80 research outputs found

    Relativistic mean field model for ultra-compact low mass neutron star of HESS J1731-347

    Full text link
    The recent observation of the object HESS J1731-347 suggests the existence of a very light and very compact neutron star being a challenge for commonly used equation of state for dense matter. In this work we present a relativistic mean field model enriched with meson crossing terms among isovector and isoscalar mesons. Such interactions particularly dominate the behavior of the symmetry energy and accounts for small size of compact star radius. The proposed model fulfill the recent constraints concerning the symmetry energy slope and state-of-the-art compact stars constraints derived from the NICER measurements of PSR J0030+0451 and PSR J0740+6620 pulsars as well as from the GW170817 event and its associated electromagnetic counterparts AT2017gfo/GRB170817A.Comment: 5 pages, 4 figure

    Predicting and controlling the reactivity of immune cell populations against cancer

    Get PDF
    Heterogeneous cell populations form an interconnected network that determine their collective output. One example of such a heterogeneous immune population is tumor-infiltrating lymphocytes (TILs), whose output can be measured in terms of its reactivity against tumors. While the degree of reactivity varies considerably between different TILs, ranging from null to a potent response, the underlying network that governs the reactivity is poorly understood. Here, we asked whether one can predict and even control this reactivity. To address this we measured the subpopulation compositions of 91 TILs surgically removed from 27 metastatic melanoma patients. Despite the large number of subpopulations compositions, we were able to computationally extract a simple set of subpopulation-based rules that accurately predict the degree of reactivity. This raised the conjecture of whether one could control reactivity of TILs by manipulating their subpopulation composition. Remarkably, by rationally enriching and depleting selected subsets of subpopulations, we were able to restore anti-tumor reactivity to nonreactive TILs. Altogether, this work describes a general framework for predicting and controlling the output of a cell mixture

    Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control

    Get PDF
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates

    Natural Killer Lysis Receptor (NKLR)/NKLR-Ligand Matching as a Novel Approach for Enhancing Anti-Tumor Activity of Allogeneic NK Cells

    Get PDF
    NK cells are key players in anti tumor immune response, which can be employed in cell-based therapeutic modalities. One of the suggested ways to amplify their anti tumor effect, especially in the field of stem cell transplantation, is by selecting donor/recipient mismatches in specific HLA, to reduce the inhibitory effect of killer Ig-like receptors (KIRs). Here we suggest an alternative approach for augmentation of anti tumor effect of allogeneic NK cells, which is founded on profile matching of donor NK lysis receptors (NKLR) phenotype with tumor lysis-ligands.We show that an NKLR-mediated killing directly correlates with the NKLR expression intensity on NK cells. Considerable donor variability in the expression of CD16, NKp46, NKG2D and NKp30 on circulating NK cells, combined with the stability of phenotype in several independently performed tests over two months, indicates that NKLR-guided selection of donors is feasible. As a proof of concept, we show that melanoma cells are dominantly recognized by three NKLRs: NKG2D, NKp30 and NKp44. Notably, the expression of NKp30 on circulating NK cells among metastatic melanoma patients was significantly decreased, which diminishes their ability to kill melanoma cells. Ex vivo expansion of NK cells results not only in increased amount of cells but also in a consistently superior and predictable expression of NKG2D, NKp30 and NKp44. Moreover, expanded NK cultures with high expression of NKG2D or NKp30 were mostly derived from the corresponding NKG2D(high) or NK30(high) donors. These NK cultures subsequently displayed an improved cytotoxic activity against melanoma in a HLA/KIR-ligand mismatched setup, which was NKLR-dependent, as demonstrated with blocking anti-NKG2D antibodies.NKLR/NKLR-ligand matching reproducibly elicits enhanced NK anti-tumor response. Common NKLR recognition patterns of tumors, as demonstrated here in melanoma, would allow implementation of this approach in solid malignancies and potentially in hematological malignancies, either independently or in adjunction to other modalities

    Characterization of sodium channel mutations in the dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia

    Get PDF
    Specific sodium channel gene mutations confer target site resistance to pyrethroid insecticides in mosquitoes and other insects. In Aedes mosquito species, multiple mutations that contribute to resistance vary in their importance around the world. Here, we characterize voltage sensitive sodium channel (Vssc) mutations in populations of Aedesaegypti from Kuala Lumpur, Malaysia, and look at their persistence in populations affected by ongoing Wolbachia releases (a dengue control measure). We also describe a Vssc mutation in Aedesalbopictus (F1534L) found for the first time in Malaysia. We show that there are three predominant Vssc haplotypes in Aedesaegypti in this region, which all persist with regular backcrossing, thereby maintaining the original genetic composition of the populations. We identify changes in genotype frequency in closed populations of Ae. aegypti maintained for multiple generations in laboratory culture, suggesting different fitness costs associated with the genotypes, some of which may be associated with the sex of the mosquito. Following population replacement of Ae. aegypti by Wolbachia in the target area, however, we find that the Vssc mutations have persisted at pre-release levels. Mosquitoes in two genotype classes demonstrate a type I pyrethroid resistance advantage over wildtype mosquitoes when exposed to 0.25% permethrin. This resistance advantage is even more pronounced with a type II pyrethroid, deltamethrin (0.03%). The results point to the importance of these mutations in pyrethroid resistance in mosquito populations and the need for regular backcrossing with male mosquitoes from the field to maintain similarity of genetic background and population integrity during Wolbachia releases

    Dr. Ahmed Ouali, 1948–2020

    Get PDF
    International audienceAhmed Ouali was born on October 4, 1948 in Tigzirt, Tizi-Ouzou, Algeria. In 1952, he moved with his parents to Montluçon, France. In 1974, he was trained and graduated with a bachelor's degree in Biochemistry at the University of Lyon. He then, in 1976, earned a joint Ph.D. in Animal Science at the University of Blaise Pascal (Clermont-Ferrand) where he studied at the National Institute of Agricultural Research (INRA, Theix). The title of his doctorate thesis was “The role of muscle proteases on meat tenderization”. Subsequently, he was employed in a private laboratory for medical analysis from 1976 to 1978 and thereafter at the Meat Research Laboratory group at INRA, Theix as a permanent researcher. In 1990, he was appointed as a research director and led the “Biochemistry and Functions of Muscle Proteins” unit for 8 years. The Meat Research Station focused their research on many topics including colour and protein oxidation; enzymology and tenderness; and muscle protein functionalities. During his entire scientific career at INRA, but before his retirement on October 2013, Ahmed was living in Clermont-Ferrand, the city of the famous volcanic chain of the Puy-de-DĂŽme, with his wife Anne-Marie with whom he had two lovely children: Armelle (41 years) and GĂ€el (38 years). In 2019, they moved to their new house in Montpellier in the South of France
    • 

    corecore