(t) + öu'(t)R0(t) &u(t)]

t=0

is 'niniuzized, where Q0(t), t = 0, 1.....T, are symmetric, at least positive semi-
definite, matrices and R0(t) is a svnimetric positive definite matrix.
The weighting matrices {Q0(t)} and {R0(t)} are selectedf by the designer asan upper bound to the effects of the second derivative matrices in equations

(331) and (3.32): the matrix Q0(T) and the terminal penalty cost x'(T)Q0(T) x(T)
are often included to insure that the x(T) stay near zero at the terminal time,when the current actions of u(t) are not felt (since they take at least one unit oftime to excite the system).

We can see that the state dependent part (öx'(T)Q0(T) x(T) and
öx'(t)Qo(()öx(t)) of the quadratic cost functional are consistent with the controlobjective of Section 3.5 which was to keep x(t) "small." The difference is that

One could also include a cross term of the form x t)M0(t)u(t) in (3.35 This causes no difficultyin is solutton. (See for example, references [131 and [41.)
f The selection of the weighting matrices will be discussed in Section 3.9.
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the vague "smallness" requirement has been translated into something very
specific, namely, to a quadratic penalty on the state deviations x(1) from their

desired zero values.
The above arguments have hopefally communicated to the reader the notion

that quadratic criteria can he used to keep a linear model as honest as possible.

If the designer loved to work with nonlinear difference equations that were

quadratic, !hen the Taylor series should have been terminated at the cubic terms
and a cubic criterion should have been used to validate the quadratic model.

Since the linear-quadratic problem has a "nice" solution, it may not be necessary
to increase the complexity of the perturbation differential equation model further

than the linear one.

3.7. Formal Statement and Solar ion of the Deterministic Linear-Quadratic Problem

Using the above philosophy (i.e., keeping our linearized model honest) we
have arrived at the following precise mathematical optimization problem.

3.7.1. The deterministic linear-quadratic problem. Given the linear, deter-

niinistic, time-varying system

(3.36) öx(t + 1) = A0(t) x(t) + B0(t) öu(t).

Given a fixed time interval of interest t = 0, 1, 2.....T.
Find the control perturbation vector sequence u(t), such that the following

deterministic quadratic cost functional is minimized:
T I

(3.37) J0 = x'(T)Q0(T)öx(T) + [öx'(t)Q0(t)x(t) + u'(t)R,(t)öu(t)]

where*

(3.38) Q0(t) = Qb(t) for all t = 0, 1.....T (n x n matrix)

(3.39) k0(t) = R'0(t) > 0 for all t = 0, I.....T - 1 (m x pa matrix).

3.7.2. Solution of the linear-quadratic problem. The optimal control perturba-

tion vector, u(t), is related to the state perturbation vector, x(t), by means of

the linear time-rarying feedback relationship

(3.40) öu(t) = - C0(t) x(t): t = 0, 1, 2.......-

where 60(t) is a sequence of in x a control gain matrices, t 0, 1.....T -
the value of G0(t) is given by

(3.41) G0(t) = [B'0(t)K0(t + 1)B0(t) -t- R0(fl] 'B(t)K0(t + l)A0(t)

where the n x n matrix K0(t) is the solution of the matrix difference equation

(3.42) K0(t) = Q0(t) + A(t)K0(t + l)A0(t)

A(t)K0(t + 1)B0(t)[B(t)K0(t + l)B0(:) + R0(t)]

x B'0(t)K0(t + l)A0(t)

tThe notation A means that A - B is positive semidefinite: A > B means that A - B is

positive definite.
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subject to the boundary condition at the terminal time T
(3.43) K(T) = Q0(T).

3.7 .3. Met/un/s of proof. There are several ways of proving ihe above result.One way is using the discrete minimum principle and by subsequent manipulationof the necessary conditions (see, for example, [l5]. Another way is through the
useofthedynamic prograniming (see, forexample, references [16], [9].[l7] to [20])

3.8. Discussion

The solution of the deterministic linear-quadratic problem provides us witha deterministic feedback design that attempts to null out deviations of the truestate x(t) from its ideal response x0(i). From a practical viewpoint this deter-ministic design is appealing because th sequence of the control gain matricesG0(t) can be completely preconipuied.
The only practical deficiency of this scheme is associated with the fact thatwe cannot measure the true state vector x(t) so as to construct x(t). This factalone provides us with sufficient motivation to examine tile stochastic aspects ofthe problem in Section 4.

3.9. Selection of i/ic Weighting Matrices Q0(t), R(t)

The selection of the weighting matrices in the quadratic criterion (3.37) isnot a simple matter. Usually, they are selected by the designer on the basis ofexperience coupled with alternate simulation runs for diflèrent trial values. Thereis no universal agreement on precisely how these are to be selected for any givenapplication in the design of classes of aerospace systems several workers havedeveloped rules of thumb on the relative values of the elements of these weightingmatrices.
In most practicalapplications, {Q0(t)},and {R0(t)} areselected to hediagonal.In this manner, specific components of the state perturbation vector öx(t) arid ofthe control perturbation vector u(t) can be penalized individually; it helps tohave a "physical" set of state variables and control variables so that relativeweightings can he rationally assigned.
For economic applications, and the effects of changing the weights the workof Pindyck (in this volume and in References [21] and [22]) has shed valuableinsight. Needless to say, the hook of UoU ci al., (reference 23) contains specificsuggestions for problems in management Science.
From a pragniatic viewpoint one can develop certain qualitative propertieswhich can help the designer in the choice of these important design parameters(these properties are decided from the dependence of equation (3.42) upon Q0(t),and R0(t)).

The larger HQ0(T)I, the "Jarger" the control gain matrix t(t) for valuesof time near the terminal time.
The larger 1Q0(i)ji, the "larger" the gain matrix G0(t) and the "faster" tiletime during which state perturbations are reduced to small values.The larger llR0(t)I, the "smaller" the gain matrix G0(tj and the "slower"the system.
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From the point of view of the justification of quadratic criteria and honesty
of linearization the size of the state weighting matrix Q0(t) should somehow he
proportional to estimates of the second derivative matrices 2/1/x2(t) see

eq. (3.31)wliile the control weighting matrix R0(t) should be related in a propor-
tional manner to the second derivative matrices 2f/u2(t). Estimates of these
second derivative matrices can often be obtained by evaluating them at the
"nominal" values u0(t) and x0(t).

An alternate procedure has been suggested in the context of perturbaf ion
guidance or neighboring optima! control ([9], pp. 177197). This approach is
motivated by the fact that one can use the solution of an optimal control problem
to determine the optimal control u0(r) and the optimal state x0(t) as outlined in

Section 3.3.1 of this paper. The basic idea uses the Hamiltonian function given
by eq. (3.6).

Let us suppose then that we use the discrete minimum principle to deduce
the necessary conditions for optimality, and then apply an iterative algorithm
to solve the nonlinear two point boundary value problem. As we remarked in
Section 3.3.1, this procedure will yield the optimal control sequence {u0(t) and
optimal state sequence {x1)(t)}. However, as a by-product, we also obtain the
associated costate sequence p(t)}.

The key idea behind the neighboring optimal control is to assume that the
actual controls and states are somewhat different than the optimal ones. One
then can substitute eqs. (3.6) and (3.7) into (3.4) and obtain the increase in the

cost which is approximately measured by the second variation, ó2f, and given by

(3.44) Ô2J = x(T)-3- öx(T)

+ > [öx'(t)u'(t)]
i-0

lx(t)20 ix(t)au(t)0 [x(t)

(j2

One then seeks the control öu(t) which minimizes the second variation Yi subject

to the linear difference equation constraints relating x(f) to öu(t). This leads to a
deterministic linear-quadratic optimal control problem and can be viewed as

another justification for quadratic criteria ([9], p. 193).
In the above the second-derivative matrices of the Hamiltonian H

?2H i2H i2H

?x(t)iu(t)j0' j0' iu(to

and

are all evaluated along the sequences {x0(t)}, {p0U)}, {u0(r).
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Intuitively speaking, this approach attempts to minimize (to second order
only!) increases in the cost functional. if we neglect the cross coupling terms one
could then make the association

(145) Q0(T)

(3.46) Q0(t)
(X(t) 0

i2H(3.47) R0(i)

However, there is no guarantee that these matrices enjoy any of the definiteness
properties required for global existence and uniqueness of solutions to the linearquadratic problem; if these definiteness assumptions are violated, then one may
have to deal with singular problems. Also, note that this philosophy neglects thecontribution of the third, fourth, etc. variations in the cost; if these were going tobe taken into account, then the partial derivatives of the Hamiltonian wouldhave to be evaluated not at x(t), p0(r), u0(t), but at some other time sequencesthat are not known (as it was the case with the approach of keeping the lineariza
tions honest). Nonetheless, this approach can often give the designer some clueas to the way these weighting matrices should be selected.

4. STOCHASTIC ESTIMATION ANALYSIS AND DESIGN (STEP 2)

4.1. Introduction

We have seen that even under the deterministic assumption we require afeedback controller to take care of errors in modelling. The main practicaldisadvantage of the deterministic design step was that exact measurement of allstate variables was necessary. This is seldom the case in practical applications.
Even if one could measure all of the state variables, one has to use physical

devices (sensors) to carry out these measurements. Physical sensors yield (more
or less) inaccurate measurements. Thus, this uncertainty in measurement mustsomehow be taken into account.

In addition, although the deterministic approach admitted errors in modelling
(necessitating feedback) it did not explicitly take into account errors introducedby the actuators; furthermore, it did not take into account that in many practical
applications there are disturbance inputs acting upon the physical process, whichare not generated by the control system (e.g., exogencous stochastic variables).In this section we shall present the common means by which such "input"and "sensor" errors are introduced in the design process, and how they affectthe generation of an estimate (t) of the true state vector x(t). through the use ofthe KalmanBucy filter. Towards this goal we present in Section 4.2. some
philosophical remarks pertaining to the use of white noise to niodel uncertaintiesin the design process. In Section 4.3 we formulate the combined modelling problemof using linearized dynamics and white Gaussian noise. In Section 4.4 we discuss
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the linear-gaussian estimation problem and state its solution via the Kalman
filter.

4.2. The Use of White Noise

it is common engineering practice to use a probabilistic approach to the
modelling and implications of physical uncertainty. The reason is that a prob-
abilistic approach is characterized by the existence of an extensive matheniatical
theory which has been already developed. Alternate approaches to iiiicertainiy
(e.g., via fuzzy sets, bounded but unknown uncertainty) have not as yet reached,
from a mathematical viewpoint, the theoretical sophistication of the probabilistic
approach.

In the design of dynamical systems the existence in time of plant disturbance
sequences and sensor errors is modelled by representing these uncertain time
functions by means of random sequences. For example. suppose that n(t) is a
random sequence which represents the "noise'S that is introduced by a sensor at
any time t. Hence, we can model sensor uncertainty by

(4.1) :(t) = (tj -{- n(t)

where at time t

z(t) is the actual sensor measurement
s(t) is the actual variable to be measured
n(t) is additive measurement noise.

The statistical properties of i(t) in essence define the accuracy of the sensor
at time t. At any time r , the scalar ii(r) is viewed as a random variable. Its
probability densit vfunczion p(n(t1)) summarizes the statistical knowledge at time t .

However, since njt) is associated with a particular sensor, one must also specify
any statistical properties of the random variables n(11) and n(12)at any two distinct
instants of time t1 and 12. Such statistical information is specified by the joint
probability density function p(n(t ), n(t2)) of the random variables nIt i and 11(12).

If ii(t) and n(12) arc dependent, then from Bayes rule we have

0(11(1 1. nit,))
(4.2) p(n(12)/fl(t )) =

p(n(t ))

which loosely implies that if we hare observed n(t ii then we can say something
about n(t2)e.g., estimate its average value--before we actually measure 11(12).

If on the other hand 11(1;) and n(12) are independent (uncorrelaled in the
Gaussian case), then

(4.3) p(n(z ), n(t2)) = P(m(t ))i(n(t 2))

and Bayes rule yields

(4.4) p(n(12 )/n(t )) =

which means that the fact that we have already observed n(t ) does Plot help us at oil

to improve our knowledge about 11(12).
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These properties have significant implications fom the point of view of the
software that we have to utilize ii on r control system. If a sensor noise L, indt'lb_'tj
as a correlated ,-ando,n process, then we imist expect some sort of estimation
algorithni (based on eq. (4.2)) which attempts to guess Properlie.s 0/ /utw'e ratio's
of sensor noise based upon past uu'asui'enu"ils. If this can he done (at the expense of,
perhaps excessive, on-line computation) one can expect an improved "noise
removing filter."

II on the other hand, we model the noise :i(t) as "uncorrelated,'' then past
measurements do not help tis at all in future guessing. In this CaSe, the noise is
unpredictable and no estimation algorithm that attempts to guess future values
of the noise is required (and no on-line computations are required in this respect).

The above discussion dealt with tinie-structtire of the noise 11(1). Let us return
to the statistical properties of the noise at any instant oftimei1 . As we mentioned
before, this statistical inforniat ion is contained in the probability density function
p(n(t1 )). It is well known that two important statistical parameters (fronì an
ar)plications viewpoint) are the mean

(4.5)

and the variance

(4.6) var [n(t i )] = L n(t ) .- ñ(t )2

The mean ii(t ) is what we would expect to see on i/ic arerage. The variance helps
us understand hrnt' iiztich this arerage (t ) is to he belieied. A large variance
means that the actual value n(t ) (in any given experiment) may be way-oil (with
a large probability) from its mean value. A small variance means that the mean
is a pretty good guess.

It is the opinion of the author that the use of white noise in control .s'ste,n
design is pri,narilv a modelling issue. The designer has to make a judgement on
how to model uncertainties via white noise. There are no available cook-book
procedures for doing this; the success of the design depends on the ability of the
designer to know the physics of his problem and to suhjectirel' translate this into
mathematical probabilistic models. We shall comment on these problems in
Section 4.7 in some more detail.

4.2.1. Mathematical description of white noise. The mathematical specification
of white noise is as follows.

Let n(t) he a vector valued Gaussian white noise process with mean
(4.7) E{n(i)} = 0 for all t = 0, I, 2.....T
and covariance matrix

(4.8) coy [n(t); n(t)] = E{n(t)n'(r)} = N(i) .

where

(4.9) N(t) = N'(r)
and i,r is the Kroenecker delta. If N(t) = N constant for all t, then we deal
with stationary white noise.
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4.3. Stocliastü Model/mg for Control System Design

Let us ilow return to the modelling issues associated with the control system
design problem.

4.3.1. ilctuator-plant-inpul disturhan':e models. Recall that in the deterministic
version the relation of the true commanded input to the actuator, u(t), and that
the true plant state, x(t), were related by the deterministic model (see eq. (3.1))

(4.10) x(t + I) = f(x(t), u(t), 1).

In the stochastic case we can model* the actuator-plant-input disturbance part
of our physical process by the stochastic difference equation

(4.11) x(i + I) = f(x(), u(t), t) + (t)

where (t) is a white noise process. The addition of (t) to the otherwise deter-
ministic model (4.10) implies that the designer is communicating to the niathe-
matics one or more of the following "facts of life":

(I) That there are additional stochastic disturbances that drive the system
That the deterministic equations may be in error due to over-simplifica-
t i() fl

That some of the parameters in f( .,.,. ) may not be exact (true parameters
may vary slightly from their nominal values)
That the actuators introduce errors.

If we examine eq. (4.11) we can see that since (t) is white, then x(t + 1) can change,
in part, in an unpredictable way. The deterministic part of the equation,
f(x(t), u(t), t), represents the contribution of our completely predictable model;
the stochastic part of the equation, (t), stresses the unpredictable element of the
real world. Loosely speaking, the use of eq. (4.11) is a way of saying to the mathe-
niatics "watch out! The deterministic equation is in error, but I will not tell you
the structure of the error, so that you will not try to second-guess it in the future."

4.3.2. Sensor and nieasurcPndnt error modelling. Recall that in the deterministic
case the type of sensors that could be used led to the definition of the output
vector y(t) whose components were the variables that could be measured by the
available sensors. The deterministic model was see eq. (3.2)

(4.12) y(t) = g(x(t), t).

The simplest way of modelling sensor errors is to assume that the sensor that
measures the output variable 1'(t) yields the measurement (data) signal z1(t)

which equals v1(I) and additive white noise O(z)

(4.13) z(t) = v1(t) .f (t)

or, in vector notation,

(4.14) z(t) = y(t) ± 0(r) = g(x(t), t) + 0(t)

where 0(t) is vector-valued white noise.

* This is the simplest possible model: more complex models can be considered, e.g..

x(i + 1) = ftx(1),utl), (i), 1)
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4.3.3. Initial uncc'rlainti'. In the deterministic context we assume that the
initial state ofthe plant x(0) x, was known. Since the state variables cannot he
measured, we can no longer make this assumption. The simplest way ofniodelling
this is tu view the injtial state x0 as a vectoi -alued Gaus.iatI iaiidoiii variable
Its mean and covariance matrix represent our a priori information about the
initial conditions of our system.

4.3.4. Statistical description. We can see that the uncertainty in the overall
physical process has been modelled in three separate parts

(I) Initial uncertainty: The initial state X) is viewed as a random variable
Plant uncertainty: The system is driven by the white noise (t) which
implies that the next state x(t -F 1) has an unpredictable component
Measurement uncertainty: The output vector is corrupted by the additive
white noise 0(t). so that the measurement vector 1(t) has an unpredictable
component.

The quantitative description of this uncertainty is as follows.
The initial state vector is Gaussian with known mean and covariance matrix,

i.e.,

(4.! 5) E X() (assumed known)

(4.16) coy [x x0J E(x() - x)(X0 -- )'} = (assumed known);

= 0.

The plant driving noise (t) is discrete-time white. Gaussian. with zero mean
and known covariance matrix for all t, i.e.,

(4.l7 E(t)} = 0 for allt

cov[(t):r)]
(4.18)

Eli) órt; E(i) = EU) for all 1(assumed known).

The measurement noise 0(t) is white, Gaussian, with zero mean and known
covariance matrix for all t i.e..

(4.19) E0() = 0 for all

(4.20) cov[0(t):O(rfl

= 0(t) 0(t) = 0'(t) 0 for all t (known).

Furthermore, one usually assumes that x0, (t), and O(T) are mutually independent,
i.e.,

This assumption is reasonable in most physical applications.
We shall discuss later the selection of the covariance matrices !(t) and 0(1),

which govern the "strength" of the white noise sequences (t) and 0(1), respectively,
as well as of the initial covariance matrix .
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4.3.5. Linearized dynamics. Let us recall that one of the byproducts of the
deterministic analysis was to specify an ideal deterministic time sequence, {u0(t)}
an ideal deterniinistic state sequence, {x0(t)}, and an ideal output sequence
{v0(t)}. Our control system ohjechve was to augment u(r) by the control Correction
vector u(i) so that the commanded control u(t) = u0(t) ± u(t) had the property
that the state deviation vector x(t) = x(t) - x0(t) was "small" for all future
values of t.

Our control objective has not changed except that x(t), u(t), x(t), and u(i)
are now random sequences (iather than deterministic). We still would expect to
generate u(t) by means of some feedback arrangement which is based on the
actual sensor measurements z(t).

Let us also recall that associated with the ideal state response x0(t) we had
an ideal measurement vector yo(i) (see eq. (3.4)) and an out put perturbation vector
öy(t) = y(t) -- Yo(t) (see eq. (3.7)).

Since our measurement vector is given by z(t) = y(t) + 0(t), then

(4.24) z(t) = y0(t) ± y(t) -1- 0(t).

Arbitrarily we define

(4.25) z(t) z0(r) 4- z(f)

where

(4.26) z0(t) y0(t) = g(0(t), t)

and

(4.27) z(tj = öy(t) + 0(t).

Note that z0(t) is a deterministic precomputable quantity. Hence öz(t) can be
evaluated.

A repeat of the development of the Taylor series expansions (see Section
3.6.1) about x0(t), u0(t), y0(t), using the stochastic models leads to the following
set of equations:

(4.28) öx(t + 1) = A0(i) öx(tj + B0(t) u(t) + (t) + 0(x(t), öu(t)

(4.29) y(t) = C0(i) öx(t) + 0(x(t))

(4.30) z(t) = C0(t) ox(s) + 0(t) + f10(Ox(t)).

In the above
The matrices A0(t), B0(t), C0(tj are still given by eqs. (3.26), (3.27), and
(3.28) respectively. They are deterministic and precomputable.
The vectors (.,.) and () represent the effects of the quadratic and
higher order terms, they are stochastic sequences, since at least {Ox(t))
is a stochastic sequence.

Once more we define the linearized stochastic (approximate) model by:

(4.31) x(t + 1) = A0(:) Ox(t) + B0(t) Ou(t) ± (t)

(4.32) Oz(r) = C0(t) Ox(t) + 0(t)

simply by ignoring () and ) in eqs. (4.28) and (4.30) respectively.
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To he sure eqs. (4.31) and (4.32) represent only approximations to eqs. (4.28)
and (4.30). However, both equations contain the white noise driving term which
at least is a "Ilag'' to the mathematics that the linearized equations are "in error.''

We can now see even more clearly the role of the white noises in modelljn
Up to this point, the noise (ij could be used to model input uncerUtinties and
deterministic modelling errors. Now we see that it can also be used to model the
fact that the higher order terms have been neglected in the use of eq. (4.31) instead
of (4.28). Thus, the choice of the covariance matrix for (i)

(4.33) coy R(t); (r)] (t) ó

i.e., the value of !(t) selected by the designer, should incorporate his judgment
on the importance of the higher order terms in the validity ofthe linearized model
Thus, the "more nonlinear" the system dynamics, the "larger" (t) should be used.

The white noise 0(t) (assumed independent of(t)) in the observation equation(4.3.2) plays a similar role. Not only should it reflect the inherent uncertainty of
the measurements due to sensor inaccuracies, hut it should also be used to model
the implications of neglecting I( ) in eq. (4.30) to obtain the linear equation (4.32).Since

(4.34) coy [0(t); O(t)] = 0(t)

then the "more nonlinear" the output nonlinearity g(x(t), t) is, the "larger" 0(t)should be selected.
Admittedly, we are cheating in our quest for linear models. However, theuse of white noises allows us to communicate to the mathematics our estimate ofthe "degree of cheating." This is extremely important because as we shall see in

the next section we shall ask some very precise questions of the mathematics.If we ask precise but stupid questions, we shall get precise but stupid answers!

4.4, The Estiniatiopi (Filtering) Problem

We have seen in eq. (4.25) that we can construct the signal öx(t) from theactual sensor measurement z(t). The state perturbation x(i) is still the deviation
of the actual state x(t) from the desired ideal state response x0(t). However, öx(t)
cannot he measured direct/v it is related, however, to the available signal z(t) byeq. (4.31). The future evolution ofx(t) can be influenced by the control correction
vector öu(i) according to eq. (4.31).

We still want to keep öx(t) small by selecting u(t). We have seen how thiscan be done in the deterministic case if x(r) were known. Since in this case x(t)is not directly available, then we can ask the following question:
!, it possible to generate a "good" estimate (r) o,Iöx(1), based on the measure-
inents made up to tune t, for any git'en time Junction öu(t)?

The Kalman filter presents a precise way of obtaining such an estimate.
4.4.1. Statement of the filtering problem. Given the linear dynamic stochasticSystem

(4.35) x(t + 1) = A0fr)x(t) -t- B0(t)u(t) + (t)
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and the linear stochastic measurement equation

(4.36) ö,t) = C0(t) x(t) ± 0(t).

It is assumed that A0(t). B1(t), C(t), öu(t) are deterministic and known. It is
assumed that the white noise (1) has the statistics specified by eqs. (4.17) and
(4.18). It is also assumed that the white noise Ott) has the statistics specified by
eqs. (4.19) and (4.20). It can also he shown that x(t0)is a Gaussian random vector
with mean (see eq. (4.15)).

(4.37) E{ôx(t0)} = -- x0(0) (known)

and covariance matrix L (see eq. (4.16)).
Given the measured signal* z(r), for all t = 1,2.....t.
Find a vector (z), an estimate of the true x(t) which is "optimal'' in a

well defined statistical sense.
We remark that the linear-gaussian nature of the hypotheses allows us to

define a variety of optimization criteria (least-squares, minimum variance, maxi-
mum likelihood, etc.). They all lead to the same answer. For example, one can show
that the above assumptions imply that the a posteriori density function of öx(t)

(4.38) p(öx(t)z(r) : r = 1, 2.....1)

is Gaussian and (t), as gencrated by the Kalnian filter, is the conditional mean
(see [9] and [18]).

4.4.2. The discrete Ka!mau Jilter. The easiest way of writing the equations of
the discrete-time Kalnian filter is to divide the calculations into two cycles

a predict cycle, and
an update cycle.

This subdivision motivates us to a somewhat ditTerent notation.
We let t denote the present value of time. We assume that we have available

the past measurements up to and including the current measurement

(l),z(2) &z(t)

The past control corrections

öu(0),&i(1) u(t - 1).

It is convenient to summarize this inftirmarion set at time t by S(t); thus S(t) is
the set

(4.39) S(t) = z(l), z(2).....z(i), thi(0),...,u(t - 1).

Now we define the following:
(a) (zIt) is called the updated ('stimute of x(t) given the information set

S(t); under the linearity arid Gaussian assumptions ö(tJt) is the condi-
tional mean of x(t), i.e.,

(4.40) (tIt) = E{x(t)IS(1l}.

Here we assume that if the initial tone is : = 0. the first measurement is takeii at time t =
This assumption is by no means crucial and it can be replaced by assuming thai the first nleasurcnient
occurs at g = 0
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(tir) is the updated couariance matrix of x(1) given the inIormaton set
S(t) ; under the linearity and Gaussian assumptions ('!t) is the condi-
tional covariance of xtt. i.e..

(4.41) 1(tjt) = coy [x(t); x(t)S(t)]

= Ex(t) - &(tIt))(öx(t) - (tit))'IS(r)}.

(t + lit) is called the one-step predicted estimate of x(, + 1) given the
information set S(t), i.e., before the measurement óz(t + 1) at time t + I
is obtained; under the linearity and Gaussian assumptions

(4.42) ö(t + lit) = E{öx(t + 1)1S(t)&u(:)}.

(t -i- lit) is the one-step predicted covariance nwtrix of x(t + I) given
the information set S(t) ; under the linearity and Gaussian assumptions

(4.43) + flt) coy [x(t + 1); öx(t 4- l)IS(t). u(t)]

= E{ (ix(t + 1) öx(t + lit)) (x(t -- I

- öx(t + lit)iS), u(t)}.

Thus in the expressions for x( . ) and . I
) the first symbol denotes the

actual value of time while the second time denotes the last value of time at which
the information was utilized.

Under the linear-Gaussian assumptions the Kalman fIlter generates the
above conditional means. Its detailed description is as follows:

initialization : At t = 0

(4.44) öx(OIO) = = Ex(0)} = prior mean

(4.45) (0iO) = = coy [öx(0); x(0)] = prior covariance.

One now proceeds in a recursive manner: for any t = 0, 1, 2,. . - assume that
x(tJi) and 0(tit) are available. One then needs an algorithm that is based upon

the value of u(t)
the measurement z(t + I)

one generates

x(i + lit + I) = Ex(t + l)IS(t + 1))
(t + lt ± I) = coy {öx(t + 1); x(z + 1)IS(t + 1)].

The predict cycle

First one generates the one-step predicted estimate Ix(t + lit) by
(4.46) + let) = A0(t) (ti') + B0(t) u(t).

Next, one generates the one step predicted covariance matrix (f + lit) by
(4.47) (t + lit) = A0(r)L0(tit)A(t) + E(t).

The update cycle
At time z + 1 one makes the measurement z(t + 1). This can be used to

improve the estimates obtained in the predict cycle. First one computes the
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updated covariance 0(t + lit + 1) from the matrix difference equation

(4.48) + lt + 1) = (t ± lit)

- (t + lt)C(t + 1)[C(t + l)(t + li1)C(t + 1)

+ O(t 1)]- 'C0(t + l)(: + lit).

Next one obtains the updated estimate x(t + lit + l)ofx(t ± I) from the vector
difference equation

(4.49) (t + flt + I) = x(t + lit) + 0(t + lit + flC'0(t + l)®'(t + I)

x [z(t + 1) - C0(t + 1)(t + lIt)1.

Remarks
I. Note that the equations that propagate the covariance matrices, (4.47)

and (4.48), are independent of
the actual applied u(t)
the actual measurement öz(t + 1)

i.e., independent of the information set. Hence the sequence of 0(tit),
= 0, 1, 2,... can he computed off-line. rhe only on-line computations

are those specified by (4.46) and (4.49), i.e., the propagation of the estimates.
If the Gaussian assumption is removed, the Kalman filter does no longer
generate the conditional mean. However, among the class of linear
estimators, the estimate x(tit) is optimal in a least squares sense.
The quantity

(4.50) r(t + I) z(t + 1) C0(: + l)6x(t -f lit)

is often called the residual or innovations sequence. This is the difference
between the actual measurement, z(t + I), and what we expected the
measurement to be, C0(t + k)öx(t + lit). If the linearity assumptions are
valid, then the residual sequence is white with zero mean and covariance
matrix

(4.51) coy {ör(t); ör(r)] = [C0(t)0(iIt)C'0(t) + O(tfl

We remark that on-line test for the whiteness of the residual sequence are
often used to calculate the degree of modelling error (see [30]).
By defining the so-called Kalman filter gain matrix H0(t + I) by

(4.52) H(t + 1) = 0(t + lit + l)C(r + l)0 '(: ± 1).

which can be computed off-line, and by substituting eqs. (4.46), (4.50), and
(4.52) into eq. (4.49) we obtain

(4.53) lIx(t + lit + 1) = A0(t) x(tlt)+ B0 öu(t) + l-10(t + 1) &(t + I).

x(t + lit)

This shows that the "larger" the filter gain matrix H0(t + 1) the more the
residual is used (and hence the actual measurement) to correct the predicted
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estimate (t + lit). The factors that contribute to a "large" gain matrixH0(t + I) are (see eq. (4.52)).
large current uncertainty, i.e., large L0(i + lit + I)
large signal to noise ratio, i.e., large C0(t + ii
small measurement noise, i.e., small O(t -f 1) and hence large e- 1(j + 1).Thus, the Kalman filter combines in a systematic way the state of knowledgeabout the system uncertainty, so as to deride each time that a noisy measurementis made, its relative value in correcting the available estimates.

4.4.3. Derivations of the Ka1nan-Buc'JiIter. Since the original publication ofKalman [24] there have been many different derivations of these results eachcontributing to enhanced understanding to the advantages and shortcomings ofthese techniques (see references 9, 12, 18, 25 to 29) as well as CXtCflSjOflS to thenonlinear case (see references 9, 25).

4.5. Discussion

Most of the difficulties that are encountered with the KalmanBucy filterare primarily related to
model mismatching (i.e., the model used in the implementation of the
Kalman-Bucy filter is different than the physical process), and
correct selection of , and of the white noise covarjance matrices (t)and 0(1).

In pure filtering situations these contribute to the so called dirergc.'e of theKalman filter. There are several analyses that have been carried out that considered
the effects and implications of selecting the wrong covariance matrices (see, forexample, [331 pp. 376-419).

The existence of unknown biases in the noises (t) and 0(t) are not astroublesome since they can be estimated by an augmented Kalman filter, at theexpense of introducing additional state variables. Some research efforts havebeen directed toward simultaneous estimation of the state variables and the
covariance matrices (see [30]).

The sensitivity, and possible divergence, of the Kaln-ian-Bucy filter is thenintimately related to the modelling issues. If we view the (wrong) linearized model
as a constraint, then the designer can attempt to minimize the filter sensitivity byjudicious choice of the covariance matrices t) and 0(t). Considerable successhas been obtained in certain classes of application problems (re-entry vehicletracking, orbit determination) by increasing the covariance matrix !(t) to com-pensate for modelling errors, which arise primarily in the dynamical equations.However, these techniques were developed only after excessive Monte-Carlosimulations and triaI-anderi'or approaches There is need for systematicapproaches to this most important problem of selecting (t) and 0(t), and thisrepresents an exciting research area.

Loosely speaking, the effect of increasing the magnitude of the covariaticematrix !(r) (fake plant noise) results in larger values of the covariance matrixo(tlt)see eqs. (4.47) and (448)-and this leads to an increase in the filter gainmatrix H0(r + l)see eq. (4.52). Qualitatively speaking, the residuals are thenweighted more (the filter is paying more attention to the actual measurements tocompensate for errors in the a priori values of A0(t), B0(t), !(t), 0(t) and 1) and
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one obtains a high-gain filter. Thus, an increase in !(i) causes the filter to have a
wider "bandwidth." This bandwidth interpretation is useful since an increased

(t) means that the plant white noise (t) has more power and, hence, causes more
"wiggles" in the actual state x(t); the filter must estimate these "wiggles" in x(i)
and this requires higher "bandwidth." Of course, a higher "bandwidth" passes
more of the measurement noise 0(1) and this is the price that one must pay. 1-lence,
the choice of distinct pairs of E(t) and 0(t) by the designer can be interpreted as
one way of controlling the filter bandwidth. In fact, it appears that the class of
applications in which increased values of E(t) "cured" the sensitivity of the
KalmanBucy filter were characterized by relatively accurate nieasurements (low
values of 0(t)).

The above discussions point out the relative effects of using white vs colored
noise in the modelling stage. If we model the plant uncertainties as colored noise
(which may be more realistic since modelling errors are certainly not white),
then we may get a better filter but at the expense of adding extra state variables
in the dynamics. The issue of using colored measure,nenf noise has been investi-
gated (see, for example, [9] and [27]) its accurate modelling will certainly yield
better results than its replacement with white noise. However, in the majority of
applications, measurement noise is relatively white. Hence, in such applications,
one would not expect too much improvement by the more accurate modelling
of the measurement noise.

In short, there are no general techniques currently available that can be
applied with confidence by the designer when he has to select the noise covariance
matrices !(t) and 0(t). Nonetheless, physical intuition, common sense, and off-line
simulations represent effective tools that have been used to obtain excellent
designs.

This brings us to a final word of caution. The ad-hoc techniques that have
been developed for decreasing the sensitivity of Kalman filters do no: necessarily
carry over when the problem is one of stochastic control (in which the Kalman
filter is a subsystem in the compensator). Many of the sensitivity problems that
arise in filtering can be traced to the lack of a valid trajectory for linearization
purposes. In the control problem, one does have a much more valid trajectory
u0(t), x0(t), y0(t) on which to base the linearizations. The reason is that one
would select the control to keep the system near its desired precomputed
trajectory. Hence, even if a Kalman filter is "by itself'' relative/v sensitive, this
does not necessarily imply that, when it is used in the control problem (as part oft/ic
compensator), the closed-loop controls vstein wi/the as sensitive. Intuitively speaking,
in the latter problem there are many more feedback loops that help to reduce
sensitivity. Thus, the selection of the matrices E0, (t) and 0(t) by the designer,
should depend on whether or not the problem is that of state estimation or
stochastic control. Additional discussion on this point will be presented in the
sequel.

5. STOCHASTIC CONTROL Sysrei DEsIGN (STEP 3)

5.1. Introduction

We have seen how the linearized KalmanBucy filter can be designed so as
to generate in real time the estimated deviation o(tIt) of the actual plant state x(:)
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from its ideal deterministic response x0(t). Of course x(t) also depends on the
control correction vector u(t). Hence, one can now think of the final step of the
design process as the techniques necessary for generatmg on-tine the Control
correction vector u(t) as a function of the measurements so as to keep x(t) small

The remarkable property of the 'linear-qLadratic-gaIssian"control problem
is that the optimal control correction öu(t) is generated from the estimated state
deviation &x(tt) generated by the Kalman filter by means of the relationship

(5.1) u(t) = - G(t) öx(tjt)

where the gain matrix 60(t) is precisely the one determined in the solution of the
deterministic linear-quadratic problem (see Section 3.7 and eq. (3.40)). Recall
that the deterministic solution was

(5.2) u(t) = - G0(t) öx()

under the assumption that the complete state perturbation vector öx(t) is measured
exactly. Furthermore, recall that in the statement and solution of the filtering
problem (see Section 4.4) the control correction vector öu(t) was assumed
deterministic. Clearly, from eq. (5.1), öu(t) is not deterministic (since Ix(t) is a
random process). Thus, it is neither apparent nor intuitively obvious why the
generation of the control correction vector according to eq. (5.1) should be
"optimal" since in the true stochastic problem

The deterministic assumptions on x(t) that led to the generation of u(r)
are violated, and
The deterministic assumptions on u(t) that led to the generation of
o(tIt) are also violated.

Thus, the purpose of this section is to precisely state how the overall "linear-
quadratic-gaussian" problem solution separates into the solution of a "linear-
quadratic" deterministic problem and the solution of a "linear-gaussian"
estimation problem. The key theorem that shows this property is often called the
separation theorem (see references [9], [26], and [31]to [36]).

We remark that what is referred to as the "separation theorem" in the control
literature and the "certainty equivalence principle" in the economic literature
(see [23], [37], [38]) are essentially the same thing; there are structural differences
because in the "certainty equivalence" principle one needs the conditional mean;
in the "separation theorem" the conditional mean is explicitly generated by the
Kalrnan filter; because of this fact one can explicitly obtain many interesting
properties of the overall stochastic control system.

5.2. The Linear-Quadratjc-Gai,z Problem

We have seen in Section 4.3.5 that the (approximate) linearized relation
between the actual state deviation vector x(t) and the control correction vector

u(1) is

(5.3) öx(t ± 1) = A0(t) x(t) + B0(t) u(t) + (t)

while the true relation was that of eq. (4.28) which includes the effects of the higher
order terms in the function 0(öx(t), öu(t), t).
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Similarly, we have seen that the (approximate) linearized measurement
relation between öz(t) and x(t) is

(5.4) z(t) = C0(t) x(t) + 0(t)

while the true relation was that of eq. (4.30) which includes the effects of the higher
order terms in the function 0(x(t), t).

We can motivate the use of quadratic criteria by mimicking the development
of 3.6.2 in the deterministic case: there we remarked that use of Taylor's theorem
can be used to justify the fact that the control correction vector lu(t) could be
selected so as to "maximize the validity of the linearized model" by minimizing
the quadratic cost given by eq. (3.37), i.e.,

T- I
(5.5) Jo = x'(T)Q0(T)x(T) + [x'(t)Q0(t)öx(r) + öu'(r)R0(t)uftfl.

However, in our case J0 is a scalar-valued random variable, because both x(t)
and u(t) are random sequences.

Great care must be exercised in order to arrive at a well-formulated stochastic
optima! control problem. There are two issues that demand precision

Precisely what type of an expectation should be used in the cost functional?
Precisely what is the admissible class of control that will be allowed in
the optimization?

Such issues have often been slurred over in the literature; hence, there have been
many derivations of the right result using erroneous formulations (see [34] and
[391 for a critical discussion).

For the correct formulation of the cost functional to be minimized, consider
the situation at any time (the present time). In addition to any a priori information,
the following information set S(r) is available

(5.6) S(t) = {z(1).....z(r), &u(0).....u(r - 1)}.

Then it makes sense to minimize the conditional expectation of the cost-to-go,
denoted by

T- 1
(5.7) J0(r) = E{8x'(T)Q0(T) &x(T) + [öx'(t)Q0(t) x(t) + öu'(t)R0(t) öu(t)]IS(r)}.

The way that the minimization is to be carried out is by the judicious choice of
the control corrections from now on

öu(t),öu(r + 1).....öu(T 1).

However, we must be careful in communicating to the mathematics what we are
allowing the control corrections to depend upon.

To obtain realizable controls, that utilize the maximum information, we can
specify that the u(t) at any time t, now and in the future, should depend on all
information available up to time t, namely S(t). Mathematically then we demand

(5.8) &u(t) = (S(t), t)

where ( ,.) is a deterministic map of all past measurements and controls, and
perhaps of the time t. It should be noted that the structure (5.8) communicates
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to the mathematics that we expect to make future observations (from time r on)
and that future controls will be functions of these measurements.

The use of the cost functional (5.6) implies also that we wish to "maximize
on the average, the validity of our linearized stochastic models." Since (t) and
0(t) are white, and hence unpredictable, in individual experiments they may cause
the system to deviate significantly from the region in which the linearization is
more-or-less valid. Since we have no control over the specific outcome of the
white noise processes, we cannot guarantee the validity of the linearization for
any specific experiment. However, we can attempt to design the control system
so as to optimize its average behavior.

5.2.1. Formal statement of thc linear-quadratic-gaussian stochastic control
problem. Given the linearized dynamical system (5.3) and the linearized observa-
tion equation (eq. (5.41. Given the information set S(t). Find a system that generates
the control correction vector u(r), according to (5.8) such that the "average cost
to go" given by (5.7) is minimum. The weighting matrices Q0(t), R0(r) are those
defined in Section 3.7.1, while the statistical properties of the noises are those given
in Section 4.3.4.

5.2.2. The separation theorem: Solution q[ the linear-quadratic-gaussian
stochastic comurol problem. The optimal control correction vector u(t) is generated
by

(5.9) u(t) = - G0(t) *(tIt).

Spec i cation of G(t):
The controJ gain matrix G0(t) is obtained by the solution of the deterministic

linear quadratic problem (see Section 3.7.2) forgetting completely the stochastic
aspects. Thus C0(t) is given by eqs. (3.41), (3.42), and (3.43).

Specification ofx(tIt)
The vector öx(iJt) is generated by the KalmanBucy filter (see Section 4.4)

under the assumption that öu(z) is deterministic and forgetting completely the
control problem. Thus, x(tt) is specified by eqs. (4.44) to (4.49).

5.2.3. The minimum value of the cost logo. It is also possible to evaluate the
minimum value, .i(r), of the cost-to-go; the formula is

(5.10) J(z) = x'(rIt)Ko(r)&x(tjr)
T- I

+ tr [K0(r)E0(tft)] + tr [K0(t + I )E(t)]

T- I
+ tr [K0(t + 1)Bo(t)G0(t)0(tI)A(t)]

where (see eq. (3.41))

(5.11) G0(t) = [B(t)K0(t + 1 )B0(t) + R0(t)] - IB(t)K0(t + 1 )A0(t).

Equation (5.10) has important interpretations and is extremely valuable in
assessing the effects of uncertainties coupled with the control doctrine. Each of
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the four terms in eq. (5.10) has a special significance, and for this reason we shall
discuss them separately.

The first term

(5.12)

in (5.10) represents the effect of the current estimate ôx(rlt) of the deviation x(T)

of the actual state x(t) from the desired one x0(r). Note that this term cannot he
evaluated off-line, because öx(Ir) depends on the actual measurements, although
the matrix K(r) can be computed ojTline by eqs. (3.42) and (3.43).

The second term

in eq. (5,10) represents the increase in the cost due to the current uncertainty in
öx(t); recall that under the linearity and Gaussian assumptions 0(rji) is the
conditional covariance matrix of ôx(r). This term can be computed off-line since
both K0tr) and 0(zjx) can be calculated before the actual system actually is
placed in operation. Note that this term couples the effects of the control cost
functional--via K0(r)--and the current accuracy of estimationvia 0(rr).

The third term

(5.14) tr [K0(t + I )!(t)]

summarizes the contributions of the future plant white noise sequence; the more
noisy the system, the larger the covariance matrix (r) and the larger the stochastic
cost. Once more this term can be calculated off-line since it does not depend upon
the actual measurements.

The last term

(5.15) tr [K0(t + I )B0(t)60(z)0(tj t)A'0(t)]

in eqs. (5.10) summarizes the contributions of future uncertainties in the estimate
of x(t), which are reflected by the values of the covariance matrix (tIt). Once
more this quantity can be computed oft-line. Note that the effects of future
measurement accuracy are reflected in this term since 0(tt), t = t, -i-- 1.......-
depends on the measurement noise covariance matrix 0(t) (see eqs. (4.47) and
(4.48)). Once more the future accuracy of estimation, dictated by the Kalman
filter and quantified by L0(tIt), couples to the control objectives, which are
quantified by the values of K0(i + 1) and G0(r).

5.3. The Special Case of Noiseless Measurements

In many economic problems the assumption is made that all state variables
can be measured exactly; in our terminology this means that lx(1) is known
exactly. Under this assumption the "conditional mean" is the measurement
itself, i.e.,

(5.16) x(tjt) = x(t)
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and the conditional covariance is zero, i.e.,

(5.17)
(tl1) = 0.

For such problems, one of course does not need the Kalnian fIlter, even if thesystem is still stochastic ((t) 0). The optimal control is still generated by (5.9)with the constraint (5. 16).

The noiseless measurements naturally decrease the minimum value of the
cost. In view of (5.16) we see that the second and fourth terms in eq. (5.10) vanish
the stochastic aspects of the problem are reflected in the third term (5.14) of the
cost function. For additional remarks on this problem see ref [401.

5.4. Methods of Proof

The most fail-safe method of deriving the separation theorem is via dynamic
programming; references [9], [18] to [20], [28], [32] to [40] contain such derivationsalthough the methods of proof can be quite different, and the level of rigour quitevariable. It is worthwhiJe to note that [32] employs a clever transformation of thenoisy rneaurement problem to an equivalent noiseless measurement problem,using the whiteness of the residual or innovations sequence. The appropriate wayof using deterministic optimization techniques, i.e., the discrete minimuni prin-ciple, to solve this stochastic optimal control problem can be found in [39] and [41].

5.5. Discussion

We shall now make some brief remarks regarding the interpretation thatshould be attached to the formal solution to the linearquadraticgau5siproblem. First, we shall discuss how trade-off studies regarding the accuracyas well as the type of sensors and actuators to be used affect the Solution to thecontrol problem as a whole. Let us suppose that the weighting matrices Q0(t),and R0(t) have been somehow selected. In this context, the solution K0(t) of thecontrol equation (3.42) is available.

5.5.1. Sensor selection, Let us suppose that we are faced with the problem ofselecting between two types of measurement devices which, except for accuracy,perform otherwise the same tasks. Suppose that the more accurate sensor(s) ischaracterized by a measurement noise covariance matrix O(t) while the lessaccurate by 02(t), such that O(t) 02(t). On the other hand, the more accuratesensor(s) cost more money. For each sensor, we can solve the filter problemequations (4.47)-{4.48) and obtain the corresponding error covariarice matrices,say 1(tfr) and 22(tIt); it turns out that L.(t) 2(t), i.e., use of the more accuratesensor improves the estimation accuracy. In fact, from the filtering Viewpoint theincrease in state estimation accuracy may justity the increase in monetary cost.However, it does not necessarily follow that the expected improvement in thecontrol system performance will necessarily justify the monetary cost. The reasonis that only the last term (5.15) in the minimum
cost functional (5.10) will decrease(since 1(t!t) 2(tIt)) from the use of the more accurate sensor. However, therelative percentage in increased performance is also governed by the first threeterms in (5.10). It may turn out that for a doubling of invested money we may
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double estimation accuracy, hut only buy a few percent in improving the control
system performance as measured by (5.10). In particular, if we assume that at the
initial time the state deviations are small, then we can carry out off-line (non-
Monte-Carlo) studies by examining essentially percentage changes in the last

three terms of (510).
Similar remarks can be made regarding the selection ofthe number of sensors.

In our context, this would change the C0(x) matrix (both dirnensionwise and
numerically) in eq. (4.48); this in turn will change the value of the 0(tIt) matrix
that affects only the last term in eq. (5.10).

5.5.2. Actuator mid mode! ac uracy tradeoffs. In a similar vein we can carry
out tradeoff studies which involve the selection of the plant noise covariance
matrix (t). As we have remarked before, this models the total uncertainty in the
dynamics (due to actuator errors as well as modelling errors). Let us suppose that
we can "buy" two sets of actuators characterized by 1(t) 2(t) so that the
first are more accurate (and more costly) than the second. Once more, from
eqs. (4.47)(4.48) we can deduce that L1(tlt) 2(tIt); i.e., more money busy in-
creased state estimation accuracy (one can make a similar argument that more
accurate modelling requires more engineering and experimentation time). As far
as the effects of less plant uncertainty on the control system performance is con-
cerned, different values of E(t) affect the last two ternis in the cost (5.lO)directly
in the third term (5.14) and indirectly via 10(tIt) in the fourth term, (5.15).

Even more interesting (off-line and non-Monte-Carlo!) tradeoffs can be
carried out in the wisest allocation of funds partly to buy some better sensors,
partly to buy some better actuators, and partly to invest in additional engineering
time for better modelling.

5.6. On The Selection of Weighting and Covariance Matrices

We conclude this section with some remarks pertaining to the selection of
the control weighting matrices and the noise covariance matrices.

The fact that from a mathematical point of view the separation theorem allows
us to solve the control and filter problems separately, does not imply that these
two problems should be solved separately by two distinct design groups and
"hooked together" by the supervisor. Unfortunately, this is how the theorems
have been used in many engineering designs leading to unsuccessful results. For
this reason, we shall briefly elaborate on the proper usage of this theorem.

In general, if we could solve the overall nonlinear nonquadratic stochastic
control problem, the optimal design would not obey this nice separation property.
Since we cannot solve the true problem, we employ the linear-quadratic-gaussian
approach to arrive at a set of problems that we can solve. The key question is then:
What is available to the designer to control the goodness of the overall design so
that lie can obtain a satisfactory svsteni?i'he answer to this question is the selection
of the four matrix sequences {Q0(t)}, {R0(t)}, {!(t)} and {0(z)}. For any arbitrary
selection, the mathematical problem separates. However, this does not mean that
Q0(t), R0(t), and (t), 0(t) should be selected independently of each other. The
discussion of section 5.3 points this out to a certain degree since the changes in
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uncertainty by changes in (t) and 0(t) are mothifated by the values of R0(t) andQ(t) (via Kf)(1)) in the cost (5.10).
Unforttiriately there seems to be no puhlishcd literature on the above point.We have already conimented that Q0(t) and R0(t) can be used in the quadraticcriterion to maximize Iinearjzahioji validity (see secflon 3.6). We have alsocommented that E(t) and 00) can be used to communicate to the mathemitjcsthe existence of modelling errors due to linearization (see section 4.3.5). Clearlyboth sets of matrices are partly used for the same purpose: hence, their selectionshould not he done independently Unfortunately as we have stressed throughoutthis paper, there are no systematic procedures available for the speciuIcation ofQ0(t), R0(t), (t), and 0(t). Additjoial theoretical research and applications studiesare necessary.

6. SUMMARY OF THE L-Q-G APpROA('lj io DESIGN
We have outlined the philoSOph)' assumptions, formulation and niathe.matical characterization of a design process for controlling a nonlinear tIncerlajjS stem about a desired trajectory, through the USC of the so-called linear.qua(jrajcgaussian problem. This design process represents a relatively well understoodby-product of modern control theory. Of course successful control systems havebeen designed using alternjte approaches However, this design process is charac-terized by a clear cut division of responsibilities between the modelling and thecalculation aspects of the problem.

We outline below, for the sake of completeness the thirteen key steps in thedesign process. All of these are carried out off-line; the on-line computationalrequirements are minimal.

PART A: DETER1INISTIC
MODELLING

Step 1: Determine
a deterministic model of the plant; this yields

x(t + I) f(x(t), u(t), t).
Step 2: Determine

a deterministic model of the Sensors; this yields
y(t) g(x(t), .

Step 3: Determine ideal inPutstateoutput sequences (perhaps using thediscrete minimum principle)

{u0(t) :ideal input sequence
{x0(t)} :ideal state sequence

{y0(t)} :ideal output sequence
forall,=0,1,2.....T.
PART H: STOCHASTIC

MODELLING
Step 4: Model uncertainty in initial plant state

Select mean: x0 = E(x(0).
Select covariance: = coy [x(0); x(0)J.
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Step 5: Model input uncertainty

Select covariance: (t) ó,, coy [(t);

Step 6: Model sensor uncertainty

Select covariance 0(t) ö, -= coy [0(1): 0(t)].

PART C: LINEARIZATION
Step 7: Establish matrices A0(t), B0(t), and C0(t) from information in Steps I,

2, 3

i:f
A0(t) = -

(X(1)

ig
B0(t) = , C0(t) =

(UUH0

StepS: Depending on "degree of nonlinearity" select weighting matrices

Q0(t), R0(i) with due consideration of the values of , (t), and 0(t).

PART D CONTROL PROBLEM CALCULATIONS (oFF-LINE)
Step 9: Using the weighting matrices Q0(t), R0(t) of Step 8 and the matrices

A0(t), B0(t) of Step 7 solve backward in time the matrix difference equation

K0(t) = Q0() + A(t)K0(t + l)A0(t) - A(t)K0(t + l)B(t)

x FB'0(t)K0(t + l)B0(t) -i- R0(t)] 'B(t)K0(t ± l)A0(t)

with K0(T) = Q0(T).

Step JO: Compute the control gain matrix G0(t)

G0(t) = [B(r)K0(t ± l)B0(t) + R0(t)] 'B(t)K0(t + l)A0(t).

PART E FILTER PROBLEM CALCULATIONS (oFF-LINI)

Step II: Using the covariance matrices ,
!(t), and 0(t), established in

Steps 4-6, and the matrices A0(t), C0(t) of Step 7 solve forward in time the niatiix

difference equations

(i + lit) = A0(t)E0(tIt)A'(t) + (t)

0(r -I- lit + 1) = 0(t lit) + (t + lit + l)C(t + 1)

x [C0(t -f I )0(t + lit)C(t ± 1) + 0(t + 1)] 1C0(t + I )0(t + lit)

with 0(OiO) = o.

Step 12: Compute the filter gain matrix

H0(t ± 1) = t + lit + l)C(t + l)0 '(1 + 1).

PART F ON-LINE CALCULATIONS
From the actual measurements 7(l),z(2),
(a) Compute z(l), z(2),.. , by:

öz(t) = z(t) - g(x0(t), t).
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(b) Compute estimated deviations &x(tIt) and control Correction u(t) by:
&x(z + it,) = A0(t) öx(tlt) 1- B(t) u(t)

6r(t ± I) öz(t ± I) - C0(, ± l)x(t + II,)
x(t ± lit ± 1) x(t + itt) + H(t + I) r(t ± 1)

u(t) = C(t ódt J 1)

x(0jO) = Ex(0) - x(0).
Compute actual control u(t) by:

u(t) = u0(t) + u(t).

The step-by-step development should Convince the reader of the crucialimportance ofthe modelling issue in this design process. The ability of the designerto translate physical quantities into their mathematical counterparts in Steps1,2,3,4, 5, 6 and 8 is absolutely essential. Once the modelling has been carried out,the remaining steps 7, 9, 10, II, 12, and 13 are purely mechanical.

7. TRENDS IN ADAPTIVE CONTROL

As remarked before, the use of the linearquadratjc.155j1) problem forfeedback control system design for nonlinear stochastic systems, represents thesimplest possible approach. It hinges on the assumption that the feedback controlsystem can do a good job of returning the state of the system to its desired nominaltrajectory. From an engineering viewpoint, the major advantage of this approachis that most of the complex calculations can be carried out prior to the actualsystem operation, and the on-line calculations are minimal.One of the most important problems in engineering, economics, managementscience, and urban Systems arises when certain of the parameters of the dynamicalsystem are not known exactly. These parameters may be constant or time-varying(in a deterministic or stochastic manner) Thus, such systems may be describedby the difference equation
(7.1) x(t + 1) = f(x(t), p(:), u(t), t) + (i)
where xfr) is the state, u(t) is the control, p(t) is the parameter vector and (t) isthe additive plant white noise.

lithe parameters are constant, then

p + 1) p(t)
and p(t) can be viewed as a random vector At the opposite extreme, the parametersmay change in a stochastic manner
(7.2)

p(i + 1) h(p(t), 1) + '(t)
where h(.,. ) summarizes the deternijnjstic variation, and 0) is another whitenoise.

As we hate remarked before, the use of feedback does tend to compensateto a certain extent the effects of parameter variations Thus, if we have a nominal
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sequence of parameters, denoted by p(t), then we can use the suggested approach
with some degree of confidence provided that W are sure from the start that the
parameter variation rector

(7.3) p(t) p(t) - Po()

is "small."
We emphasize that there is a distinct difference between having öx(t) "small,"

and p(t) "small." In the case of the state, the control can influence x(t), and hence
x(t); it was this fact that was crucial in the use of linearization. On the other

hand, as it can be evidenced by eqs. (7.2) and (7.3), the control u(t) cannot influence
the dynamic evolution of the parameter rector p(t); thus, there is no way of using
the control to maximize the honesty of any linearizations about the nominal parameter
sequence p0(t).

For this reason, if one suspects that p(t) can become large, then the approach
described in this paper may not lead to a satisfactory design.

There are techniques available that can incorporate the effects of unknown
parameters. It should be stressed right at the start that these techniques require
much more on-line computation than the procedure described. For many
engineering applications, the extra on-line computational requirements makes
such techniques impractical. However, there are some engineering applications,
and certainly economic applications, which are characterized by sufficient time
between measurements and decisions so that the increased on-line computations
become feasible.

In the remainder of this section we shall present a very brief review of the
engineering literature on this problem. We remark that this is called the adaptive
control problem; the references [42][58] contain a (non-exhaustive) sample of
pertinent works.

It should be self-evident that since the actual parameter sequence p(t) may
differ from the a priori nominal parameter sequence p0(t), then on the basis of
measurements (noisy or not) one needs to construct a parameter estimate sequence

(7.4) (t!t)

in addition to a state estimate sequence

(7.5) (tjt).

Depending on the structure of the equations this estimation problem (even for
linear systems!) may be a nonlinear one. In this case, one employs an extended
Kalman filter or more complex estimation algorithm (see reference [25]) to generate
the estimates (t!t) and (tI:). It is beyond the scope of this paper to delve in detail
on the detailed structure of these nonlinear estimation algorithms. However, it is
worthwhile to remark that the propagation of the covariance matrices essentially
the equivalent to (4.47) and (4.48) cannot be done off-line, because at each step
one has to do the linearizations about the current estimate.

The interesting aspects of the adaptive control problem pertain to the role
of the control. In essence, there is a dual nature (see reference [42J) to the control;
one for ordinary control, and another for helping us estimate more accurately the
parameters. Thus, although the control cannot be used to change the time-evolution
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of the parameters, it can control the conditional covariance matrix of p(t), which
reflects the accuracy of parwneter estimation.

Progress in this area, in the engineering literature, has been almost totallydevoted to the linear case, i.e,, where the state dynamics have the form
(7.6) x(t + 1) = A(p(t), t)x(t) + B(p(t), r)u(t) -1- (t)

the parameter dynamics have the form

(7.7) p(t -i- I) = H(t)p(t) + y(t)
and the measurement equations have the form

(7.8) z(t) = C(p(t), t)x(t) + 0(t)

where the matrices A(j, B(.). C(.) depend upon the parameter vector, and
(t), y(t), and 0(t) are white noise sequences,

The criterion used is quadratic. Thus, if p(t) were known exactly for all t
the separation theorem would yield the optimal stochastic control.

One technique that can he used given (tft) and (zJt) is that of enforcedseparation, In this case one predicts the future values of the parameter vectorfrom (7.7) to obtain

(7.9) (t + lJt) = H(r)(zt); t = t,t + 1.....T.
This predicted sequence of parameter vectors fixes the future values of A(. ) andB(.) and one can now calculate the control gain (by an equation like (3.41)),by solving on-line a difference equation like (3.42)(3.43). Note that this process
must be repeated when the next observation is made, since, in general,
(7.10) (t -F ljt + 1) (tIt).
Thus, in the enforced separation adaptiee control scheme, for linear.quadraticGaussian problems, the structure of the separation theorem is preserved; however,the corresponding covariance matrices and control gains must be computedon-line each and every time a new measurement has been made.

Another technique (that does no: lead to a separation type result) is that ofopen-loop feedback optimal (OLFO) control (see [45]). This technique once morerequires that (tIt) and (tjt) be generated. Next, the assumption is made that nomore measurements will be made; hence the deterministic open-loop optimalcontrol can be found that minimizes the conditional expectation of the quadraticcost functional. This open-loop control is applied only at the current time period;when a new measurement is made, one repeats the entire set of computation (seereferences [52] to [56] for details). The OLFO approach yields a design that hasthe properties

the control gain matrix not only depends upon the predicted averagevalues of the unknon parameters, but also upon the predicted parametercovarjance matrix
the computations are far more complex than in the enforced separariopischeme.

In the economic literature it appears that reference [58] is essentially an OLFOapproach.
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A somewhat different approach to adaptive control, yet consistent with an
OLFO viewpoint, is to assume that the actual parameters of the system are one
out of N possible sets. Each one of the N possibilities forms a hypothesis; N
Kalman filters in parallel gcncrate the state estimate under each hypothesis.
One can then construct, from the residuals and state estimates of the Kalman
filters, in real time the conditional probability that each hypothesis is correct,
and these can be used to construct the adaptive control (sec reference [57] for
details).

There is little doubt that in the next five years the adaptive control problem
will receive more and more attention in the stochastic control literature. At the
present time there are several approaches, but with little cross-evaluation. A unified
treatment of this important class of problems is still lacking.

Deportment of Electrical Engineering
Massachusetts Institute of Technology
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