517 research outputs found

    CCD/CMOS Sensors Introduction Articles

    Get PDF

    CCD/CMOS Sensors Introduction Articles

    Get PDF

    Computing centroids in current-mode technique

    Get PDF
    A novel current-mode circuit for calculating the centre of mass of a discrete distribution of currents is described. It is simple and compact, an ideal building block for VLSI analogue IC design. The design principles are presented as well as the simulated behaviour of a one-dimensional implementation

    Data Sheets on Sensors and Amplifiers

    Get PDF

    Data Sheets on Sensors and Amplifiers

    Get PDF

    A Current-Mode Position Sensitive Circuit

    Get PDF
    A novel technique to implement mesh-type position sensitive devices using current-mode analog VLSI is presented. By taking advantage of local analog computation this approach allows to create extremely compact circuit implementations. While in conventional approaches most sensor characteristics are adjusted by setting process parameters, our technique is fully electronically tunable and suitable to be implemented in general purpose CMOS technology. We have verified experimentally our idea designing and fabricating via MOSIS a 20 element 1D position circuit. Test results are presented demonstrating nonlinearity below 2.2% for currents in the range of 5pA to 10nA

    Fast and Reliable Modeling of Piezoelectric Transducers for Energy Harvesting Applications

    Get PDF
    The paper presents a fast and reliable model identification technique for piezoelectric transducers based on an equivalent electromechanical circuit easily implementable on SPICE-like simulation tools. Model parameter extraction is simple and requires just standard and inexpensive laboratory equipment. Indeed, the equivalent circuit representation permits the evaluation of the response of a real energy harvesting system, where the electronic load is a synchronized switching converter which usually causes a significant feedback on the mechanical part of the system during energy extraction. Both simulation and measurements show that the damping effect is particularly important near resonance, where the adopted model is able to fit the experimental data and provides a more realistic description of the behavior of the system

    A 32 mV/69 mV input voltage booster based on a piezoelectric transformer for energy harvesting applications

    Get PDF
    This paper presents a novel method for battery-less circuit start-up from ultra-low voltage energy harvesting sources. The approach proposes for the first time the use of a Piezoelectric Transformer (PT) as the key component of a step-up oscillator. The proposed oscillator circuit is first modelled from a theoretical point of view and then validated experimentally with a commercial PT. The minimum achieved start-up voltage is about 69 mV, with no need for any external magnetic component. Hence, the presented system is compatible with the typical output voltages of thermoelectric generators (TEGs). Oscillation is achieved through a positive feedback coupling the PT with an inverter stage made up of JFETs. All the used components are in perspective compatible with microelectronic and MEMS technologies. In addition, in case the use of a ∼40 μH inductor is acceptable, the minimum start-up voltage becomes as low as about 32 mV

    Males with low serum levels of vitamin D have lower pregnancy rates when ovulation induction and timed intercourse are used as a treatment for infertile couples: results from a pilot study

    Get PDF
    Background: Vitamin D (Vit D) is important for the regulation of reproductive physiology. In humans, maternal Vit D deficiency has been implicated in several reproductive- and pregnancy-related disorders. Very few data are available regarding the Vit D status in male partners of couples attempting pregnancy. This observational study (IRB Prot. N. 078/13) aimed to evaluate whether low Vit D serum levels in males might decrease the rate of successful conception in couples attempting pregnancy. Methods: Male and female partners of infertile couples (n = 102) were classified into 2 GROUPS according to normal (≥30 ng/ml) or low (below 30 ng/ml) serum Vit D levels in male partners. Semen analysis was performed in each male participant based on the WHO reference criteria. The female partners of both groups were subjected to 3 consecutive cycles of gonadotropin-induced mono-ovulation. The main outcome measures included the clinical pregnancy rate, delivery per patient and per cycle, and miscarriage rate between the 2 groups evaluated at the end of the three-month period of the study. Results: In male partners of both groups, standard semen analysis did not highlight substantial differences in sperm concentration, sperm progressive motility, or typical form. The pregnancy rates per patient and per cycle and delivery rates per patient and per cycle were all significantly higher (p< 0.05) in couples with normal Vit D levels. Conclusions: These results suggest the existence of a relationship between male Vit D serum levels and semen ability to begin a pregnancy during cycles of timed vaginal intercourse. © 2015 Tartagni et al

    Advanced cell culture platforms: methods for drug testing with microfluidics and microstructured devices

    Get PDF
    Advanced cell cultures are developing rapidly in biomedical research. Nowadays, various approaches and technologies are being used, however, these culturing systems present limitations from increasing complexity, requiring high costs, and not easily customization. We present two versatile and cost-effective methods for developing culturing systems that integrate 3D cell culture and microfluidic platforms. Firstly, for drug screening applications, many high-quality cell spheres of homogeneous size and shape are required. Conventional approaches usually have a dearth of control over the size and geometry of cell spheres and require sample collection and manipulation. To overcome this difficulty, in this study, hundreds of spheroids of several cell lines were generated using multi-well plates that housed our microdevices. Tumor spheroids grow at a uniform rate (in scaffolded or scaffold-free environments) and can be harvested at will. Microscopy imaging are done in real time during or after the culture. After in situ immunostaining, fluorescence imaging can be conducted while keeping the spatial distribution of spheroids in the microwells. Drug effects were successfully observed through viability, growth, and morphologic investigations. Also, we fabricated a microfluidic device suitable for directed and selective cell culture treatments. The microfluidic device was used to reproduce and confirm in vitro investigations carried out using normal culture methods, using a microglia cell line. The device layout and the syringe pump system, entirely designed in our lab, successfully allowed culture growth and medium flow regulation. Solution flows can be finely controlled, allowing treatments and immunofluorescence in one single chamber selectively. To conclude, we propose the development of two culturing platforms (microstructured well devices and in-flow microfluidic chip), which are the result of separate scientific investigations but have the primary goal of performing treatments in a reproducible manner. Our devices shall improve future studies on drug exposure testing, representing adjustable and versatile cell culture systems
    • …
    corecore