9 research outputs found

    The impact of education and mismatch on wages: the USA, 1986-1996

    Get PDF
    In analysing the impact of education on wage differentials and wage growth, we use next topersonal characteristics (e.g. education and experience) also job characteristics (e.g. skillsrequired) to explain wages. We estimate wage equations on individual data for the USA, 1986 –1996. When discussing observed and previously unobserved heterogeneity it turns out thatpersonal characteristics like education and experience explain about half of the variation inwages. At least 20 per cent is explained by variation in job characteristics. When comparing theresults with similar research for the Netherlands, the returns to experience are the same in bothcountries, while the premiums on education and in particular required skills are much higher inthe US.labour economics ;

    Continued high incidence of children with severe influenza A(H1N1)pdm09 admitted to paediatric intensive care units in Germany during the first three post-pandemic influenza seasons, 2010/11–2012/13

    Get PDF
    Background Previous influenza surveillance at paediatric intensive care units (PICUs) in Germany indicated increased incidence of PICU admissions for the pandemic influenza subtype A(H1N1)pdm09. We investigated incidence and clinical characteristics of influenza in children admitted to PICUs during the first three post-pandemic influenza seasons, using active screening. Methods We conducted a prospective surveillance study in 24 PICUs in Bavaria (Germany) from October 2010 to September 2013. Influenza cases among children between 1 month and 16 years of age admitted to these PICUs with acute respiratory infection were confirmed by PCR analysis of respiratory secretions. Results A total of 24/7/20 influenza-associated PICU admissions were recorded in the post-pandemic seasons 1/2/3; incidence estimates per 100,000 children were 1.72/0.76/1.80, respectively. Of all 51 patients, 80 % had influenza A, including 65 % with A(H1N1)pdm09. Influenza A(H1N1)pdm09 was almost absent in season 2 (incidence 0.11), but dominated PICU admissions in seasons 1 (incidence 1.35) and 3 (incidence 1.17). Clinical data was available for 47 influenza patients; median age was 4.8 years (IQR 1.6–11.0). The most frequent diagnoses were influenza-associated pneumonia (62 %), bronchitis/bronchiolitis (32 %), secondary bacterial pneumonia (26 %), and ARDS (21 %). Thirty-six patients (77 %) had underlying medical conditions. Median duration of PICU stay was 3 days (IQR 1–11). Forty-seven per cent of patients received mechanical ventilation, and one patient (2 %) extracorporeal membrane oxygenation; 19 % were treated with oseltamivir. Five children (11 %) had pulmonary sequelae. Five children (11 %) died; all had underlying chronic conditions and were infected with A(H1N1)pdm09. In season 3, patients with A(H1N1)pdm09 were younger than in season 1 (p = 0.020), were diagnosed more often with bronchitis/bronchiolitis (p = 0.004), and were admitted to a PICU later after the onset of influenza symptoms (p = 0.041). Conclusions Active screening showed a continued high incidence of A(H1N1)pdm09-associated PICU admissions in the post-pandemic seasons 1 and 3, and indicated possible underestimation of incidence in previous German studies. The age shift of severe A(H1N1)pdm09 towards younger children may be explained by increasing immunity in the older paediatric population. The high proportion of patients with underlying chronic conditions indicates the importance of consistent implementation of the current influenza vaccination recommendations for risk groups in Germany

    Similar severity of influenza primary and re-infections in pre-school children requiring outpatient treatment due to febrile acute respiratory illness: prospective, multicentre surveillance study (2013-2015)

    No full text
    Background Influenza virus infections in immunologically naïve children (primary infection) may be more severe than in children with re-infections who are already immunologically primed. We compared frequency and severity of influenza virus primary and re-infections in pre-school children requiring outpatient treatment. Methods Influenza-unvaccinated children 1–5 years of age presenting at pediatric practices with febrile acute respiratory infection < 48 h after symptom onset were enrolled in a prospective, cross-sectional, multicenter surveillance study (2013–2015). Influenza types/subtypes were PCR-confirmed from oropharyngeal swabs. Influenza type/subtype-specific IgG antibodies serving as surrogate markers for immunological priming were determined using ELISA/hemagglutination inhibition assays. The acute influenza disease was defined as primary infection/re-infection by the absence/presence of influenza type-specific immunoglobulin G (IgG) and, in a second approach, by the absence/presence of subtype-specific IgG. Socio-demographic and clinical data were also recorded. Results Of 217 influenza infections, 178 were due to influenza A (87 [49%] primary infections, 91 [51%] re-infections) and 39 were due to influenza B (38 [97%] primary infections, one [3%] re-infection). Children with “influenza A primary infections” showed fever with respiratory symptoms for a shorter period than children with “influenza A re-infections” (median 3 vs. 4 days; age-adjusted p = 0.03); other disease characteristics were similar. If primary infections and re-infections were defined based on influenza A subtypes, 122 (87%) primary infections (78 “A(H3N2) primary infections”, 44 “A(H1N1)pdm09 primary infections”) and 18 (13%) re-infections could be classified (14 “A(H3N2) re-infections” and 4 “A(H1N1)pdm09 re-infections”). Per subtype, primary infections and re-infections were of similar disease severity. Children with re-infections defined on the subtype level usually had non-protective IgG titers against the subtype of their acute infection (16 of 18; 89%). Some patients infected by one of the influenza A subtypes showed protective IgG titers (≥ 1:40) against the other influenza A subtype (32/140; 23%). Conclusions Pre-school children with acute influenza A primary infections and re-infections presented with similar frequency in pediatric practices. Contrary to expectation, severity of acute “influenza A primary infections” and “influenza A re-infections” were similar. Most “influenza A re-infections” defined on the type level turned out to be primary infections when defined based on the subtype. On the subtype level, re-infections were rare and of similar disease severity as primary infections of the same subtype. Subtype level re-infections were usually associated with low IgG levels for the specific subtype of the acute infection, suggesting only short-time humoral immunity induced by previous infection by this subtype. Overall, the results indicated recurring influenza virus infections in this age group and no or only limited heterosubtypic antibody-mediated cross-protection

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore