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String-scalar duality proposed by Y. Hosotani and membrane-scalar duality by A. Sugamoto are 
reexamined in the context of Kawaguchi Lagrangian formulation. The characteristic feature of this 
formulation is the indifferent nature of fields and parameters. Therefore even the exchange of roles 
between fields and parameters is possible. In this manner, dualities above can be proved easily. Between 
Kawaguchi metrics of the dually related theories, a simple relation is found. As an example of the 
exchange between fermionic fields and parameters, a replacement of the role of Grassmann parameters 
of the 2-dimensional superspace by the 9th component of Neveu–Schwarz–Ramond (NSR) fermions is 
studied in superstring model. Compactification is also discussed in this model.
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1. Introduction

Recently, one of the authors (RY) proposed in collaboration with 
Ootsuka, Ishida and Tanaka, a covariant Lagrangian formalism for 
field theories with the aid of Kawaguchi geometry [1]. Kawaguchi 
space [2], also known as areal space, is defined by a set of a man-
ifold M and an areal metric called Kawaguchi metric K . In case of 
field theories, M includes fields yi (i = 1, · · · , n) and parameters 
xμ (μ = 0, 1, · · · , D − 1) of space and time, on the equal footing, 
and is called extended configuration space. We label them as Za

(a = 0, · · · , n + D − 1). Kawaguchi metric K is a kind of Lagrangian 
density, depending on the coordinates of point in M and its deriva-
tives,

K = K (Za, dZa1a2···aD ), where (1)

dZa1a2···aD ≡ dZa1 ∧ dZa2 ∧ · · · ∧ dZaD . (2)

Integral of K over a given “sheet” S (or a higher dimensional sub-
manifold depending on the theory) gives an area (or volume) of 
the “sheet”. This gives an action of field theories:
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Action =
∫
S

K

= the area or volume of a sub-manifold S. (3)

To guarantee the reparametrization invariance, the homogeneity 
condition is imposed on the Kawaguchi metric, namely

K (Z , λdZa1a2···aD ) = λK (Z , dZa1a2···aD ). (4)

In the formulation, fields and parameters are not identified. 
If we assign {yi} as fields and {xμ} as parameters among {Za}, 
the fields become functions of the parameters, such as σ : yi =
yi(x0, · · · , xD−1). After the parametrization σ is fixed, we have

σ ∗
(

dx0···μ−1 ∧ dyi ∧ dxμ+1···D−1

dx0···D−1

)
= ∂μ yi(x), (5)

and the usual description of field theories appears. This operation 
σ ∗ is sometimes called pullback of a parametrization σ . However 
it is important to note that there are a number of different ways 
for the parametrization.

In [1], it is proved that every known action can be an area 
(a volume) of a certain subspace, so that every field theory can be 
reformulated à la Kawaguchi. Nambu–Goto action is the prototype 
of this formulation. The equal treatment of fields and parameters 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in Kawaguchi Lagrangian formulation gives much potential to re-
veal dualities which exist between different physical models.

Historically, Finsler introduced in the metric a derivative ẋμ in 
addition to the coordinates xμ . This Finsler metric reads

F = F (xμ, ẋμ)dt. (6)

Physicists understand easily the Finsler metric is nothing but the 
Lagrangian of quantum mechanics, giving a temporal development 
of the dynamics in terms of t . Afterwards Kawaguchi generalizes 
the Finsler geometry so as to include higher order derivatives 
ẍμ, · · · , and also generalize it to the case with many parameters 
(field theories) mentioned above.

The purpose of this paper is to derive dualities among different 
physical models, using the indifferent nature of fields and param-
eters in the Kawaguchi Lagrangian formalism.

It is known in string theory and membrane theory in four 
space-time dimensions, the models are dually related to a field 
theory with two scalars by Hosotani [3] and a single scalar field 
theory by Sugamoto [4], respectively. Therefore we first reexam-
ine these dualities in the next section. The exchange of fields by 
parameters is clearly demonstrated.

A generalization of the dualities given in [3] and [4] is stud-
ied by Morris [5] afterwards. Baker and Fairlie [6] studied scalar 
field description of p-branes, by generalizing the Hamilton–Jacobi 
formalism of string by Nambu [7].

In section three, we display an example of exchanging fermonic 
fields and parameters in the superstring model, where a fermionic 
field (NSR field) in the 9th component ψ9 is exchanged by a pa-
rameter θ of the superspace. Compactification is also discussed in 
this model.

2. String and membrane dualities

In this section, we illustrate how to see dualities in terms of 
Kawaguchi Lagrangian formalism, taking up two Nambu–Goto type 
examples. One example is introduced by Y. Hosotani [3], which 
gives a duality between Nambu–Goto string and scalar field theory. 
Another example is given by one of the authors (AS) for membrane 
theory [4]. We demonstrate that their dualities can be observed 
manifestly at action level, which is originally proved by seeing the 
equations of motion. Here we consider Euclidean spacetime.

2.1. String-scalar duality

The actions for strings and two scalar fields in 4-dimensional 
spacetime in [3] are given by

Sstring =
∫

dτdσ

√
1

2
(V μν)2, V μν = ∂(Xμ, Xν)

∂(τ ,σ )
, (7)

Sscalars =
∫

d4x

√
1

2

(
Wμν

)2
, Wμν = ∂(ρ,φ)

∂(Xμ, Xν)
, (8)

respectively, where ρ and φ are scalar fields on spacetime Xμ , 
μ = 0, 1, 2, 3. τ and σ are worldsheet coordinates. Coefficients are 
taken arbitrary, since they are of no importance in this argument. 
Important fact is that one is 2-dimensional field theory and the 
other is 4-dimensional field theory.

To consider the duality between these two theories, we set a 
manifold M = {(τ , σ , ρ, φ, Xμ)}. Kawaguchi metrics for these ac-
tions are

Kstring =
√

1

2
(dXμν)2 (9)

Kscalars =
√

1
(dXμν ∧ dρ ∧ dφ)2. (10)
2

(9) and (10) have the same structure; only the difference is the 
degree of differential forms. Let K be

K (· · ·) =
√

1

2
(· · ·)2. (11)

We can write

Sstring =
∫

K

(
∂(Xμ, Xν)

∂(ξ0, ξ1)

)
dξ01, (12)

for arbitrary parametrization (ξ0, ξ1). It can be naturally extended 
to 4-dimensional field theory by adding extra scalar degrees of 
freedom as

S ′ =
∫

K

(
∂(Xμ, Xν)

∂(ξ0, ξ1)

)
dξ01 ∧ dρ ∧ dφ. (13)

These additional ρ and φ are degrees of freedom that are perpen-
dicular to the worldsheet. An identity of Jacobian gives

S ′ =
∫

K

(
1

2
εμνλη ∂(X0, X1, X2, X3)

∂(ξ0, ξ1,ρ,φ)

∂(ρ,φ)

∂(Xλ, Xη)

)
dξ01 ∧ dρ ∧ dφ

=
∫

K

(
1

2
εμνλη ∂(ρ,φ)

∂(Xλ, Xη)

)
∂(X0, X1, X2, X3)

∂(ξ0, ξ1,ρ,φ)
dξ01 ∧ dρ ∧ dφ

=
∫

K

(
∂(Xμ, Xν,ρ,φ)

∂(X0, X1, X2, X3)

)
dX0123 = Sscalars, (14)

where εμνλη is the anti-symmetric Levi–Civita symbol with
ε0123 = 1. From the first line to the second line of the above equa-
tion, we use the homogeneity condition of the Kawaguchi metric. 
The last line shows that S ′ is indeed a pullbacked action deter-
mined by (10) to the parameter space (X0, X1, X2, X3).

2.2. Membrane-scalar duality

Similar duality can be seen between membrane theory and 
scalar field theory in 4-dimension. The actions are

Smembrane =
∫

dτdσdρ

√
1

3!
(

V μνλ
)2

, V μνλ = ∂(Xμ, Xν, Xλ)

∂(τ ,σ ,ρ)
,

(15)

Sscalar =
∫

d4x

√(
∂φ

∂ Xμ

)2

, (16)

with scalar field φ.
We consider a manifold M = {(τ , σ , ρ, φ, Xμ)}, and Kawaguchi 

metrics for these actions are

Kmembrane =
√

1

3!
(
dXμνλ

)2 (17)

Kscalar =
√

1

3!
(
dXμνλ ∧ dφ

)2
. (18)

As well as the string-scalar case, the membrane action (15) is writ-
ten by

Smembrane =
∫

K

(
∂(Xμ, Xν, Xλ)

∂(ξ0, ξ1, ξ2)

)
dξ012, K (· · ·) =

√
1

3! (· · ·)2,

(19)

for arbitrary parameters (ξ0, ξ1, ξ3). Then we obtain
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S ′ =
∫

K

(
∂(Xμ, Xν, Xλ)

∂(ξ0, ξ1, ξ2)

)
dξ012 ∧ dφ

=
∫

K

(
εμνλη ∂(X0, X1, X2, X3)

∂(ξ0, ξ1, ξ2, φ)

∂φ

∂ Xη

)
dξ012 ∧ dφ

=
∫

K

(
∂(Xμ, Xν, Xλ,φ)

∂(X0, X1, X2, X3)

)
dX0123 = Sscalar. (20)

It is a pullbacked action of (18) to the parameter space (X0, X1,

X2, X3).
At the end of this section, we give a comment on the equiva-

lence of string or membrane model with the scalar model. Equiv-
alence can be proved by setting the equation of motions in 
Kawaguchi Lagrangian formulation, and choosing the parametriza-
tions. In the string-scalar duality, the parametrization is Xμ =
Xμ(τ , σ) in the string model and ρ = ρ(Xμ), φ = φ(Xμ) in 
the scalar model, while in the membrane-scalar duality, Xμ =
Xμ(τ , σ , ρ) in the membrane model and φ = φ(Xμ) in the scalar 
model. The result of this section is that the dualities known in [3]
and [4] are re-derived manifestly in Kawaguchi Lagrangian formu-
lation, and that a simple relation (9) and (10), or (17) and (18) is 
found between Kawaguchi metrics of dually related theories. Here 
the degrees of forms of the Kawaguchi metric is changed by a def-
inite way.

A conjecture at the quantum level on the possible equivalence 
of string or membrane model with scalar model will be given in 
the discussion.

3. Exchange of fermonic fields and variables and 
compactification

Kawaguchi Lagrangian formalism has the indifferent nature be-
tween fields and variables. We exemplify the exchange of fermionic 
fields and variables, taking a superstring model and discuss its 
compactification. We start with the superstring action on super-
space [8],

Ssuperstring = 1

4π

∫
dzdz̄dθdθ̄ D̄F μDFμ, (21)

F μ =
√

2

α′ Xμ(z, z̄) + iθψμ(z, z̄) + iθ̄ ψ̃μ(z, z̄), (22)

D = ∂

∂θ
+ θ

∂

∂z
, D̄ = ∂

∂θ̄
+ θ̄

∂

∂ z̄
, (23)

where μ = 0, 1, · · · , 9. Complex numbers z and z̄ and Grassmann 
parameters θ and θ̄ form the 2-dimensional superspace. Xμ gives 
the location of the string world sheet, and ψμ and ψ̃μ gives a 
two-component spin located on the string world sheet. The α′ is 
a Regge slope parameter and its inverse gives the tension of the 
string. Integration with respect to θ and θ̄ gives the standard su-
perstring action

Ssuperstring = 1

4π

∫
dzdz̄

(
2

α′ ∂ Xμ∂̄ Xμ + ψμ∂̄ψμ + ψ̃μ∂ψ̃μ

)
,

(24)

where ∂ = ∂

∂z
and ∂̄ = ∂

∂ z̄
. Corresponding Kawaguchi space is

M = (z, z̄, θ, θ̄ , Xμ,ψμ, ψ̃μ), (25)

Ksuperstring

= − (dξ012 ∧ dF μ + dξ023 ∧ θ̄dF μ)(dξ013 ∧ dFμ + dξ123 ∧ θdFμ)

4π dξ0123
,

(26)
with (ξ0, ξ1, ξ2, ξ3) = (z, ̄z, θ, θ̄ ). Note that spacetime parameters 
and fields are on the same footing. Because of the reparametriza-
tion invariance, there is no restriction that we should pullback the 
action only to the original spacetime (z, ̄z, θ, θ̄ ). Even (z, ̄z, ψ9, ψ̃9)

can be regarded as some other parameter space. In the latter case 
fermionic quantities θ and θ̄ become functions of (z, ̄z, ψ9, ψ̃9). 
For our purpose, we consider the case θ = θ(ψ9) = ψ9, θ̄ =
θ̄ (ψ̃9) = ψ̃9. Then the pullback of F μ turns into

F μ =
⎧⎨
⎩

√
2
α′ Xμ(z, z̄) + iθψμ(z, z̄) + iθ̄ ψ̃μ(z, z̄) μ �= 9√
2
α′ Xμ(z, z̄) μ = 9.

(27)

Now, the 4-forms appearing in (26) become

dξ0123 = dζ 0123

dξ012 ∧ dF μ =
{

dζ 0123
(

iψ̃μ
)

μ �= 9

0 μ = 9,

dξ023 ∧ θ̄dF μ =

⎧⎪⎪⎨
⎪⎪⎩

dζ 0123
(

ζ 3
√

2
α′ ∂̄ Xμ + ζ 3ζ 2 i∂̄ψμ

)
μ �= 9

dζ 0123
(

ζ 3
√

2
α′ ∂̄ Xμ

)
μ = 9,

dξ013 ∧ dF μ =
{

dζ 0123
(−iψμ

)
μ �= 9

0 μ = 9,

dξ123 ∧ θdF μ =

⎧⎪⎪⎨
⎪⎪⎩

dζ 0123
(

−ζ 2
√

2
α′ ∂ Xμ + ζ 3ζ 2 i∂ψ̃μ

)
μ �= 9

dζ 0123
(

−ζ 2
√

2
α′ ∂ Xμ

)
μ = 9,

(28)

where we denote the new parameters as (ζ 0, ζ 1, ζ 2, ζ 3) =
(z, ̄z, ψ9, ψ̃9). Finally we obtain

σ ∗
ζ Ksuperstring

= (dζ 0123)

4π

[
ζ 3ζ 2

(
2

α′ ∂ X9∂̄ X9 + 2

α′ ∂ Xμ′
∂̄ Xμ′ + ψμ′

∂̄ψμ′ + ψ̃μ′
∂ψ̃μ′

)

+ ζ 3
(

i
2

α′ ψ
μ′

∂̄ Xμ′
)

+ ζ 2
(

i
2

α′ ψ̃
μ′

∂ Xμ′
)

− ψ̃μ′
ψμ′

]
, (29)

with μ′ = 0, 1, · · · , 8. σ ∗
ζ is inserted to clarify that it is an ex-

pression under the parametrization by ζ = {ζ 0−3}. The terms other 
than the first are indeed 8-dimensional superstrings, and the first 
term shows remaining degree of freedom of compactified space.

If we integrate the action with respect to ζ 2 = ψ9 and ζ 3 = ψ̃9, 
then we have

S ′
superstring

= 1

4π

∫
dzdz̄

(
2

α′ ∂ X9∂̄ X9 + 2

α′ ∂ Xμ′
∂̄ Xμ′ + ψμ′

∂̄ψμ′ + ψ̃μ′
∂ψ̃μ′

)
.

(30)

The reason why θ and θ̄ do not recover as fields but disappear 
from the action after the replacement of the role of θ and θ̄ with 
that of ψ9 and ψ̃9 is in the choice of the parametrization σζ , 
where θ and θ̄ are fixed as θ = ψ9 and θ̄ = ψ̃9 without (z, ̄z) de-
pendence. Therefore this choice of parametrization σζ triggers the 
disappearance of ψ9 and ψ̃9 in (30). The contribution to the action 
from the 9th direction is

α′

2

{(m

R

)2 +
(

w R

α′

)2
}

+
∞∑

n
(

N9
n + Ñ9

n

)
, (31)
n=0
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if the 9th direction is compactified as a circle with radius R . 
Correspondingly the first term gives the momentum and winding 
contributions with Kaluza–Klein excitation number m and winding 
number w , while the second term gives the excitation energy from 
vibration modes in the 9th direction. As usual, N9

n and Ñ9
n are the 

occupation number of the n-th vibration modes of right-moving 
and left-moving modes, respectively. The compactification is un-
fortunately not derived manifestly by the exchange of fermionic 
fields and variables.

4. Discussion

In this paper we have studied two examples, string-scalar 
duality of [3] and membrane-scalar duality of [4] in the con-
text of Kawaguchi Lagrangian formulation. In the examples, ex-
change of fields and parameters is naturally performed owing to 
the indifferent nature of fields and parameters in Kawaguchi La-
grangian formulation. Such exchange can be also applied between 
fermionic fields and fermonic parameters. Indeed we carry out in 
the superstring model the exchange between the 9th components 
(ψ9 and ψ̃9) of NSR fields and the fermionic coordinates (θ and θ̄ ) 
of the superspace.

In the proof of dualities in Section 2, a simple relation is 
found between the Kawaguchi metrics of the dually related theo-
ries in which the degree of forms in Kawaguchi metric is increased 
from 2-form to 4-from in the string-scalar duality, from 3-from to 
4-from in the membrane-scalar duality, respectively. This is a very 
important point. The equivalence of the models is proved at the 
classical level, or by showing the equivalence of equations of mo-
tion. Then, what happens if we quantize the models?

Quantization of field theories in Kawaguchi Lagrangian formu-
lation may be given by

Z p =
∑
S p+1

e
− ∫

S p+1
K p+1(Z ,dZ (p+1))

, (32)

where we explicitly denote the dimensionality p of the configura-
tion which we are studying. This p-dimensionally extended object 
is now called p-brane (If p = 1 it is string, and if p = 2, it is mem-
brane.) In order to quantize p-branes, we have to sum over all 
possible configurations S p+1 of p + 1-dimensional word volume of 
p-branes in M . Let denote the set of {S p+1} as Sp+1.

The N-point amplitude AN (x(1), · · · , x(n)) of p-branes is dis-
cussed in [4], in which the amplitude is defined by summing over 
all the configurations Xμ of p-branes which pass through the N-
points, x(1), · · · , x(N) , while the amplitude in the scalar model is 
defined by summing over all the configurations where each of the 
scalar fields take the same value at the N-points, x(1), · · · , x(N) . This 
comes from the understanding that the scalar fields (ρ and φ) are 
the parametrization of space-time, perpendicular to the configu-
ration of string or membrane, so that taking constant values of 
scalars gives a configuration of string, membrane or p-branes in 
general.

Therefore, the following conjecture may be given.
Let the extended configuration space M be M = {(Za)} =

{(ξ0, · · · , ξ p; ξ p+1, · · · , ξ D−1; X0, · · · , X D−1)}, then a point P has 
a coordinate P (ξ0, · · · , ξ p; ξ p+1, · · · , ξ D−1; X0, · · · , X D−1). Here we 
separate the parameters into two categories, (ξ0, · · · , ξ p) and 
(ξ p+1, · · · , ξ D−1). In four dimensional string, the first category is 
the parametrization of string world sheet (τ , σ), and the second 
category is the set of scalar fields (ρ, φ). Similarly, in four dimen-
sional membrane, the first category is (τ , σ , ρ) and the second 
category is (φ). In Section 2, we have learned that the string 
can be described in terms of 2-form action over 2-dimensional 
surface, or the 4-form action over 4-dimensional surface, while 
membrane can be described by 3-form action or 4-form action 
over 3-dimensional or 4-dimensional surface. Therefore, in order 
to study dualities we have to prepare more general subspaces, de-
scribing the configurations of q-branes, where q is not necessarily 
equal to p but can be p, D − 1, and so forth.

In order to estimate the N-point amplitude, a special subspaces 
Sq(x(1), · · · , x(N)) (⊂ Sq) should be prepared:

Sq(x(1), · · · , x(N))

≡ {S ∈ Sq|
P (i)(ξ0, · · · , ξp; ξp+1 = cp+1, · · · , ξD−1 = cD−1; Xμ = x(i)μ) ∈ S,

i = 1 − N}, (33)

where q is not necessarily p, as was mentioned above even when 
we are studying p-branes. If the following amplitudes depending 
on q is defined by

AN(x(1), · · · , x(N))q

∝
D−1∏

j=p+1

∫
dc j

∑
S∈Sq(x(1),···,x(N))

e− ∫
S Kq+1(Z ,dZ (q+1)), (34)

then we may have

AN(x(1), · · · , x(N))p ∝ AN(x(1), · · · , x(N))D−1. (35)

In case of string-scalar duality in Section 2, we have (AN )1 ∝
(AN)3, while in membrane-scalar duality we have (AN )2 ∝ (AN)3, 
where D = 4.

At present this is only a conjecture. However, we hope that the 
method given in this paper may elucidate various dualities existing 
in physics and mathematics.
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