7 research outputs found

    Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes

    Get PDF
    The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. Keywords: basic emotions, EEG, LORETA, ERP, IAPS, time, rapid perceptio

    Visuo-spatial pseudohemineglect in professional sportsmen

    No full text

    Influence of acquiring reading and writing on visuo-spatial pseudohemineglect

    No full text

    Prism adaptation contrasts perceptual habituation for repetitive somatosensory stimuli

    No full text
    Prism Adaptation is a non-invasive procedure that requires performing a visuo-motor pointing task while wearing prism goggles inducing a visual displacement of the pointed target. This procedure involves a reorganization of sensorimotor coordination, and induces long-lasting effects on numerous higher-order cognitive functions in healthy volunteers and neglect patients. Prismatic displacement (PD) of the visual field can be induced when prisms are worn but no sensorimotor task is required. In this case, it is unlikely that any subsequent reorganization takes place. The effects of PD are short-lived in the sense that they last until prisms are worn. In this study we aimed, to the best of our knowledge for the first time, at investigating whether PA and PD induce changes in the perception of intensity of experimentally applied tactile and nociceptive stimuli in healthy volunteers. We induced PD (experiment 1), or PA (experiment 2) and asked participants to rate the intensity of nociceptive and non-nociceptive somatosensory stimuli applied to the hand undergoing the visuo-proprioceptive conflict (experiment 1) or adaptation (experiment 2). Our results indicate that: 1) the visuo-proprioceptive conflict induced by PD does not reduce the perceived intensity of the stimuli, 2) PA prevents perceptual habituation for nociceptive and non-nociceptive somatosensory stimuli. Moreover, to investigate the possible underlying mechanisms of the effects of PA we conducted a third experiment in which stimuli were applied both at the adapted and non-adapted hand. We observed that perceptual habituation was prevented for nociceptive and non-nociceptive somatosensory stimuli, for stimuli applied onto both hands. This result suggests that the detention of habituation is probably not merely driven by changes in spatial attention allocation. Taken together, these data indicate that prisms can directly affect the perceived intensity of somatosensory stimuli only when PA is induced

    Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions

    Get PDF
    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective
    corecore