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Sarnenvat t ing 

In dit verslag wordt uitgezocht of en hoe Genetisch Programmeren (GP) gebruikt kan worden 
om Lyapunov Functies te vinden. 

Genetisch Programmeren valt onder het zogenaamde Evolutionary Computing (EC). G P  zoekt 
naar oplossingen van problemen, gebruik makend van de evolutie theorie. 

Lyapunov's theorie kan stabiliteit van systemen aantonen. Een groot voordeel van de Lyapunov 
theorie is dat het toepasbaar is op allerlei soorten systemen. Het grote nadeel echter is dat 
het erg moeilijk is om een Lyapunov function te  vinden. Er bestaat namelijk geen standaard 
methode voor. 

Zowel GP als de Lyapunov theorie zullen In dit verslag toegelicht worden. Vervolgens wordt er 
een algoritme ontwikkeld dat gebruik maakt van GP om op zoek te gaan naar de Lyapunov func- 
ties. Dit algoritme is geprogrammeerd in C++. Om het toegankelijker te maken voor een grotere 
groep van gebruikers, is er een grafische schil ontworpen in Matlab. Hierin kunnen makkelijke 
parameters ingesteld worden en kunnen achteraf de gevonden functies gegvalueerd worden. 

Om het algoritme te testen is het vergeleken met verschillende andere methodes om Lyapunov 
functies te  vinden. Kort samengevat zijn a1 deze methodes gebaseerd op het kiezen van een 
bepaalde vorm van de Lyapunov functie om vervolgens parameters te bepalen. Door de vorm 
van de functie vast te leggen, beperkt men zich tot een bepaalde klasse van resultaten. 
Hierin verschilt GP: er hoeft van te voren geen vorm voor de functie vastgelegd te worden. Het 
algoritme bepaalt zelf de optimale vorm en parameters. 
Er zal worden aangetoond dat GP in de meeste gevallen vergelijkbare of zelfs betere resultaten 
boekt dan de andere methodes. 

Concluderend kunnen we zeggen dat GP een interessante manier biedt om Lyapunov functies te 
vinden. Verder is de verwachting dat GP een veelbelovende techniek biedt voor het oplossen van 
complexen problemen in het algemeen. 





Abstract 

In this report we will investigate if Genetic Programming (GP) can be used in the search for 
Lyapunov functions. 

Genetic Programming is an Evolutionary Computing (EC) technique. It computes and evolves 
solutions, imitating the evolutionary process. 

Lyapunov theory can prove stability of systems. An advantage of this theory is that it is ap- 
plicable to all kinds of systems. A major drawback is that there exists no universal method for 
finding a Lyapunov function. 

Both GP and Lyapunov will be elaborated in this report. Subsequently an algorithm based on 
GP to find Lyapunov functions is proposed. The algorithm is implemented in a C++ program 
and a graphical user interface is created in Matlab to enhance usability. 

To test the algorithm, it is compared to several other techniques for finding Lyapunov functions. 
Basically, these methods all assume a fixed form for the Lyapunov function. This is where GP 
differs. One does not need to  fix the form of the Lyapunov function beforehand. The GP will 
evolve the form of the Lyapunov function itself, thereby being able to access a more diverse set 
of solutions than the other techniques. 
We will show that GP often leads to equivalent or better results compared with other techniques. 

Concluding, we can say that GP offers an interesting technique for finding Lyapunov functions. 
Moreover, placing these results in a broader perspective, we expect that GP can be used for 
other complex problems in general. 
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Chapter 1 

Introduction 

In 1892 Lyapunov introduced a way to  prove stability of mechanical nonlinear systems [I]. Lya- 
punov's theory was based on energy considerations. If a system, linear or nonlinear, is always 
dissipating energy, except at the origin, then the system must eventually settle down at the equi- 
librium point in the origin. So the energy must be a positive definite function for all non-zero 
states. This theorem can easily be extended to arbitrary nonlinear systems. Faced with a set of 
nonlinear differential equations, the basic procedure of Lyapunov's direct method is to generate 
a scalar 'energy-like' function for the dynamic system and examine the variation in time along 
the system's vector field. 

The problem lies in finding such a Lyapunov function. The inability to find a Lyapunov function 
does not mean that the system is unstable. Several techniques, e.g. the variable gradient method 
[2] and Krasovskii's theorem [3] have been developed to find a Lyapunov function, but there is 
still no universally 'best' method for finding a Lyapunov function. The problem with these tech- 
niques is that before finding the Lyapunov function restrictive assumptions on the system have 
to be made. 

The goal of this final project is to find out if Genetic Programming, an Artificial Intelligence 
technique, can be used in search of a Lyapunov function, as they are very hard to  find. If a 
Lyapunov function is found, conclusions can be drawn concerning the stability of (non) linear 
systems, and also stable controllers for these systems can be built based on the Lyapunov func- 
tion. 

In Chapter 2 and 3 the some background Genetic Programming and Lyapunov's theory will be 
given. Chapter 4 will propose a method for using Genetic Programming to find a Lyapunov 
function. This method is implemented in a program, the Lyapunov Function Finder (LyFF), 
that is described in Chapter 5. Subsequently, LyFF will be tested on several problems in Chapter 
6. Finally some conclusions and recommendations based on the tests will be posed in Chapter 7. 
In the last appendix the article [4], as published and presented at the GECC02001-conference, 
is included. 





Chapter 2 

Genetic Programming - The 
Basics 

Genetic programming (GP) is the technique for finding solutions to problems by imitating pro- 
cesses as seen in nature during the evolutionary process. Therefore, GP is considered a form 
of Artificial Intelligence (AI), or Evolutionary Computing (EC). These techniques are gradually 
gaining more interest in all sorts of research fields. Up until recently every computer-program 
written was handmade. While hardware speed is exponentially getting faster, software develop- 
ment is not. Every line of code has to be written by a programmer which is very time-consuming. 
So, for several years, scientists have been trying to automate this process. How can computers 
learn to solve problems without being explicitly told how to? The existing methods of AI, neural 
networks, etc., do find solutions in an 'intelligent' way, but the solutions are not represented in 
a convenient way. This is where G P  differs from all methods named above: it finds a solution in 
the form of a computer program, which is executable. A GP algorithm works on a population 
of individuals, each of which represents a potential solution to the problem. 

2.1 Represent at ion 

In most cases the individuals in a population (the programs) are represented in a tree structure. 
For example the formula: 

a - b  
y = -  

3 

can be presented as in Figure 2.1. 

Figure 2.1: Tree-representation of Eq. (2.1). 

The smallest part of a tree is called a node, connected nodes are called a branch. The depth 
of a node is the minimal number of nodes that must be traversed to get from the root node of 
the tree to the selected node. The most left node in Figure 2.1 has depth 3. The tree form is 



often used to  display formulas in GP because it facilitates the use of genetic operations, as will 
become more clear later. 

2.2 Functions and Terminals 

The terminal and function sets are the alphabet of the programs to be made. They can be seen 
as LEGO-blocks that GP can freely use to build solutions. 

2.2.1 The Terminal Set 

The terminal set consists of inputs to the GP program and constants supplied to the G P  program. 
They are called terminals because they terminate or end a branch of a tree in a tree-based GP. 
Each feature (input) of a problem becomes a part of the terminal set in a GP system. Thus, the 
features of the learning domain are just one of the blocks GP uses to build program structures. 
The features are not represented in any fixed way or in any particular place. In fact, the GP 
system can ignore an input altogether. 

2.2.2 The Function Set 

The function set is composed of the statements, operators, and functions available to the GP 
system. For example: 

o Boolean fmctions 

0 Arithmetic functions 

0 Transcendental functions (trigonometric, logarithmic) 

0 Variable assignment functions 

0 Indexed memory functions 

Conditional statements 

0 Loop statements 

0 Control transfer statements 

Of course, the user is free to program his or her own functions. 

2.2.3 Choosing the Function and TerrniriaI Set 

The functions and terminals chosen for a GP run, should be powerful enough to be able to  solve 
the problem at hand. For example, a function set that only contains the addition operator is not 
likely to solve complex problems. Alternatively, one should be aware not to  choose a set that is 
too large. A large function set enlarges the search space and will make the search for a solution 
harder. 

An important property of the function set is the closure property. Each function should be able 
to handle all values it might get as input. The most common example of a function that does 
not fulfill the closure property is the division operator. It cannot handle zero as an input. A 
solution is to  define a new operator: the protected division. It acts like a normal division, except 
when it receives a zero as input. In that case it will return something else, for example a very 
large number or zero. 

A final piece of advice when choosing the function and terminal set, is not to spend too much 
time in designing dedicated functions or terminals. Experience has pointed out the GP is very 



creative in taking simple functions and terminals and combining them to fulfill its needs. In fact, 
GP is known to ignore complex functions in favor of the simple functions during a run. If GP is 
not able to find a solution with the simple set, it is time to start designing your own functions 
and terminals. 

2.3 Fitness and Selection 

GP is imitating the evolutionary process. According to Darwin's evolution theory, individuals 
that are more 'fit' than others will survive in natural selection and will reproduce, to create 
(hopefully) even fitter new individuals. This is exactly what is being simulated by GP: It starts 
by creating a group of solutions, a population, and checks how 'fit' they are to solve a problem. 
Subsequently the fittest individuals are selected to reproduce. This process is repeated with the 
offspring over many generations until a satisfying individual is found. In this sense, the algorithm 
is more similar to  breeding than to natural selection. 
The process of selecting the best individuals is simply called selection. The process of checking 
how fit an individual is done by the fitness function. 

2.3.1 The Fitness Function 

As the fitness function has great effect on the evolution it is the most difficult and most important 
concept of GP. Therefore we need to design the fitness function very carefully. It needs to  give a 
graded feedback to the G P  algorithm regarding which individuals of the population should have 
higher probability to be allowed to crossover, mutate or reproduce and which individuals should 
have higher probability to be removed from the population. This is accomplished by assigning 
each individual a numeric value, the fitness value, that is based on criteria set by the user and 
that corresponds to the appropriateness of a solution. 

Fitness is usually computed over a training set that is composed of a number of fitness cases. The 
number of fitness cases should be sufficiently large as to produce a range of different numerical 
fitness values. The fitness cases are typically only a small finite sample of the entire domain space 
of interest, but should be representative of the domain space as a whole, because they form the 
basis for generalizing the results obtained to the entire domain space. 

A little example to illustrate the above: we would like GP to  evolve an individual that learned 
the patterns in Table 2.1, that is, a program that could predict the output column by knowing 
o d y  the value ir, the i q u t  dumr , .  Ob~ims!y, this example is very simple a d  a progrmi 
representing the function f (x) = x2 + x is a perfect match. 

One simple fitness function that we could use for this problem would be to calculate the sum of 
the absolute difference between the actual output of the program and the output given by the 
training set, thus the error. For the training set given in Table 2.1 the fitness function would 
then formally be: 

Table 2.1: Input and output values for a training set. 

fitness case 1 
fitness case 2 
fitness case 3 
fitness case 4 
fitness case 5 

Input Output 
1 2 
2 6 
4 20 
7 56 
9 90 



with: 
f, fitness value 

gi the output from a GP program p on the ith example of the training set 
Oi ~ 1 .  L-.-,. -L' & L -  .+L ule O i i ~ p u ~  w ~ t :  z b l l  example of the training set 

As pi gets a closer to oil the fitness gets better. A perfect solution would have fitness zero. 

2.3.2 Selection 

After the fitness of the individuals in a population is assessed, it must be determined which indi- 
viduals will selected to be subjected to the different GP operations to produce new individuals. 
Several selection methods are available: 

Fitness proportionate. An individual is given a probability (to produce offspring) of 

where fi is the assigned fitness value. 

Rank selection. Rank selection is based on the fitness order into which the individuals can 
be sorted. The selection probability is assigned to individuals as a function of their rank 
in the population. 

Tournament selection. Tournament selection is not based on competition in the population 
as a whole. Instead, a small group of individuals is randomly chosen from the population. 
In this small group the tournament finds place: the better of the individuals are allowed 
to  create offspring. 

Tournament selection has become one of the most popular selection methods, because it does 
not need a fitness evaluation of all the individuals, which reduces computing time considerably. 

2.4 Genetic operators 

The first population of a run usually has very low fitness. During evolution the initial population 
is transformed by the use of genetic operators. While there are many operators the principal GP 
genetic operators are crossover, mutation and reproduction. Their implementations are based on 
phenomena seen in nature: crossover is equivalent to what is called 'sexual recombination', or 
the mating between two parents, where genes get mixed, resulting in a child bearing features of 
both of its parents. The mutation operator is analog to mutation of genes or cell by exogenous 
influences, e.g. the mutation of cells under influence of sunlight. The reproduction operator 
matches asexual reproduction of, for example, single-celled organisms. 

During a GP run, first an individual is selected from the population by means of a selection 
method described in Section 2.3. Then the operation that will be performed on the individual 
is selected. All operations have an assigned probability value and this value corresponds to the 
probability that that operation will be selected. 



2.4.1 Crossover 

The most important and most used genetic operation in GP is the crossover operation. In 
the crossover operation, two solutions are combined to form two new solutions. The parents are 
chosen from the population by a function of the fitness as described in Section 2.3. The crossover 
operation combines the properties of two parents by swapping a part of one parent with a part 
of the other, see Figure 2.2. The crossover point is randomly chosen. 

Parent I 

Child 1 

Parent 2 
A 

Child 2 

Figure 2.2: Cross-over 

Crossover has an drastic effect on the offspring. While mutation and reproduction operators, 
as we will see later, result in offspring that differ only slightly from the parents, crossover can 
generate offspring that is completely different from the parents. This feature is needed during 
evolution to make great leaps forward, as for example two mediocre parents can create a near 
perfect solution. The downside of this is that great leaps backwards also occur, and unfortunately 
they occur more frequently then their counterparts: as much as 75% of the crossover operations 
is lethal to the offspring, in the sense that their fitness value is considerably lower than that 
of their parents. Much research is done on the exact influence of the crossover operator on the 
fitness, which might lead to better understanding and improvements of the operator [ 5 ] .  

In the mutation operation, a single program is selected from the population based on fitness. 
Two types of mutation are possible: 

1. a function can only replace a function or a terminal can only replace a terminal. 

2. an entire subtree can replace another subtree. 

A mutation point is chosen randomly, the function or subtree rooted at that point is deleted and 
a new function or subtree is grown here, see Figure 2.3. 

2.4.3 Reproduction 

The reproduction (also called copying) operator selects an individual from the population based 
on its fitness value. Then the individual is copied and placed back in the population, resulting 
in two versions of the same individual in the population. 



node mutation 

Figure 2.3: Mutation 

2.5 Algorithm control parameters 

The GP control parameters ou t l i~e  the way the C-P run is executed. There are several parameters 
to be set before executing a GP run. A few examples: 

0 Termination criterion. This criterion prescribes when the run should stop. This is generally 
a pre-defined number of generations or an error tolerance on the fitness. 

0 Population size. The number of individuals in the population. 

0 Crossover-, mutation- and reproduction probabilities. These parameters control the degree 
of crossover, mutation and reproduction that will take place during a run. These param- 
eters are often expressed in weighted values. A crossover probability of 0.7, a mutation 
probability of 0.3, and a reproduction probability of 0.1 are often used values in GP-runs. 

0 Selection method. See Section 2.3. 

Maximum individual size. This value refers to the maximum depth the individuals can 
obtain. When choosing this parameter too large, the solutions will probably become too 
complicated, and computing time will go up. On the other hand, taking the parameter too 
small, can result in solutions that are too short to solve the whole problem. 

0 Creation type at initialization. When starting up a run, the population is filled with indi- 
viduals that are randomly created. This setting specifies the depth at which the individuals 
should be created. We can choose whether all individuals should reach full depth, or that 
the depth should be variable, or any other user defined setup. This setting influences the 
speed at which the first population is built up and also has some influence on the diversity 
of the population. 

2.6 A Basic GP Algorithm 

Now all separate parts have been discussed, it is time to combine them in an overall GP algorithm 
for a basic GP run. There are two ways to execute a run, a generational approach and a steady- 
state approach. However, first we will review the preparatory steps before getting a GP to  
run. 



2.6.1 Summary of the preparatory steps 

Here are the preliminary steps in a GP run, which we have already described in detail in this 
chapter: 

1. Define the terminal set 

2. Define the function set 

3. Define the fitness function and the training set 

4. Define parameters such as population size, crossover probability, and termination criterion. 

Once these steps are completed the run can begin. How it proceeds depends on whether it is 
generational or steady state. 

2.6.2 Generational versus steady state GP algorithm 

There are basically two ways to execute a GP run. The first one is the generational GP run. 
During such a run, generation upon generation is created using one of the selection methods de- 
scribed in Section 2.3. From an old generation individuals are selected to  create new individuals 
by crossover, mutation, or reproduction until a new generation is filled with newly created indi- 
viduals. The old generation is then discarded, and the process is started over again to produce 
a new generation until the termination criterion is fulfilled, for example if a perfect solution has 
been found or if a certain number of generations has passed. 

The other option is steady state GP. No new generations are created now. The G P  run starts 
to create a population of individuals. Then, tournament selection is applied. As described, 
not all individuals are allowed to compete, just a small set of them taken randomly from the 
population. The fitness is determined of the individuals in the tournament, and subsequently 
the winner or winners are selected using the selection algorithm. The genetic operators are 
applied to the winner or winners and instead of putting the newly created individuals in a new 
generation, they are put back in the existing population, replacing the individuals that 'lost' 
during the tournament. Note that the 'winning' individuals are also returned to the population. 
Especially for large problems steady state GP can reduce computing time, because of the use of 
tournament selection but also because of the fact that only one generation has to be maintained 
in the computer memory instead of two. But there is no noticeably difference in the results when 
using either method. 





Chapter 3 

Lyapunov Theory 

Stability is important for many applications. Unstable systems can exhibit unwanted and some- 
times destructive behavior. Therefore stability has to be analyzed. For linear systems several 
methods are available: analysis of the system in time domain or in frequency domain should 
provide the researcher with enough information about the stability of the system. For nonlinear 
systems matters are somewhat different. The techniques used for analysis of linear systems are 
not applicable here, since direct solution of nonlinear differential equations is generally impos- 
sible, and frequency domain transformations do not apply. Unfortunately, there is no universal 
technique for analysis of nonlinear systems. Many different methods have been proposed, Lya- 
punov's theory being one of them [1] ,161. 

3.1 Concepts of Stability 

Throughout this report we will only be dealing with systems that are autonomous. These systems 
are time-invariant and can be represented as follows: 

x = f (x) (3.1) 

A point x = x* is called an equilibrium point of the system if once x is equal to x*, it remains 
at  x* for all future time. For autonomous systems of the form (3.1) the equilibrium points can 
be determined by finding the real roots of Eq. (3.2). 

If a system starts near an equilibrium point and it stays near this point as time goes to infinity, the 
equilibrium point is called stable. If it moves away from the equilibrium point it is called unstable. 
If an equilibrium point is stable and, in addition, the system tends towards the equilibrium point 
as time goes to infinity, the equilibrium point is called asymptotically stable. 

3.2 Lyapunov's Direct Method 

Lyapunov's direct method is a generalization of the energy concepts associated with a mechanical 
system: the motion of a mechanical system is stable if its total energy decreases all the time. For 
mechanical systems we can formulate an energy function E(x).  This is however not possible for 
systems that have no physical meaning and are expressed in a mathematical form. So Lyapunov 
came up with the idea to construct a scalar energy-like function, the Lyapunov function (V(x)), 
for a system. If this Lyapunov function is always positive definite and decreases in time (this can 
be investigated by computing the derivative of the Lyapunov function), the systems equilibrium 
point is stable. 



The power of this method comes from its generality: it is applicable to all kinds of systems, 
whether they are time-varying or time-invariant, finite dimensional or infinite dimensional. Fur- 
thermore, this method allows stability to be investigated without the need to simulate. The 
limitation of the method lies in the fact that it is often difficult to  find a Lyapunov function for 
a given system. Since there is no generally effective approach for finding Lyapunov functions, 
one has to use trial-and-error, experience or intuition to search for appropriate functions. 
Note that the Lyapunov theorems are suficiency theorems. If for a particular choice of Lyapunov 
function candidate the conditions are not met, a conclusion on the stability or instability of the 
system cannot be drawn - the only conclusion is that a different Lyapunov function candidate 
should be tried. 

We can define a Lyapunov function as follows: 

Definition 3.1 If, in a ball BRo, the function V(x) is positive definite and has continuous 
partial derivatives, and i f  its t ime derivative along any state trajectory of the system is negative 
semi-definite, i.e. V(X) < 0 then V(x) i s  said to be a Lyapunov function for the system. 

A function is said to be positive definite if V(0) = 0 and if x # 0 + V(x) > 0.  A function V(x) 
is negative definite if -V(x) is positive definite. V(x) is positive semi-definite if V(0) = 0 and 
V(x) 2 0 for x # 0; V(x) is negative semi-definite if -V(O) is positive semi-definite. The prefix 
"semi" is used to  reflect the possibility of V being equal to zero for x # 0 [6]. 

3.3 Lyapunov Theorems for Stability 

Lyapunov stated two theorems for the stability of equilibrium points, a local stability theorem 
and a global stability theorem. Starting with the local stability theorem: 

Theorem 3.1 (Local Stability) If, i n  a ball BRo, there exist a scalar function V(x) with 
continuous first partial derivatives such that 

0 V(x) i s  positive definite (locally in B R o )  

0 V(X) i s  negative semi-definite (locally in B R o )  

then the equilibrium point 0 i s  stable. If, actually, the derivative V(X) i s  locally negative definite 
i n  BRo, then the stability is asymptotic. 

Assuming that V(x) is differentiable, the derivative with respect to time can be found using the 
chain rule: 

. ~ v ( x )  a v .  av v=-- - -x = -f(x) 
dt d x  dx 

The theorem for local stability can be extended to a theorem for global stability. Therefore the 
ball B R ,  needs to be extended to the whole state-space. On top of that we need t o  make sure 
that the contour curves of V(x) remain to be closed curves: V(x) must be radially unbounded, 
meaning that  V(x) --. ca as llxll --. co (in other words, as x tends to infinity in any direction). 
If the curves are not closed, it is possible for the system trajectories t o  drift away from the 
equilibrium point, even though the state keeps going through contours corresponding to smaller 
and smaller V,'s, as shown in Figure 3.1. 
Keeping this in mind, the theorem for global stability is as follows: 

Theorem 3.2 (Global Stability) Assume that there exists a scalar function V of the state x, 
with continuous first order derivatives such that 

V(x) i s  positive definite 

0 V(X) i s  negative semi-definite 



Figure 3.1: Motivation of the radial unboundedness condition 

then the equilibrium at the origin i s  globally stable. If V(X) is  negative definite, then  the  origin 
i s  globally asymptotically stable. 

3.4 The Region of Attraction 

An important quality of an equilibrium point is its region of attraction, or, how far away can we 
start from an equilibrium point and still be able to end up in that very same equilibrium point? 

Theorem 3.3 Consider the autonomous equation 

Let V(x) be a scalar function. Let R designate a region where V(x) > 0. Assume that  R i s  
bounded and that  within 

Then  the origin i s  asymptotically stable and all motions starting in R converge to  the origin as 
t 4 co. The region R i s  called a region of attraction. 

Note that the region obtained by the inequality given above depends on the choice of V(x) and 
different choices of V(x) may yield different estimates of the region of attraction. Then the union 
of these regions is contained in the exact region of attraction. Thus, improved estimates can be 
obtained by taking different Lyapunov functions. 

3.5 Convergence or The Decay Rate 

Not only do we need to know that a system will end up in an equilibrium point, sometimes it 
is also important to predict how fast it will get there. Therefore, we need to ascertain that the 
solution will converge exponentially to its equilibrium. 

If V(x) satisfies the inequality 
V ( X )  5 -aV(x) 

for some constant a > 0, then 



V(t) 5 V ( O ) ~ - " ~  (3.6) 

So, if V(x) is a non-negative function, Eq. (3.5) guarantees the exponential convergence of V(X) 
to its equilibrium point. 

Both the theory for GP and Lyapunov have now been surveyed. in  the next chapter, the two 
are put together to create the algorithm that will search for Lyapunov function cmdidzites. 



Chapter 4 

The GP Algorithm for finding 
Lyapunov Functions 

The fitness function is the most important function during a GP run. The function will assign 
a fitness value to  all the solutions and can thereby discriminate between the appropriateness of 
solutions. We want the run to converge to the best solution, and therefore it is very important 

I mess to set-up a good fitness function. Also, we have to define on what set of the domain the 5' 
function must be applied, the so called fitness cases. 

4.1 Fitness Cases 

Let space XO,  where X o  c R2, be a compact and connected region of the state space, such that 
the origin is included in XO. To prove local stability, we need to find a Lyapunov function that 
guarantees V(x) > 0 and ~ ( x )  < 0 within XO.  Therefore, X0  is discretized into a finite set of 
points (fitness cases), to be used during the GP run. The fitness cases are divided into two grids: 
a Coarse Grid and a Fine Grid, see Figure 4.1. The Coarse Grid is always calculated such that 
it includes the points on the axes in state space to  assure a positive definite function containing 
terms in all states. It encompasses the points on the edge of the grid, and can for example be in 
rectangular or circular form. The origin is excluded from the Fine Grid because, as we will see 
later, we will be testing if V(x) > 0 and ~ ( x )  < 0. In the origin V(x) = 0 and ~ ( x )  = 0. For 
a Lyapunov function this is correct, but it would not fulfill the testing inequalities stated above, 
thus unintentionally introducing errors. Therefore the origin is omitted. 
The reasm fer splitting up the fitness cases in two grids will become in Section 4.2.1. 

4.2 The Algorithm 

Now the fitness cases have been defined, we need a function that will test the individuals for all 
these fitness cases, and subsequently assigns them a numerical value. The function is split up 
in several parts: the most important one being the one that checks if the individual fulfills the 
requirements for a Lyapunov function. The other parts of the function include parts that try 
to maximize the region of attraction, maximize the decay rate, or try to enforce closed contour 
curves. The user can choose which of these three last part(s) are to be used. He can for example 
choose to only maximize the region of attraction, or try to  maximize both the region of attraction 
and the decay rate. 
In essence, all parts work in the same way. For every part conditions have been drawn up to  
achieve its objective (maximal region of attraction, etc.). An individual is then tested on every 
point on the grid (the fitness cases) to check if the conditions hold. If a condition holds, nothing 
happens. If it does not hold, the individual will get one point added to its fitness value. The 
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(a) Coarse Grid (b) Coarse and Fine Grid 

Figure 4.1: Fitness cases in grids 

total fitness value of an individual is the sum of the fitness values of the separate parts of the 
fitness evaluation. 
As all individuals start with fitness zero, the individuals that end up with fitness zero fulfill all 
conditions. Individuals that have a low fitness value did perform quite well, but missed on a few 
fitness cases. Consequently, individuals that have a high fitness value performed badly. As GP 
will try to achieve fitness zero, convergence to an optimal solution will find place. 

4.2.1 Finding a Lyapunov Function 

To generate Lyapunov function candidates all individuals are tested on the fitness cases to check 
if ~ ( x )  < 0 and V(x) > 0. V(x) can easily be tested by evaluating the function on every grid 
point. This results in a numerical value per fitness cases. For every fitness case where V(x) < 0 
a penalty is given to the fitness value. The same goes for the evaluation of ~ ( x ) .  The value of 
~ ( x ) i s  approximated numerically. For this purpose we use a 3-point central difference derivation 
approximation. The calculation of ~ ( x )  is as follows (for a two dimensional system): 

where As is chosen small: Ax = lov6. 
This way all fitness cases can be tested for the inequalities V(x)> 0 and v(x)< 0, which will 
result in a fitness value for this individual. Step by step the fitness function for finding a Lyapunov 
candidate is then: 

1. For i = 0. .  . N calculate V(xi). If V(xi) < 0 then f l  = f l  + 1. 

2. For i = 0 . .  . N calculate v(xi) .  If v(xi )  > 0 then f l  = fl + 1. 

where: 
f i  fitness value assigned to an individual, due to the Lyapunov evaluation 
N number of points on the grid 
Xi the ith fitness case on the grid 

V(xi) value of V(x) evaluated on xi 

v(xi)  value of ~ ( x )  evaluated on xi 



For the sake of speed, the individuals are first tested this way on the Coarse Grid. This provides 
a fast sifting of solutions. As the run is started the individuals are created randomly. In the first 
generation the fitness value of the individuals will be high, meaning that they are nowhere near 
being a Lyapunov function candidate. So sifting them out before testing them on the Fine Grid, 
which is time consuming because of the larger number of fitness cases, would mean computing 
time reduction. However, rejection does not mean that those individuals are thrown out of the 
population! It just means that they are not evaluated on the Fine Grid. We raise the fitness 
value of those individuals by the number of fitness cases on the Fine Grid, and skip further 
evaluation, thereby gaining speed. These individuals will receive a large fitness value, and will 
have less chance to create offspring. 
In the end, the function with the lowest fitness value (i.e. the one that received the least penalties) 
is the best Lyapunov candidate. 

4.2.2 Closing the Curves 

As explained before, to prove stability we would like the contour curves of the Lyapunov function 
to be closed. To promote closed curves during a run, the following is proposed: 

1. Calculate the minimal (Vmin) and maximal (V,,,) value of V(x) on the Coarse Grid 

2. Calculate the difference between the maximum and minimum value of V(x): AV = V,,, - 

Vmin 

3. Punish the individuals that have a larger AV than some predefined value C, e.g. if AV > C 
then f, = 1 0 ( a V ) ~  

4.2.3 Maximizing the Region of Attraction 

To maximize the region of attraction we have to find the largest closed curve within the set XO. 
A way to do this is to determine the minimal value of V(x) on the edge of the subset (which is 
represented by the Coarse Grid). If a minimal value Vmin is found then we assume that within 
the subset there exists a closed curve V(x) = V,,,. Now the region of attraction X is estimated 
by 

X = {x E x0 I V(x) I V k )  (4.2) 

It is now very easy to check whether a point on the Fine Grid is within the region V(x) I Vmin, 
or not. So the fitness value is determined as follows: 

1. For i = 0 . .  . N. If V(xi) > Vmin then f, = f, + 1. 

So, during the evaluation of the Fine Grid an individual will receive punishment for points that 
lie outside the region of attraction. The more points lie outside the region, the more an indi- 
vidual will be punished. Because an individual with fitness zero is regarded as 'best' by the GP 
algorithm, the algorithm shall now try to evolve individuals that have as much points as possible 
within the region of attraction, thereby maximizing the region of attraction. 

There are situations imaginable where Vmi, on the Coarse Grid does not correspond with a closed 
curve, or at least not with the closed curve that corresponds to the largest region of attraction, 
in which the method described above would fail. 
Although not implemented, a better way would be a function that evaluated on expanding circles: 

1. Start with a very grid that is a very small circle around the origin. 

2. Evaluate the Lyapunov conditions. 

3. Enlarge the radius of the circle a little. 



4. Repeat step 2 and 3 while the Lyapunov conditions hold. 

5. Stop as soon as ~ ( x )  = 0 is encountered. Now calculate Vmin on the current circle. This 
Vmin corresponds to the largest region of attraction for this individual. 

To assign a numerical value to the size of the region of attraction Johansen [7] defines it as the 
largest square with radius r: [-r, r] x [-r, r] c X 0  within the region of attraction. We will 
adopt this definition here, because 'it will s i~~p l i fy  comparisms. After a rur, r is calculated usino b 
Matlab. 

4.2.4 Maximizing the Decay Rate 

To maximize the decay rate a the function proceeds as follows: 

1. Start with choosing a small value for a 

2. If, for i = 1 . .  . N, ~ ( x , )  > -aV(xi) then fd = fd + 1 

3. If fd = 0 then raise a, e.g. a = 1.25 x a 

4. Repeat steps 2 and 3 until a pre-defined number of generations has passed. 

As soon as fd = 0 is encountered the algorithm will save that particular individual and its decay 
rate. So, in this case, the best individual of a run will not be the individual with the lowest 
fitness value at the end of the run, but the individual that was saved at the largest decay rate. 

4.2.5 Calculating the Total Fitness Value 

To calculate the total fitness value of an individual, we have to sum the fitness values of the 
separate parts, or sum the fitness values of the parts we have chosen to evaluate. So: 

4.3 The Effect of Discretization 

By defining fitness cases in grids and evaluating V(x) and ~ ( x )  on these grids, we can only 
draw conclusions about the appropriateness of the Lyapunov function candidates on these points 
during the run. Therefore, the candidates need to be tested afterwards (in Matlab for examp1e)to 
check if they are Lyapmov functionfor X O .  Generally; the discretization has no influence on the 
results, as the GP generated Lyapunov function candidates afterwards check out to  be Lyapunov 
functions. But sometimes problems arise due to the discretization. 
One of the problems that arises during a run, is that for the fitness cases the solution might 
seem a Lyapunov function, but when checked afterwards it isn't, because it shows 'spots' where 
~ ( x )  > 0. Also, because of the complexity of the solutions found by GP, it is often not possible 
to evaluate the solutions analytically. Both problems are addressed here. 

4.3.1 During a Run 

It can occur that GP deems a solution as the best solution for the problem and ends the run. 
Evaluation afterwards sometimes shows that in fact the solution is not a Lyapunov function, 
because it has 'spots' within X 0  where V(X) > 0. The reason that GP did not 'see' this, is 
that the spots are precisely positioned between the fitness cases, of which an example is shown 
in Figure 4.2. The solution to this is of course to use a finer grid. However, more fitness cases 
result in an increase of computing time. So, this is a bit of a trade-off between accuracy and 
computing time. This phenomenon is problem-specific, but as a rule of thumb it can be stated 



that the more complex the problem is, the more grid points are needed to avoid the phenomenon 
described above. 

Figure 4.2: A typical problem that arises due to  the discretization of the state space: 'spots' 
(indicated in black) where ~ ( x )  > 0 

4.3.2 Evaluation Afterwards 

If a GP run has found a Lyapunov function candidate, we are still not sure whether it  is really 
a Lyapunov function. Ideally, we would check this analytically afterwards, but as problems 
become more complicated, the Lyapunov function candidates also get more difficult to evaluate 
analytically, and even Matlab (which uses the MAPLE-kernel) or Mathematica are not able to 
evaluate the functions analytically as the candidates get too complex. Therefore we have chosen 
to check the Lyapunov candidate numerically. The candidate is checked, just as during the run, 
on a grid, but now on a much more dense grid. In our case, the candidates are tested on grids 
of 100.000 points in XO,  as this was near to the maximal number of points that Matlab could 
process. In Section 4.3.3 a method for calculating the density of a grid is proposed to ascertain 
that the grid is sufficiently dense to be able to draw the right conclusions. 

4.3.3 A Suff;,ciently Dense Grid 

To ascertain whether a candidate is a Lyapunov function or not we need to  test it  for the 
Lyapunov criteria. Because of the complexity of the candidates, this is not always possible ana- 
lytically. Therefore we need to create a sufficiently dense grid, on which we are going to  test the 
candidate. 

To guarantee that V(x) > 0, for all x within the set X 0  = [--I, 11 x [-I, 11 c R2, we need to 
make sure that within X0 

Vmi, - max (F) Ar > 0 

where (see Fig. 4.3) 
Ar = grid size 
Vmin = min (V(A), V ( B ) ,  V(C), V(D)) 

max (p) = maximal derivative over the area encompassed by A, B, C and D 



Starting with X 0  in its totality, we verify if the inequality in Eq. (4.4) holds. If not, the domain 
is subdivided into four segments, and each segment is checked. This process is continued until 
the inequality holds. In this way all segments in X 0  are to  be checked and the smallest Ar found 
is the minimal distance between grid points needed. 

- 

Figure 4.3: Grid segment 

The algorithm is now outlined. In the next chapter we will continue to explain how the algorithm 
is actually implemented. 



Chapter 5 

The Application 

The algorithm described in the previous chapter has been implemented in an existing program 
for GP calculations: The Genetic Programming Kernel, version 0.5.2. A description of the GP 
Kernel can be found in [8]. The implementation of the algorithm and the GP Kernel together 
form a new application: the Lyapunov Function Finder (LyFF). 
To facilitate the use of LyFF, a Graphical User Interface (GUI) has been developed in Matlab. 
This GUI creates an configuration file in the Matlab MAT-format for easy configuration of LyFF. 
After startup of LyFF it will read this file and use the parameters as set in the file. During the 
run some values and results are written back to the file. 
After the run the file can be read by Matlab to examine the results. Some Matlab-functions are 
available for this purpose, although as of yet they have not been implemented in the GUI. 
To use LyFF, Sections 5.1, 5.2 and 5.3 should be read. More information on the implementation 
of the algorithm or the configuration file can be found in Sections 5.4 and 5.5, although to read 
these sections the reader is presumed to have some knowledge of C or C+f. Development of 
applications is an on-going process, and LyFF is no exception. Therefore a ToDo-list and a 
known error list can be found in the last section of this chapter. 

5.1 Setting up the application 

5.1.1 Computer requirements 

The speed at which the program will run is directly related to the processor speed and the size 
of the internal memory of the computer. The program will run on at least a 133MHz processor 
with 32Mb memory, but it will be slow. Most tests have been performed on a 5OOMHz Pentium 
2 Pro processor with 128Mb internal memory. On this machine the tests ran at a sufficient pace. 

To use the GUI Matlab 6 (release 12) is necessary, together with the Symbolic Toolbox. Since 
Matlab has changed its GUI format the GUI is unfortunately not backwards compatible with 
Matlab 5. However, the MAT-format has not been changed, so one can manually change the 
configuration file using any version of Matlab, and then run the program in a DOS box. For 
more information on the configuration file, see Section 5.5. 

5.1.2 Setup 

The installation file setupex.exe for both LyFF and the GUI can be found on the included disk. 
Running the setup will install the files on the computer. The user is prompted to enter the 
installation path. If Matlab is present, the directory that holds the GUI (in the installation 
path) must be added to the Matlab path by the user. To do this start Matlab 6 and press File1 
Set Path. Then add the GUI-directory to the path. 



The program can be uninstalled using the uninstall option in the Add/Remove Programs in the 
Configuration Panel of Windows. 

5.2 Using the Graphical User Interface 

To run LyFF a configuration file is needed. As the configuration file is a standard MAT-file, 
the configuration file can be edited manually. But as there are many options, a GUI has been 
developed to  facilitate and visualize the editing of the configuration file. All values entered in 
the GUI are automatically saved to the configuration file. 

5.2.1 The Main Window 

To start the GUI, start Matlab and navigate to the directory where you have installed LyFF.exe. 
Type LyFF. A window as shown in Figure 5.1 will pop-up. 

Figure 5.1: Main window 

To set up a run the following steps need to be taken, the numbers corresponding to the numbers 
in Figure 5.1: 

1. Enter the system for which a Lyapunov function should be found. Remember that the 
variables should be in XI and 22. At this time, the LyFF only works for two-dimensional 
systems. 



2. Press this button to open a window to set GP options. This window will be explained in 
Section 5.2.2. 

3. Press this button to open a window to set the search-domain and other options. This will 
be explained in Section 5.2.3. 

4. Choose the functions you wish the GP algorithm to use during the run. 

5. Enter the file name and directory (don't forget the backslash (\) at the end!) where output 
files should be named and written to. During the run three output files with information 
about the run are created. The 'Title Experiment' field is optional, it will be used in one 
of the output files. For more information about the output files, see Section 5.5. 

6. If everything is set, push this button. A DOS-box will open and the run is started. If 
desired, the run can be ended manually by pressing any key. No information will be lost, 
as the output-files will still be written if you manually end the run. During a run you can 
minimize the DOS-box and proceed to use Matlab or any other program as you are used 
to, although the computer will be a little slower, due to  the memory needed for the LyFF. 
However, when using Matlab, before moving on to the next step do not forget t o  change 
the working directory to the directory where you had put mexproj5 .exe! This is still a 
minor inconvenience in the GUI. If the run ends automatically, the DOS-box will close by 
itself. 

7. If the run has ended and the DOS-box is closed, press this button. Amongst other things, 
this wiil cause the derivative of the Lyapunov function (which was not calculated sym- 
bolically during the run) to be calculated and saved to the configuration file as a Matlab 
sym-object. In some cases, e.g. when the solution is very long, this might take a while. 

5.2.2 GP Options Window 

In this window the options for the G P  run can be set. If you are not familiar with GP, your best 
option is to push the 'reset' button (in the lower-right corner of the window). This will set the 
parameters to default values that will be sufficient to solve most problems. Three parameters 
are of interest: the population size, the number of generations and the maximum length of the 
trees (all three are indicated with arrows in Figure 5.2). These three parameters are directly 
related to the speed at  which the LyFF will execute, but are also dependent on the complexity 
of the problem that is being submitted. For simple problems these values can be kept low, for 
more complex problems it is advised to raise the values. Generally, the best thing to do is to 
try different values, and get a feel for how these parameters influence your calculation. For more 
inforimtion ~ b w ~ i t  a11 parsmeters and how they were implemeiitec! in the GP Kernel, see [8]. 

5.2.3 Lyapunov Options Window 

This window is used to set the fitness cases and some options concerning the Lyapunov function 
search. The algorithms are already described in Chapter 4. As we will see, parts of the algorithm 
can be turned on and off, as desired. Again, we will go through the options step by step, the 
numbers corresponding to the numbers in Figure 5.3. 

1. First we start defining the fitness cases on the Coarse Grid. These can be set by defining a 
value for the Radius and for the Number of Points. By the checking the Rectangular Form- 
box, the form of the Coarse Grid will change from a circle to a rectangular form. The Coarse 
Grid cannot be turned on or off. 

2. To create a Fine Grid check the Grid-box. Again, enter values for the Length and the Number 
of Points. Also, there is an option to create an even more dense grid around the origin, the 
Additional Grid. Some problems can benefit from using this extra grid. 



Figure 5.2: GP Options Window 

3. Every time a parameter from the previous options is changed, the resulting grid is visualized 
here. 

4. To maximize the Region of Attraction, as described in Section 4.2.3, check this box. 

5. To try to close the contour curves as described in Section 4.2.2, check this box. Also, the 
maximum difference allowed between V,,, and Vmi, should be entered here. 

6. For the Decay Rate there are two options: 

0 Set the Decay Rate to a minimum value. 

0 Try to optimize the Decay Rate. 

In both cases a value has to be entered. In the first case, this is a minimal value for the 
decay rate: during a run the individuals that have a Decay Rate below this value will be 
punished, otherwise they won't be punished. This way we hope to  find an individual that 
has at least the set value for the Decay Rate. In the second case, the value is the value 
from where we want to start the optimization of the decay rate. When an individual is 
found that has an equal or higher Decay Rate than the set Decay Rate, the value for the 
Decay Rate is raised and the search starts over again. The value of the new Decay Rate is 
written to the input file during the run. 



7. To close this window and return to the main window, press the Save & Close-button 

Figure 5.3: Lyapunov Options Window 

5.3 Post-processing using Matlab 

After the run has ended, Matlab can use the configuration file to examine the results. Different 
functions have been written to simplify this. In Matlab help is available for these functions by 
typing he!p <funct im>.  

5.3.1 Functions for Post-processing 

The following functions can be used to examine the result of LyFF. 

Checking the grid 

Function syntax: checkgrid(F, np, r) 

F a function (sym-object) 
np number of points 
r radius 

Checkgrid can be used to  check a function on a (very fine) grid. It  will create a grid and for all 
grid-points evaluate the function. As a result a graph will be shown, indicating values that are 
> 0 with green dots, values < 0 with red dots, and values = 0 with black dots. 



Checking the decay r a t e  

Function syntax: Decay(Vx, dVx, Grid) or Decay(Vx, dVx, np, r) 

Vx the Lyapunov function (sym-object) 
dVx the derivative of the Lyapunov function (sym-object) 
Grid matrix that represents a grid: the first column is X I ,  the second xz etc. 
np number of points 
r radius 

Decay is used to calculate the minimal value of the decay rate on a given grid. You can either 
enter the grid in matrix form, or enter the number of points and radius. Decay will calculate the 
values of the decay rate on every point of the grid and will return the minimal value. 

Calculating t h e  region of at tract ion 

Funtion syntax: roa(F, Grid) or roa(F, np, r) 

F a function (sym-object) 
Grid matrix that represents a grid: the first column is XI, the second xa etc. 
np number of points 
r radius 

Roa calculates the largest region of attraction within a given grid. You can enter the grid either 
in matrix form, or enter the number of points anc! radius. Roa will not create a real grid, but 
instead it creates points on the edge of the grid (so if you manually enter a grid, be sure that 
the points are on the edge of your search domain). The points on the edge of the grid are 
needed to calculate the minimal value of V(x) on the edge of the grid. Then the largest region 
of attraction is calculated and also the largest box that fits within this region of attraction as 
defined in Section 4.2.3. Then a plot of the region of attraction and the box will be drawn. 

Making a contour plot 

Function syntax: vxcontour(F, r, t ,  plot) 

F a function (syn-object) 
r radius 
t value for which the contourline of V(x) should be plotted. 

If t is not given all contourlines will be drawn. 
Note that t can also be a vector, to draw multiple contourlines 

plot for plotting numbers with the contourlines, else 0. Default: plot = 1 

Vxcontour will draw a contourplot of function F. 

Creating a vector plot 

Function syntax: createvector(dx1, dx2, r) 

dxl, dx2 system 
r radius 

Createvector will create a vector plot of the system f (dxl, dx2). An easy way to use this function 
is to load fun.mat in the Matlab workspace, which will load d x l  and dx2. Then, run this function. 

5.3.2 Additional Functions 

The following functions cannot be directly used to examine the results, but are used in the GUI 
and by the functions described in the previous section. 



Creating a grid 

Function syntax: [x,y] = CreateGrid(np,r) 

x,y coordinates of grid points 
np number of points 
r radius 

Creategrid creates a grid that is needed to find a Lyapunov function, i.e. it creates a grid that 
omits the origin. 

Creating t h e  rectangular grid 

Function syntax: [ x , ~ ]  = CreateRecGrid(np, r) 

x,y coordinates of grid points 
np number of points 
r radius 

Createrecgrid creates a rectangular grid of points that lie on the edge of the given radius, ensuring 
that points on the axes are taken in as well. 

Calculating p(x) 

Function syntax: lyap2dv(dxl, dx2, Vx) 

dxl, dx2 system 
Vx the Lyapunov function 

As the system and the Lyapunov function are known, using the function Lyap2dv is a convenient 
way to calculate the derivative of the Lyapunov function. 

The vector plot 

Function syntax: quivernew( ...) 

This function is in essence the same as the original quiver-command in Matlab, however it differs 
in that it will plot all vectors with the same length. This function is called by createvector. 

Resetting GP options 

Function syntax: resetfu n 

No inputs. 

This function will reset the GP options in fun.mat to its default values. 

Saving t o  file 

Function syntax: savetofile(varname, varvalue) 

varname the name of the variable you wish to save 
varvalue the value of the variable you wish to save 

In the GUI many variables are to be saved, this function simplifies that. By calling this function 
with its arguments, it will save the variables name and value to  fun.mat. Multiple variables can 
be saved at once by placing them in succession, e.g.: savetofile(x1, 10, x2, 20). 



5.4 Implementation of the Algorithm in the GP Kernel 

The original GP Kernel can be found on the internet in the public domain. In [8] the features 
of the GP Kernel are described. To implement the Lyapunov problem, some of the original files 
were modified and files were added. These files are outlined here, to facilitate later changes of 
the program. The code of these files can be found in the Appendix. 
A list of the modified and added files: 

f parser. cpp grids .h printf i l e  . cpp LyFF . h 
fparser .h 1yapvars.cpp printfi1e.h 
grids. cpp lyapvars . h LyFF . cpp 

5.4.1 The Main File 

The most important part of the program is the file where the main-function resides, in this case 
in LyFF. cpp. A listing of the code with explanatory comments can be found in Appendix A. 
Some of the concepts are explained here: 

Reading the MAT-file 

At the start of the program the configuration file (either created manually or by the GUI) is 
opened, various parameters are read, and put in memory for later use. This is done as follows: 
a structure is globally created in which for each variable an entry is declared that contains the 
following data: 

the name (a string) under which it was saved in the configuration file. 

the type of data (datastring, dataint, datadouble or datagrid). The first three types are 
the regular C++-types string, integer and double. The grid type is a type that contains 
values to  create a grid. See Section 5.4.3 for more information on grids. 

a pointer to the variable in the program. This variable should already have been declared 
in the program! 

For example: 

char *dxl, *dx2; 

struct GPConfigVarInformation configArray[]= 
C 

("dxlc", DATASTRING, &dxI), 
("dx2c", DATASTRING, &dx23, 
1" " , DATAINT , NULL) 

1 

will try to  find the variable with the name dxlc in the configuration file. If it is found it will 
get the value of this variable and save it as a string in the variable dxl .  The last line in the 
structure, with the pointer NULL, will tell the program to stop searching for parameters. If 
a parameter is not found, a warning will be given at the start of the program. Most variables 
have a default value, so if a variable is not present in the MAT-file the program will still be able 
to run. However, variables that are not defined can have a fatal effect on the execution of the 
program! 

If you want to  add parameters, you only need to define a new variable and add a line of code to  
the structure. 



The actual reading of the file is programmed in the module config.cpp. This module was modified 
from the original to open the MAT-file. The code listing can be found in Appendix E. 

Saving values to the configuration file 

Function syntax: 
void SaveToMFile(char *MFile, char *Var, double Vard, char *Name, int Type) 

To examine results, we need to write these to the configuration file. As several parameters are 
written back to  the file, a function has been designed to do this. Two types of data can be 
written: a double or a string. The function is called with the following parameters: 

0 MFile. The MAT-file where we want to write the data to. 

0 Var and Vard. The data that needs to be saved. In the case of a string, we save the string 
in Var, and we assign a zero to Vard. In the case of a double, we assign an empty value, 
i.e. " ", to Var and the desired value of the double to Vard. This is a bit complicated and, 
for convenience, should be changed in the future. 

Name. The name we wish to give to the variable in the MFile. 

0 Type. The data type: DATASTRING or DATADOUBLE. 

Evaluating an individual 

Function syntax: 
double MyGene::evaluate(grids x, int i, MyGP& gp, double arg0, double argl) 

Because the individuals are saved in a tree-form, we need a function to evaluate them. This 
function takes care of that. It is a recursive function, meaning that it will continue to call 
itself until the tree has been completely traversed. Every function- and terminal-evaluation are 
programmed here. So when a function or terminal is added, be sure to add its evaluation here 
too! 

Calculating V(x) and ~ ( x )  

Function syntax: 
void CalcVx(MyGene *pa, MyGP &pb, grids Grid, std::valarray<float> &Array) 
void CalcdVx(MyGene *pa, MyGP &pb, grids Grid, std::valarray<float> &Array) 

pa A pointer to the starting node of the tree. 
pb The address of self, which is the individual. 
Grid The grid for which we want to calculate V(x). 
Array The address of the array in which the values of V(x) should be saved. 

As we are going to calculate the values of V(x) for all the points on a grid, and also for multiple 
grids, a function has been designed to do this quickly. The calculation of V(x) is not very 
difficult, as we only need to evaluate the individual at the given Grid. The calculation of ~ ( x )  
is somewhat more difficult, but has already been explained in Section 4.2.1. 

Calculating the fitness 

Function syntax: 
void MyGP:: evaluate() 

This is the essential part of the whole program. It calculates the fitness of an individual using 
the algorithm as described in Chapter 4. 



Defining functions and terminals 

Function syntax: 
void createNodeSet(GPAdfNodeSet &adfNs) 

This function takes care of the creation of the node set, i.e. the set of functions and terminals. 
It is pretty straightforward, so it is fairly easy to add a node. However, don't forget to declare 
space for an extra node! 

5.4.2 The Lyapunov Class 

The Lyapunov Class is created to hold all Lyapunov related parameters. It provides a back-up: 
if the user does not provide a value for a parameter, a default value is entered. It also provides 
an easy way for printing the variables to a stream. The code can be found in Appendix B. 

5.4.3 The Grids Class 

Because we use multiple grids, and also some specific functions to operate on these grids, a spe- 
cial class has been created. 

An object of the class grids contains two arrays, X I ,  and x2, that are publicly accessible. These 
arrays are filled with the coordinates of the fitness cases. 

There are two ways to define an object of the class grids. The first way is to define it without 
passing parameters. Only the object is defined then, without initializing the arrays. The arrays 
can later be initialized using the function declare(). Second, an object can be defined by passing 
a mxArray. The mxArray should consist of a matrix, that should be built up of the vectors 
[xl, x2], representing the coordinates of the fitness cases. 

Although parts of the Grids class are capable of dealing with 3-dimensional grids, LyFF in its 
entirety is only able to solve 2-dimensional problems. However, expanding LyFF to enable it to 
be used for multi-dimensional problems is not very hard. Some of the functions in the class will 
have to be redefined, and the calculation of V(x) and V(x) will have to be adjusted. 

Within the class the following functions have been defined: 

0 a copy constructor = is defined, for making copies of an object. 

The function declare(const mxArray M) can be used to change the values of the arrays 
XI and x2, after the object is already declared. The mxArray M should satisfy the same 
requirements as given above. 

The function disturb(grids A, int state, float dx) is used during the calculation of ~ ( x ) .  A 
new grid is created, copied from the original grid A, and subsequently the value dx is added 
to the chosen array state. 

0 Because arrays are used, they should be deleted after use. This is done by the function 
ma keMT(). 

The function create(int np, in t  ns) is for internal use of the class. It creates a new object 
with ns  number of dimensions and reserves space for the arrays of length np. 

The listing of the interface and implementation can be found in Appendix C 



5.4.4 The Print File 

As the individuals are saved in a tree-form during the run, we need some specialized printing 
functions to be able to print the individuals to different files. Also, as we will see later, we will 
want to print to text-files as well as IN&$-files. The implementation of these printing functions 
can be found in Appendix D. Remember that when you add a function or a terminal, you should 
also add it to these printing functions! 

5.4.5 The Parser 

To dynamically enter formulas, a parser needs to be used to parse the formulas from a text 
string to a workable formula for the program. The parser used is open source code, found on 
the internet 191. The only thing that needs to be kept in mind is that the parser only accepts 
variables of text length 1, e.g. x and y. So, as the GUI accepts larger strings of variables, e.g. 
x1 or 22, the formulas entered in the GUI need to  be converted. This is done in the code of the 
GUI. If the GUI is not used, one should enter the formulas in a text string in the MAT-file, using 
x and y as variables. 
The manual of the parser can be found in Appendix F. 

5.5 The Configuration File Format and Output Files 

For LyFF to work, it needs a configuration file with the settings for the run. During the run, 
some parameters are written back to  this configuration file. Furthermore, three files are created 
with statistics of the run. All files will be explained in this section. 

5.5.1 The Configuration File and its Format 

The configuration file is used to pass data from Matlab to LyFF and vice versa. The format 
used is the standard MAT-format. In Table 5.1 all variables are listed, with their respective 
data types and an indication whether or not they are used by LyFF. Note that the data type 
indication is referring to data types as defined in C++, with the exception of the type grid, that 
is defined in the grid class, and the type switch, which will be explained in a moment. Matlab 
does not make a distinction between different numeric types, so integers, doubles, grids, switches 
and booleans are all saved as double arrays in the MAT-file. Strings are saved as char arrays 
which can be converted to symbolic objects. However, it is important to note the C++ types as 
the parameters will be converted to the indicated types as they are read by LyFF. 
Note that: 

: Net d l  para=eters are used far c~nfiguratior, ~f LyFF. Semo are just here in the Ele, sn 
that the next time you open the GUI, its last state is recreated. 

0 Some parameters are yes/no parameters, i.e. whether an option should or should not be 
used during a run. The values are booleans: yes = 1, and no = 0. 

0 Some parameters offer multiple options. These are indicated with a switch data type and 
correspond to  the following options: 

- Creation type 
0 Probabilistic selection 
1 Tournament selection 

- Selection type 
0 GPVariable 
1 GPGrow 
2 GPRampedHalf 
3 GPRampedHalfVariable 
4 GPRampedGrow 



These options are further explained in [8]. 

0 The additional grid is not saved as a separate grid, but integrated in the Fine Grid. 

0 The parameter NumberOfStates is not used at the moment, as LyFF solely works for 2- 
dimensional problems. 

o The parameter dVx is created by the post-processing function lyap2dv after the run. 

The following parameters are created by LyFF during the run: 

0 The parameter Elapsed Time gives the time it took for the run to end in seconds. 

e The parameter Gen indicates in which generation the run was stopped. 

0 When optimizing the decay rate, the parameter GenDecay indicates in which generation 
the value for the decay rate was last updated. 

0 When maximizing the region of attraction, the parameter GenROA indicates in which gen- 
eration the value for the region of attraction was last updated. 

0 The parameter Vx is a string with the best-of-run individual. The post-processing causes 
this parameter to be converted to a Matlab sym-object. The original string is saved to 
Vxorg. 

Table 5.1: Listing of variables in MAT-file 

Name Data type 
AddBestToNewPopulation boolean 
AddGrid boolean 
AddGr idNP 
AddGridRadius 
CircleGrid 
CoarseGrid 
CreationProbability 
Creat ionType 
CrossoverProbability 
DecayRate 
DemeSize 
DemeticGrouping 
DemeticmigProbabiiity 
ElapsedTime 
FineGrid 
Gen 
GenDecay 
GenROA 
InfoFileDir 
Inf oFileName 
Inf oTi t le  
MaxDecay 
MaxLength 
MaxROA 
MaxRelDif 
MaximumDepthForCreation 
MaximumDepthForCrossover 
NumberofGenerations 

integer 
double 

grid 
grid 

boolean 
switch 
double 
boolean 
boolean 
boolean 
double 
double 

grid 
integer 
integer 
integer 
string 
string 
string 

boolean 
integer 
boolean 
double 
integer 
integer 
integer 



Table 5.1: continued. 

Name Data type LyFF 
NumberOfPointsCoarse 
NumberOfPointsFine 
NumberOfPointsGrid 
NumberOf S ta te s  
Populat ionsize 
RadiusCoarse 
RadiusFine 
RadiusGrid 
RecForm 
SelectionType 
ShrinkMutationProbability 
Steadystate 
SwapMutat ionprobability 
TestGrid 
Tournamentsize 
VMinMax 
ValDecayRat e 
vx 
Vxorg 
dVx 
dxl 
dxlc 
dx2 
dx2c 
use-add 
use-con 
use-cos 
use-div 
use-mu1 
use-pow 
use-sin 
use-sub 

integer 
integer 
integer 
integer 
integer 
double 
double 
double 

boolean 
switch 
double 
boolean 
double 
boolean 
integer 
boolean 
double 
string 
string 
string 
string 
string 
string 
string 

boolean 
boolean 
boolean 
boolean 
boolean 
boolean 
boolean 
boolean 

5.5.2 Output Files 

Before startup of a run, a copy is made of the configuration file fun.mat and is named <Info- 
FileName>.mat and placed in the directory as entered in <InfoDirName>. This provides an easy 
way of back-up of the configuration per run. 

During the run three files are created, namely: <InfoFileName>.stc, <InfoFileName>.dat and 
<InfoFileName>.tex. They are placed in the directory as entered in <InfoDirName>. The .stc- 
file gives statistical information about the run, i.e. the best, average and worst fitness, length 
and depth of the individuals per generation. The .dat-file saves the best-of-generation individual 
per generation, as does the .tex-file but the latter is in B m f o r m a t .  

5.6 Known Errors and ToDo List 

Although the program is capable of running complex problems, it is still not finished completely. 
In this paragraph a list of known errors and points that could be improved is given. 



5.6.1 Known Errors 

In a few cases, the program is known to behave in an unpredictable way. These cases are 
described here. 

0 The program has not been thoroughly tested on different operating systems. All tests 
described in this report were performed using Windows 95, where they ran smoothly. A 
few runs showed no obvious problems using Windows 98 either. However, a quick check on 
one machine running Windows NT resulted in a crash of the program aRer approximately 
15 runs. Although no further testing was done on other NT-machines, we suspect that it 
was caused by a memory leak in the program. This still has to be fixed. 

0 The functions roa and lyap2dv in Matlab are computational very demanding. For very 
complex problems these functions are known to halt during execution. More computer 
memory should solve this problem. 

5.6.2 ToDo List 

The following features could be improved, as that would make the program more user friendly 
and more stable. 

LyFF is only capable of handling 2-dimensional problems. However, due to  the implemen- 
tation of the grids-class it is very easy to extend this to multi-dimensional problems. 

0 A numerical approximation of ~ ( x )  is used during a run. By implementing a analytical 
differentiator, the error induced by the approximation can be eliminated. 

0 There is no type checking of the entered information in the GUI. If a user provides data of 
an incorrect type, e.g. puts a string in a numeric field, the outcome of the run is undefined. 

0 A GUI for the post-processing needs to be created. 

0 Opening the GUI loads fun.mat, regardless of the current directory. So if, a t  startup of 
the GUI, the user is in another directory than that where fun.mat is located, the GUI will 
open with blank fields. As the user starts entering data, a new fun.mat will be created 
in the current directory. However, if the run is started, the GUI will not be able to find 
LyFF.exe, and the DOS-box will not open. To avoid this problem, the user must navigate 
to the directory containing the file LyFF.exe, before starting the GUI. This problem still 
has to be corrected. 



Chapter 6 

Results 

To test the GP algorithm, several problems, ranging from simple to more difficult, have been 
submitted to the algorithm. The results are compared to other methods for finding Lyapunov 
functions, and are presented here. Calculations are performed on a 500 MHz Pentium I11 pro- 
cessor with 128 Mb internal memory, running Windows 95. 

6.1 GP Variables 

For all runs, unless otherwise mentioned, the following GP variables are used: 

CrossoverProbability 
CreationProbability 
CreationType 
MaximumDepthForCreation 
MaximumDepthForCrossover 
SelectionType 
Tournamentsize 
DemeticGrouping 
DemeSize 
DemeticMigProbability 
SwapMutationProbability 
ShrinkMutationProbability 
AddBestToNewPopulation 
Steadystate 

= 75 
= 75 
= GPRampedHalf 
= 8 
= 17 
= Tournament Selection 
= 20 
= Off 
= 10 
= 100 
= 30 
= 30 
= No 
= No 

GP tree 0: +(2 )  -(2) *(2) ^2(1) XI x2 

Some of the variables are options that can be switched on and off for a run: 'no' meaning that 
that option was not used, 'yes' that it is used during the run. Unless otherwise mentioned, all 
Lyapunov function are tested on the domain X0 = [-I, 11 x [-I, 11 c R2. 

All results are displayed in figures and tables. In the tables only V(x) is given. Furthermore, the 
region of attraction r and sometimes the decay rate a are also given in the table. The decay rate 

oi is calculated by creating a grid of 100.000 points on XO, and then calculating m i n ( - m ) .  
V(x) 

The largest region of attraction is determined by drawing the largest closed curve within X0 and 
then fitting in a box as explained in Section 4.2.3. 
The last value given is gen, which is the generation in which the particular Lyapunov function 
candidate was found. 



6.2 A Very Simple Problem 

Given the system 

a trivial Lyapunov function is 

Test 1 

Using the following settings, GP came up with the results as shown in Table 6.1 and Figure 6.1. 
Often, when searching for a Lyapunov function, humans tend to start trying quadratic functions. 
GP, however, is not biased and just searches for a function that meets the conditions. And as 
there are many more possibilities than only the quadratic functions, the runs resulted in more 
'exotic' functions. All functions are Lyapunov functions. 

Populat ions ize  
NumberofGenerations 

= 100 
= 100, o r  s top  i f  f i t o e s s  = 0 

Number of po in t s  on C i rc l e  g r i d  = 48 
Number of po in t s  on Fine g r i d  = 100 
VMin-Max Rule = No 
MaxROA = No 
Decay Rate = No 
F i l e s  = vspla,  vsplb, vsplc 

Table 6.1: Results of Test 1 

V(x) r Q gen 
VI =x':+x$ 0.84 4 1 
V2 = ((x2 - x ~ ) ~  + x:)~ 0.27 4 1 
Vq = 4x2 + Z? 0.45 2 1 

(b) V2 

Figure 6.1: Results for Test 1 



Test 2 (Maximizing Region of Attraction) 

Now we are going to try to maximize the region of attraction. The results are shown in Table 
6.2. The largest region of attraction in X0 corresponds to a contour curve with the form of a 
square that follows the edge of the domain. As can be seen in Figure 6.2, this is exactly the form 
that GP tried to  approximate. 

Populat ions ize  
NumberGf Generat ions 
Number of po in t s  on 
Number of po in t s  on 
VMin-Max Rule 
MaxROA 
Decay Rate 
F i l e s  

C i r c l e  g r i d  
Fine g r i d  

= 100 
= 106 

= 48 
= I00 
= No 
= Yes 
= No 
= vspROAla, vspROAlb, vspROAIc 

Table 6.2: Results of Test 2 

v (x) r a gen 
vl = + xf2 0.96 32 39 
V2 = x y  + 5; 0.93 2 36 
V3 = x;56 + x22 + xf024 + 0.96 32 81 

Figure 6.2: Results for Test 2 

6.3 The Variable Gradient Method 

This method constructs a Lyapunov function by assuming a certain form for the gradient of 
an unknown Lyapunov function, and then finding the Lyapunov function itself by integrating 
the assumed gradient. For low order systems, this approach sometimes leads to the successful 
discovery of a Lyapunov function [GI. 

Given the nonlinear system 

the following Lyapunov function is found using the Variable Gradient Method [see 6,p. 871: 



Another Lyapunov function, also found with the Variable Gradient Method: 

In Figure 6.3 the regions where ~ ( x )  > 0 are visualized for both functions. As V(x) is positive 
definite and ~ ( x )  is locally negative definite, asymptotic stability is locally guaranteed. 

(a) Plot of regions of c(x), Eq. (6.4) (b) Plot of regions of ~(x), Eq. (6.5) 

Figure 6.3: Solutions using the Variable Gradient Method 

Test 3 

Using GP with the following settings: 

Populat ionsize = 100 
NumberOfGenerations = 100, or stop if fitness = 0 
Number of points on Circle grid = 28 
Number of points on Fine grid = 64 
VMin-Max Rule = No 
Decay Rate = No 
Files = vgml-I / vgml-9 

The results are shown in Table 6.3 and Figure 6.4. 

Table 6.3: Results of Test 3 



Almost all results are obtained within on average 1 run. This is very fast, and it indicates that 
during startup of the run more than enough diverse individuals were created, because the result 
emerged already after initialization. 

Figure 6.4: Results of Test 3. The grey areas indicate the areas where ~ ( x )  > 0. 

Evaluation afterwards showed that all functions are Lyapunov functions that prove local stability. 
Shown in Figure 6.4 are the largest regions of attractions. These are determined visually, by first 
plotting the ~ ( x )  = 0 lines and then fitting in the largest closed contour curve of V(x). Then, a 



box is drawn within the region of attraction (as explained in Section 4.2.3), to calculate its size. 
Note that although the run was set to search within the domain X0  = [-I, 11 x [-I, 11, some 
solutions are able to prove stabiIity for a Iarger region. 

Test 4 (Maximizing Region of Attraction) 

The region of attraction of the Lyapunov f~nctions found using the Variable Gradient nethcd 
are shown in Figure 6.5. 

X i  

(a) Region of attraction of Eq. (6.4) (b) Region of attraction of Eq. (6.5) 

Figure 6.5: Region of attraction. The grey areas indicate the areas where ~ ( x )  > 0. 

Five tests were done with the following settings: 

Populat ionsize = 100 
NumberofGenerations = 100 
Number of points on Circle grid = 48 
Number of points on Fine grid = 100 
Decay Rate = No 
MaxROA = Yes 
Files = vgmroal-l/vgmroal-4 

The results are shown in Table 6.4. All functions are Lyapunov functions and prove that the 
origin is a asymptotically stable equilibrium point. However, the region of attraction is not 
larger than found in the previous tests. This is probably due to  the fact that the search domain 
is X0  = [-I, l] x [-I, 11. Eq. 6.4 indicates that the system is locally stable, the region is indicated 
in Figure 6.3. The domain that we have tested for lies within this region. Therefore we enlarge 
the search domain to X = [-1.5,1.5] x [-1.5,1.5] c R2. 



Table 6.4: Results of test 4 
Function r gen 
vl = x : ~  + 5; 0.99 22 

Figure 6.6: Region of attraction of %st 4 

Test 5 (Maximizing the Region of Attraction 2) 

The search domain is enlarged to  X 0  = [-1.5,1.5] x [-1.5,1.5]. 

Populat ionsize = 100 
NumberofGenerations = 100 
Number of points on Circle grid = 48 
Number of points on Fine grid = 100 
Decay Rate = No 
MaxROA = Yes 
Files = vgmroa3-l/vgmroa3-5 



Table 6.5: Results of Test 5 
Function r gen 
vl = 442: f 3x374 + ~ 3 x 2  + ~ 1 ) "  f x f  + f x ;  + (x: + 2 ~ 2 ( x 2  + X ~ ) ) ~ X ?  1.16 95 

2 V2 = ((x2 + 2 1 )  + ( 2 2  - x1)(x2 + 2 1 )  - X l X 2  + 4 ~ : ) ~  + (2(x2 - x1)(x2 + x1) - x1x2+ 
( ( 2 2  - ~ 1 ) ( 5 2  + X I )  - ~ 1 x 2 ) ~ ) ~  1.11 72 

V3 = ((xfxg + x ; ) ~  + 2x1: + 3xi - x : ) ~  + (x;  + 6%; + 2x2 + (x;  + x ; ) ~  + xfxz)' 1.19 100 
Vq = (45; + (2%; + x2)x; + 2x1: + (25: - xf + x;)(xf - x; + x ; ) ) ~  1.16 79 
V5 = ( x f x ;  + 2x; - x : ) ~  + xf + x; 1.22 40 

F i g ~ r e  6.7: Eesults of Test 5 

Now, the results are somewhat better than in the previous test, but the runs took more gen- 
erations. However, the largest region of attraction is not larger than the one found with the 
Variable Gradient Method. This is due to the method of maximizing the region of attraction: 
before the region of attraction is maximized a function must be found that fulfills V ( x )  > 0 and 
~ ( x )  < 0 on the whole domain XO. Therefore, the region of attraction that is found depends 
very much on the choice of XO. If we would enlarge the search domain to X0 = [-2,2] x [-2,2] 
a larger region of attraction would be found, although the search for it would be harder, as fewer 
functions fulfill V ( x )  > 0 and ~ ( x )  < 0 on this domain. The new method proposed in Section 
4.2.3 should result in better solutions, as this method automatically enlarges the search domain. 

6.4 Krasovskii's Method 

Krasovskii's method suggests a simple form of Lyapunov function candidates for autonomous 
nonlinear systems of the form (3.1), namely V = fTf. The basic idea of the method is simply to 



check whether this particular choice indeed leads to a Lyapunov function [6]. 

For the following system: 

XI  = -621 +2x2 
k2 = 2x1 - 6x2 - 25; 

the proposed Lyapunov function, found with Krasovskii's method, is: 

In Figure 6.8 the contour plot and the region of attraction of Eq. 6.7 are drawn. The decay rate 
a = 8. 

-1  -0.8 4 6  -0.4 - 0 2  0 0 2  0 4  0 6  08 1 
I 

(a) Contour and vector plot of Eq. 6.7 (b) Region of Attraction of Eq. 6.7 

Figure 6.8: Properties of Eq. 6.7 

Test 6 

Using the following settings, LyFF is started to  find Lyapunov function candidates: 

Populationsize 
NumberofGenerations 
Number of States 
Number of points on Circle grid 
Radius Circle 
Number of points on Fine grid 
Radius Grid 
Test Grid 
VMin-Max Rule 
Decay Rate 
Files 

= 100 
= 100, or stop if fitness = 0 
= 2 
= 48 
= 1 
= 64 
= I 
= Yes 
= No 
= No 
= krasl-l/krasl-10 

Results are shown in Table 6.6 and Figure 6.9. Within the domain X0 = [-I, 11 x [-I, 11 
the Lyapunov function candidates are all Lyapunov functions. When testing on the domain 
X 0  = [-2,2] x [-2,2] all candidates are still Lyapunov functions, except for V6 and Vlo, see 
Figure 6.10. 



Table 6.6: Results for Test 6 
Function r a g  
Vl,&,v7 = 2:: + x i  0.71 8.00 1 

2 V2 = 2x1 - 2 x l x z  + 2s ;  0.32 7.53 1 
v3 = 22: + 2x1x2 + 22; 0.50 8.00 1 
Vg = x i  + X: + 2 x 1 ~ ~  + x ;  0.27 7.99 1 
v s  = (-2; + 2x1x2 - 6xT + X ! X $ ) ~  0.29 8.28 3 
7 7 

Vs = 42; + x12 0.45 7.00 1 
V9 = x ;  + x i  + xg 0.69 8.00 1 
v lo  = ( I C : X ~  + x i  + x : ) ~  0.57 3.57 1 

(9) v9 (h) V1o 

Figure 6.9: Results of Test 6 



Figure 6.10: Results of Test 6 for and Go. The grey areas indicate the areas where ~ ( x )  > 0 

Test 7 (Maximizing the Region of Attraction) 

Population Size = 100 
Number Of Generations = 100 
Maximum Length of Trees = 300 
Number of points on Circle grid = 48 
Number of points on Fine grid = 400 
VMin-Max Rule = No 
Decay Rate = No 
Maximize Region of Attraction = Yes 
Files = krasroa2-l/krasroa2-3 

The results of three runs are shown in Table 6.7 and Figure 6.11. Both Vl and V3 are Lyapunov 
functions in X O ,  V2 is not. The phenomenon as described in Section 4.3.1 occurs: ~ ( x )  > 0 
between the grid points, as shown in Figure 6.4. The region of attraction of the Lyapunov 
function generated by Krasovskii's method was 0.44. The region of attraction of the Lyapunov 
functions generated by LyFF are clearly larger. 

Table 6.7: Results of Test 7 
Function T a nen 



Figure 6.11: Results of Test 7 

6.5 Johansens Problem 

In [7] Johansen describes how Lyapunov functions can be found using convex optimization. The 
basic idea is to  assume a linear parameterization of the set of Lyapunov function candidates. The 
existence of a Lyapunov function leads to two linear inequalities that must hold for every x E X. 
By discretizing the compact set X ,  the possible Lyapunov functions within the selected class of 
candidates are characterized (approximately due to discretization) by a finite number of linear 
inequalities. Hence, the problem is reduced to a convex optimization problem involving linear 
inequality constraints at each point in the state space. By discretization of the state space this 
leads to a computational procedure based on linear or quadratic programming that is effective 
for systems of sufficiently low order [7]. 

The procedure is illustrated using a numerical example. For the problem 

several parameterizations are proposed and Lyapunov functions candidates are computed while 
optimizing the decay rate or the region of attraction. Johansen does not mention the actual 
functions that he found, but gives information about the values he obtained for the decay rate or 
the region of attraction (see Table 6.8). Therefore comparison between GP generated Lyapunov 
function and Lyapunov function found using convex optimization is done using these values. 



Table 6.8: Best Results using Convex Optimization 
- 

0 b jective T a 
Decay Rate 0.30 5.06 
Region of Attraction 0.85 1 

Test 8 (No optimization) 

For this test, we are simply trying to find a Lyapunov function on XO. Three candidates are 
generated using the following settings: 

Number of Individuals = 500 
Maximum length of trees = 300 
Number of points on Circle grid = 32 
Number of points on Fine grid = 256 
DecayRate = No 
Maximize Region of Attraction = No 
Files = joh2, joh2a, joh2b 

The results are shown in Table 6.9 and Fig. 6.12. Solution V2 is no valid Lyapunov candidate, 
as its decay rate a is negative, meaning that ~ ( x )  > 0 somewhere in X. 

Table 6.9: Results of test 8 
- 

V ( 4  r a gen 
= 58x7 + 162: 0.46 0.99 5 

Figure 6.12: Results of Test 8 

Test 9 (Maximizing the region of attraction) 

Now, we set the algorithm to maximizing the region of attraction. Furthermore, we demand that 
during the run that,  at worst, a = 1. If a < 1 a penalty is given, but otherwise nothing will 
happen (the decay rate will not be optimized). All runs run for 100 generations, then they are 
cut off, the best of run being the one with the largest region of attraction. 



Number of Individuals = 500 
Maximum length of trees = 300 
Number of points on Circle grid. = 32 
Number of points on Fine grid = 256 
DecayRate = No 
Maximize Region of Attraction = Yes 
Files = job-roala, joh-roalc, joh-roa3, job-maid 

Table 6.10: Results of Test 9 

V(X) r a gen 
v1 = ( ( 4  - .?I2 + +; - x ? ) ~  + ((x': + (x; - ~ 4 ) ~  + + x i  + x;)" 

In Table 6.10 the results are given. All candidates are Lyapunov functions. Compared to the 
results published in [7] all solutions have a larger region of attraction, but V2 has a smaller decay 
rate. V3 in particular is a very good result, as its decay rate is near the maximal value that was 
obtained using the convex optimization method. 

Figure 6.13: Results for Test 9 

54 



Test 10 (Maximizing the Decay Rate) 

The objective of this test is to find a Lyapunov function that maximizes the decay rate. 

Number of Individuals = 500 
Maximum length of trees = 300 
Number of points on Circle grid = 48 
Number of points on Fine grid = 768 
DecayRate = Yes 
Maximize Region of Attraction = No 
Files = joh-decayl, joh-decayab, joh-decay2c 

The results are shown in Table 6.11 and Figure 6.14. Again, all candidates are Lyapunov functions 
and the results are better than the results obtained using convex optimization. 

Table 6.11: Results of Test 10 

V ( 4  r Q gen 
VI = (4%: + ~ 2 ) ~  0.43 9.18 unknown 
V2 = 256%: + (x? f x:)~ 0.50 5.00 18 
K =  (x$ 4 16%:)~ 0.49 10.20 18 





Chapter 7 

Conclusions And Future Research 

Finding a Lyapunov function and thereby proving (local) stability of the equilibria of a non linear 
system is not an easy task, but GP can lighten the task. Admittedly, not every run ends up in 
a Lyapunov function, but one does not have to go into complex mathematical calculations to  
obtain a Lyapunov function, nor does one need to know much about GP since a GUI in Matlab 
is now available for easy implementation for the search for a Lyapunov function. Only validation 
of the Lyapunov function is needed afterwards. 
Unfortunately, due to the complexity of some of the GP generated solutions analytical validation 
is not always possible, and one has to revert to numerical methods. Although a method for 
calculating a sufficiently dense grid size has been proposed, it has not yet been used to validate 
the Lyapunov candidates. 

The GP algorithm has been compared to several other methods for finding Lyapunov functions. 
In these tests the GP algorithm repeatedly proved to be able to  obtain Lyapunov functions that 
were better in the sense of the region of attraction or the decay rate. On the other hand, the 
results were often very complex functions that were difficult to validate. A way to prevent this, 
is to severely limit the depth to which the algorithm may create functions. But, in limiting the 
depth of functions, we might also be limiting the ability to find functions that have such large 
regions of attraction or decay rates. 

Future research could include the use of this GP algorithm during identification of systems. In 
previous research we tried to dynamically identify a physical system using GP. This resulted in 
a mathematically correct function, which in simulation turned out to be an unstable system. By 
applying LyFF during the identification process, and thereby ascertaining stability of the sys- 
tems, we suspect that this problem can be overcome. Furthermore, LyFF could also be used to 
investigate the stability of discontinuous systems. For these class of systems Lyapunov functions 
are very hard to  find analytically. 

All in all, we can conclude that GP is useful in the search for Lyapunov functions. In a broader 
perspective we can conclude that GP is becoming a very interesting tool for solving complex 
problems. We showed that by translating a problem in a fitness function a hard nonlinear 
problem could be solved. Finding controllers or identifying complex systems are similar difficult 
problems, and we expect that these problems can also be solved using GP. 
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Appendix A 

The Main File 

The Implement at ion: LyFF.cpp 

#include <stdlib.h> 
#include <new.h> / /  For the new-handler 
//#include <math. h> 
#include <string.h> 
#include "fparser.hU 

// Include header file of genetic programming 
#include "gp.hN 
#include "gpconiig . h" 

// Include headerfiles of my functions 
#include "symbreg.hH 
#include "grids.hN 
#include "lyapf unct ion. h" 
#include."lyapvars.h" 

#include "mex.hU 
#include "mat. h" 

// Globally declared, because we need them in 
int gen; 
grids CoarseGrid, FineGrid; // For more info 

system. 

several functions. 

on the grids-object, see grids.h and grids.cpp 



// This is the mat file from and to which all variables are read/written. 
char *MFile="fun.matl'; 
FunctionParser Funcl; 
FunctionParser Func2; 

// We use this parameter to keep a tab wether a solution has been 
// written to the output file. 
int OutFiag = 0; 
float minFit ; 

// Functions to be used during GP run. 0 = not used, 1 = using. 
// If you should want to add, more functions, start by adding them here. 
int useADD = 0, 

useSUB = 0, 
useMUL = 0, 
useDIV = 0, 
useCON = 0, 
useSIN = 0, 
useCOS = 0, 
usePOW = 0; 

// Define configuration parameters for the GP run in the GPVariables. If you need more 
// variables, just add them below and insert an entry in the configArray. 
// Lyapunov variables can be added to 1yapvars.h and 1yapvars.cpp 
GPVariables cfg; 
LyapVariables cfgl; 

char *dxl, *dx2; 

// Parameteres are loaded as follows: 
// {"nameMATn, TYPE, var) 
// File is opened, and the variable nameMAT is looked up in the file 
// The value is then saved to var of type TYPE. 
// See config.cpp for more info. 

struct GPConfigVarInformation configArray[l= 
i 

{"dxlc", DATASTRING, &dxI), 
{"dx2cN, DATASTRING, &dx2), 
{"MaxDecay", DATAINT, &cfgl.MaxDecay), 
{"MaxROA" , DATAINT , &cf gl . MaxROA) , 
{"DecayRate" , DATAINT , &cf gl . DecayRate) , 
{"ValDecayRate", DATADOUBLE, &cfgl.ValDecayRate), 
{"MaxRelDif", DATADOUBLE, &cfgl.MaxRelDif), 
{"CoarseGrid", DATAGRID, &CoarseGrid), 
{"FheGrid", DATAGRID, BFineGrid), 
{"MaxLength" , DATAINT, &cf gl . MaxLength) , 
{"Inf~FileName~~, DATASTRING, &cfgl.InfoFileName), 
{"Inf oFileDirW , DATASTRING, &cf gl. Inf oFileDir), 
{"InfoTitle", DATASTRING, &cfgl.InfoTitle), 
{"PopulationSize", DATAINT, &cfg.PopulationSize), 
{"NumberOf Generations" , DATAINT , &cf g . NumberOf Generations), 



{"VMinMax", DATAINT, &cfgl.VMinMax), 
{I1CreationType", DATAINT, &cfg.CreationType), 
{ " C r o s s ~ v e r P r o b a b i l i t y ~ ~ ,  DATADOUBLE, &cf g. CrossoverProbability), 
{"CreationProbabilityl', DATADOUBLE, &cfg.CreationProbability), 
(uMaximumDepthForCreation", DATAINT, &cfg.MaximumDepthForCreation), 
{"MaximumDepthForCrossoverll, DATAINT, &cfg.MaximumDepthForCrossover), 
("SelectionType", DATAINT, &cfg.SelectionType), 
("TournamentSize", DATAINT, &cfg.TournamentSize), 
("DemeticGrouping", DATAINT, &cfg.DemeticGrouping), 
i"DemeSizet8, DATAINT, &cf g . DemeSize), 
("DemeticMigProbability" , DATADOUBLE, &cf g .DemeticMigProbability), 
("SwapMutationProbability", DATADOUBLE, &cfg.SwapMutationProbability), 
{"ShrinkMutationF'robability", DATADOUBLE, &cfg.ShrinkMutationProbability), 
(llSteadyState", DATAINT, &cfg.SteadyState), 
(llAddBestToNewPopulation", DATAINT, &cfg.AddBestToNewPopulation), 
(lluse-mulll , DATAINT, &useMUL) , 
("use-sub", DATAINT, &useSUB), 
("use-add" , DATAINT, &useADD) , 
(lluse-divll, DATAINT, &useDIV) , 
{"use-con", DATAINT, &useCON), 
("use-sin", DATAINT, &useSIN), 
("use-cos", DATAINT, &useCOS), 
{"use-pow", DATAINT, &usePOW), 
(I1", DATAINT, NULL) 

// This function is the divide with closure. Basically if you divide 
// anything by zero you get an error so we have to stop this 
// process. We check for a very small denominator and return a very 
// high value. 
inline double divide (double yl, double y2) 
( 
if (fabs (y2)cle-6) 

if (yi*y2<0.0) 
return -1e6; 
else 

return le6; 
> 

else 
return yl/y2; 

// Easy way to save variables to the MATfile 
void SaveToMFile(char *MFile, char *Var, double Vard, char *Name, int Type) 
{ 

MATFile *pmat ; 
mxArray *pal; 
int status ; 

//open matf ile 
pmat = matOpen(MFile, "u") ; 



if(pmat == NULL) cout << "Error opening functions-file\nn; 

switch(Type1 
C 
case DATASTRING: //string 

pal = mx~reateString(Var) ; 
mxSetName (pal, Name) ; 
break; 

case DATAINT: 
case DATADOUBLE: //scalar 

pal = mx~reate~calarDouble(Vard) ; 
mxSetName(pa1, Name) ; 
break; 

1 

//Put mxArray in file 
status = matPutArray (pmat , pal) ; 
if (status !=O) cout << "Error writing array to file./nV ; 

//destroy matlab arrays! 
mxDestroyArray (pal) ; 

//close MatFile 
status = matclose (pmat) ; 
if (status != 0) cout << "Error closing f ile\nM; 

1 

// We have the freedom to define this function in any way we like. In 
// this case, it takes the parameter x that represents the terminal X, 
// and returns the value of the expression. It's recursive of course. 

// If you add functions, don't forget to implement them here!! 
// Also, don't forget to implement them in printfile.cpp!! 
double MyGene::evaluate (grids x, int i, MyGP& gp, double arg0, double argl) 
C 

double ret, aO, al; 

if (isFunction 0) 
switch (node->value ) 

C 
case '* ' : 

ret=NthMyChild(O) ->evaluate (x, i , gp , arg0, argl) 
* Nth~y~hild(1)->evaluate (x, i, gp, arg0, argl) ; 
break; 

case '+' : 
ret=NthMyChild(O) ->evaluate (x, i ,gp, arg0, argl) 

+ NthMyChild(1)->evaluate (x, i ,gp, arg0, argl) ; 
break; 

case ' - ' :  
ret=NthMyChild(O) ->evaluate (x, i, gp, arg0, argl) 

- NthMyChild(1) ->evaluate (x, i, gp, arg0, argl) ; 
break ; 

case ' - ' :  



ret=pow(NthMyChild(O)->evaluate (x, i, gp, arg0, argl) ,2) ; 
break; 

case 's': 
ret=sin(~thMyChild(O) ->evaluate (x, i , gp, arg0, argl) ) ; 
break; 

case 'c': 
ret=cos(NthMyChild(O)->evaluate (x, i, gp, arg0, argl)); 
break ; 

case ' X '  : 
// We use the fmction divide rather than "/" to ensure the 
// closure property 

ret=divide (NthMyChild(0)->evaluate (x, i, gp, arg0, argl), 
NthMyChild(1) ->evaluate (x, i ,gp, argO, argl)) ; 

break; 
case 'A': 

// This is the ADFO function call. We have access to that 
// subtree, as the GP gave us a reference to itself as 
// parameter. We first evaluate the subtrees, and then call 
// the adf with the parameters 

aO=NthMyChild(O) ->evaluate (x , i , gp , arg0, argl) ; 
al=NthMyChild(l) ->evaluate (x, i , gp, arg0, argl) ; 
ret=gp .NthMyGene(l)->evaluate (x, i, gp, arg0, argl) ; 
break; 

default : 
GPExit System ("MyGene : : evaluate" , "Undefined function value") ; 

3 
if (isTermina1 0) 
switch (node->value 0 

C 
case TERMINALXI: 

ret=x.xl [i] ;//Vout << "xi op " << i << " is " << x.xl [i] <<endl; 
break; 

case TERMINALX2: 
ret=x .x2 [i] ; //Vout << "x2 op << i << l1 is << x .x2 [il <<endl; 
break; 

case TERMINALX3: 
ret=x .x3 [il ; 
break; 

case TERMiNALADFI: 
ret=argO ; 
break; 

case TERMINALADF2: 
ret=argl ; 
break; 

default : 
// This is for the constant-terminal 
ret=node->value () ; 

3 
// Restrict the return value (it may become really large, especially 
// for large trees) 
const double maxValue=le6; 
if (ret >maxValue) 
return maxvalue; 

if (ret<-maxvalue) 



return -maxValue; 

return ret; 
3 

void CalcVx(MyGene *pa, MyGP &pb, grids Grid, std::valarray<float> &Array) 
i 

//function to calculate Vx 
for(int i = 0; i<Grid.N-iberOfToints; i++) 
{ ~rray [i] = pa -> evaluate(Grid, i, pb, 0 ,  0) ;) 

3 

void CalcdVx(MyGene *pa, MyGP &pb, grids Grid, std::valarray<float> &Array) 
i 

//function to calculate dVx 
double dx = le-6; 

//disturb states 
grids grid2a, grid2b, gridla, gridlb; 

grid2a .disturb(Grid, 2, dx) ; 
grid2b.disturb(Grid, 2, -dx); 
gridla.disturb(Grid, 1, dx); 
gridlb.disturb(Grid, I, 4x1;  

for (int i=O; i<Grid.NumberOfPoints; i++) 
C 

float Vxla, Vx2a, Vxlb, Vx2b, fxl, fx2; 

fxl = Funcl .Eval(Grid.xl [i] , ~rid.x2[i]) ; 
fx2 = Func2 .Eval(Grid.xl [i] , Grid.x2 [ i l l  ; 

// Evaluate the fitness of a GP and save it into the GP class variable 
// stdFitness. 
void MyGP: :evaluate () 
C 

using std::valarray; 

float rawfitness=O.O; 
float dif f =O. 0; 
float alpha=O ; 



//Calculate Vx and dVx for CoarseGrid 
calcvx(NthMyGene (0) , *this, CoarseGrid, VxCoarse) ; 
calcdvx(NthMyGene(0), *this, CoarseGrid, dVxCoarse); 

// Give penalty if the function exceeds a certain length 
double len=lengthO ; 
if (len>cfgl.MaxLength) rawfitness+=len; 

// The evaluation function checks with values of the circle-grid 
for (int i=O; i<CoarseGrid.NumberOfPoints; i++) 
C 

// Give penalty when V(x) <= 0 
if (VxCoarse [i] <=O) rawf itness+=l; 

//Give penalty when Vdot(x) >= 0 
if (dVxCoarse [i] >= 0) rawf itness+=l; 

3 

float Vmin = VxCoarse . min (1 ; 
float Vmax = VxCoarse .maxO ; 
if (Vmax == Vmin && Vmax ==O) Vmax = 10; 

int GridBound = CoarseGrid.NumberOfPoints*0.5; 

//If rawfitness < GridBound, then calculate fitness on finer grid! 
if (rawfitness < GridBound) 
C 

//Calculate Vx and dVx for CoarseGrid 
CalcVx(NthMyGene(O), *this, FineGrid, VxFine); 
CalcdVx (NthMyGene (0) , *this, FineGrid, dVxFine) ; 

for (int i=O; i<FineGrid.NumberOfPoints; i++) 
C // Give penalty when V(x) < VO 

if (VxFine [i] <=O) rawf itness+=l ; 

//Give penalty when Vaot(xj > 0 
if (dVxFine [i] >= 0) rawf itness+=l ; 

//Give penalty for fixed decay rate 
if (cfgl.DecayRate && dVxFine[i] > (VxFine[i]*-cfgl.ValDecayRate)) rawfitness+=l; 

3 
3 

// If the rawfitness did not meet the GridBound condition for evaluation 
// on the FineGrid, is has not been evaluated on the Fine Grid. It then 
// could be possible that a better function (i.e. a function that did meet the 
// GridBound condition) has a worse rawfitness because is got penalized on the 
// FineGrid. To avoid this, we raise the rawfitness of the functions not evaluated 
// on the FineGrid. 
else rawfitness = rawfitness+2*(FineGrid.NumberOfPoints+GridBound); 



for (i=O; icFineGrid. Numberof Points; i++) test << VxFine [i] << "\n" ; 
test << "\n\nN; 
for (i=O ; i<FineGrid. Numberof Points ; i++) test << CixFine [ij << !!' \u -"  , - 

test. close 0 ; */ 

int flag = 0; 

// If fitness is zero the Lyapunov function met all the conditions. When we 
// are maximizing the region of attraction or the decayrate, it is now 
// time to modify those variables. 
if (rawfitness == 0) 
C 

// Ensuring that the Lyapunov function has closed curves 
if (cf gl . VMinMax) 
C 

// Calculate the difference between Vmin and Vmax. 
float reldif = Vmax-Vmin; 

//Give penalty for large differences between Vmax en Vmin 
if ((cfgl.VMinMax) && (reldif>=cfgl.MaxRelDif)) 
( rawfitness+=CoarseGrid.NumberOfPoints*reldif;~ 

//Algorithm for maximizing the decay rate or ROA. 
int ROAfitness = 0; 

//Calculate DecayRate and minimal value of DecayRate 
valarray<float> AlphaArray = -dVxFine/VxFine; 
float amin = AlphaArray . min() ; 

//calculate ROA and/or Decay Rate 
for (int i=O; i<FineGrid.NumberOfPoints; i++) 
C 

if (cf gl . MaxROA && VxFine [i] > Vmin) ROAf itness+=l ; 
if (cfgl.MaxDecay I1 cfgl.DecayRate) 

C if (dVxFine Cil > (VxFine [i] *-cf gl .ValDecayRate) ) rawf itness += I ; 3 
3 

if (cfgl.MaxROA && ROAf itness < minFit) 
C 

minFit = ROAfitness; 
flag = 1; 
cout << "Found one - ROA.\nU; 
SaveToMFile (Wile, It " , geo, "genROA" , DATAINT) ; 

3 
rawfitness+=ROAfitness; 



if (cfgl.MaxDecay && amin > cfgl.ValDecayRate) 
C 

flag = 1; 
cout << "Found one - Decay Rate: " << amin << ".\nu; 
cfgl.ValDecayRate = amin*1.25; 
SaveToMFiie(MFile, " " , amin, "ValDecayRateH, DATADOUBLE); 
SaveToMFile(MFile, " " , gen, "genDecay" , DATAINT) ; 
for (int k=O;k<FineGrid.Nmber~fPoints;k++j 
{ if (AlphaArray [k] < cf gl .ValDecayRate) rawf itness +=I; 3 

3 
3 
else 

//compensation for functions not running through rawfitness == zero loop 
rawfitness += FineGrid.Nmber0fPoints; 

3 

//Save this function to the MATfile 
if (flag == 1) 

C 
strstream strVx; 
strVx << *this << ends; 

char *Vx = strVx.str0; 
~aveToMFile (MFile , Vx , 0 ,  "Vx" , DATASTRING) ; 
OutFlag = I; 

3 

// Do NOT forget this. The fitness is saved with the function in stdFitness and 
// NOT in the variable rawfitness. 
// We could perform some standardizing method here. 
stdFitness=rawfitness; 

3 

// Create function and terminal set 
void createNodeSet (GPAdfNodeSet& adfNs) 
t 

// Reserve space for the node set. if you are aiso using ADF then reserve 
// more space ! ! 
adf Ns . reservespace (I) ; 

// Count the number of functions we are going to use during the run. 
int NumFunc = cfgl.NumberOfStates+useMUL+useSUB+useADD+ 

useDIV+usePOW+useCOS+useSIN+lO*useCON; 

// Declare space for the GPNodeSet, based on the total number 
// terminals and functions we are going to use. 
GPNodeSetk nsO=*new GPNodeSet (NumFunc); 

adf Ns .put (0, nso) ; 

// Use this if you also need to define an ADF set: 
// GPNodeSetk nsl=*new GPNodeSet (4); 



// adfNs.put (1, nsl) ; 

// Define functions/terminals and place them into the appropriate 
// sets. Terminals take two arguments, functions three (the third 
// parameter is the number of arguments the function has) 

// Define the function nodes 
if (useADD) ns0.putNode (*new GPNode ( '+ ' ,  "+" , 2)); 
if (useSW) ns0.putNode (*new GPNode 0-:, 'I-!! , 2)) ;  
if (useMUL) ns0 .putNode <*new GPNode ( '* ' , "*" , 2)); 
if (useDIV) ns0 .putNode (*new GPNode ( '%' , "%"  , 2)) ; 
if (usePOW) ns0 .putNode (*new GPNode ( '  ' , "^2", 1)) ; 
if (useSIN) ns0 .putNode (*new GPNode ( 's' , "sin" ,I>>; 
if (useCOS) ns0.putNode (*new GPNode ('c', "cos",~)); 
//nsO.putNode (*new GPNode ('A', "ADFO", 2)); 

// Define the terminal nodes 
if (useCON) C 

nsO. putNode (*new GPNode (1, " 1") ) ; 
nsO .putNode (*new GPNode (2, "2")) ; 
nsO. putNode (*new GPNode (3, " 3") ) ; 
ns0 .putNode (*new GPNode (4, "4")) ; 
nsO .putNode (*new GPNode (5, "5")) ; 
nsO.putNode (*new GPNode (6, "6")); 
nsO .putNode (*new GPNode (7, "7")) ; 
nsO. putNode (*new GPNode (8, "8") ) ; 
ns0 .putNode (*new GPNode (9, "9") ) ; 

switch (cf gl . NumberOf States) 
C 
case 3: ns0.putNode (*new GPNode (TERMINALX3, "~3")); 
case 2: ns0.putNode (*new GPNode (TERMINALX2, "~2")); 
case I: ns0.putNode (*new GPNode (TERMINALXI, "xi")); 
3 

// Use for ADF: 
// ns1.putNode (*new GPNode ( '+ ' ,  "+" , 2)); 
// nsl.putNode (*new GPNode ( ' * ' ,  "*" , 2)); 
// nsl .putNode (*new GPNode (TERMINALADFI , "XI")) ; 
// nsl . putNode (*new GPNode (TERMINALADF2, "x2") ) ; 

3 

// This function is not used in this implementation. Should be, because 
// when reaching large numbers of generations, the program tends to jam 
// in a not so neat way. Using this function should prevent that. 
void newHandler () 

C 
cerr << "\nFatal error: Out of memory." << endl; 
exit (I); //Call functions registered by atexit and -onexit, 

//flush all buffers, close all open files, and terminate process 
3 



// Declarations of variables used for printing the results! 
// Definitions are in printf ile. cpp 
extern ofstream tout; 
extern int printTexStyle; 

void main() 
( 

// We set up a new-handier, because we might need a l o t  sf memory, 
//set-new-handler (newhndler) ; 

// Declare the GP Variables, set defaults and read configuration 
// file. The defaults will be overwritten by the configuration file 
// when read. 
GPConf iguration conf ig (cout , MFile, conf igArray) ; 

// Initialize GP system 
GPInit (0, -1); 

// Open the main output file for data and statistics file. First set 
// up names for data file. We use also a TeX-f ile where the 
// equations are written to in TeX-style. Very nice to look at! 
// Remember we should delete the string from the stream, well just a 
// few bytes 

int errorl = Funcl.Parse(dx1, 2, 'x', 'y'); 
int error2 = Func2.Parse(dx2, 2, 'x' , 'y') ; 

if (error1 != -1 ( 1  error2 != -1) 
C 

cout << "Error parsing functions!\n"; 
exit (I) ; 

1 

ostrstream strOutFile, strStatFile, strTeXFile; 
strOutFile << cfgl.InfoFileDir << cfgl.InfoFileName << ".datU << ends; 
strStatFiie << cfgi.InfoFiieDir << cfgl.InfoFiieNme << ".stcU << ends; 
strTeXFile << cfgl.InfoFileDir << cfgl.InfoFileName << ".texl' << ends; 

of stream f out (strOutFile. str0) ; 
of stream bout (strStatFile. str () ) ; 
tout. open (strTeXFile. str () , ios : : out) ; 
tout << end1 

<< "\\documentclass[lOpt, a4](article)" << end1 

//make Latex title 
<< "\\title(" << cfgl.InfoTitle << "1" << end1 
<< "\\date(\\today)" << end1 

<< "\\begin(document)" << end1 
<< "\\maketitle" << endl; 



strstream txtout; 
// Print the configuration to the files just opened 
fout << cfg << endl; 
cout << conf ig << "\n1I; 
tout << "\\begin(verba)\n" << cfg << cfgl << "\\end(verba)\nN << endl; 

// Start the clock 
clock-t start ,finish; 
start = clock0 ; 

// Create the adf function/terminal set and print it out. 
GPAdfNodeSet adfNs; 
createNodeSet (adf Ns) ; 
cout << adfNs << endl; 
fout << adfNs << endl; 
tout << adfNs << endl; 

// Create a population with this configuration 
cout << "Hit any key to abort during run.\n\nn; 
cout << "Creating initial population . . .  I! , . 

MyPopulation* pop=new MyPopulation (cfg, adfNs); 
pop->create () ; 
cout << "Ok. \nu' ; 
pop->createGenerationReport ( I ,  0, fout, bout); 

// Print the best of generation to the LaTeX-file. 
printTexStyle=l; 
tout << *pop->NthGP (pop->bestOfPopulation); 
printTexStyle=O; 

// This next for statement is the actual genetic programming system 
// which is in essence just repeated reproduction and crossover loop 
// through all the generations . . . . .  
MyPopulation* newPop=NULL; 
double fit=l000.0; 
gen = I;  

// If we are maximizing the Region of Attraction or the decay rate, we don't want the 
// run to stop if fitness 0 is found. Otherwise we will stop the run if fitness 0 is 
// found. 
while (((cfgl.MaxDecayllcfgl.MaxROA)?1:fit>O)&&gen~cfg.NmberOfGenerations&&!~kbhit()) 
( // Create a new generation from the old one by applying the 

// genetic operators 
if (!cfg.SteadyState) 

newPop=new MyPopulation (cfg, adfNs); 
pop->generate (*newpop); 

// Delete the old generation and make the new the old one 
if (!cfg.SteadyState) 
{ delete pop; 

pop=newPop; 
3 



//Get fitness of Best of Population. 
fit =pop->NthGP (pop->bestof Population) ->getFitness () ; 

// Create a report of every generation and how well it is doing 
pop->createGenerationReport (0, gen, f out, bout) ; 

// Print the best of generation to the LaTeX-file. 
printTexStyle=i; 
tout << "Generation << geii << ", fitness '' 

<< (double) pop->NthGP (pop->bestOfPopulation)->getFitness() 
<< endl; 

tout << *pop->NthGP (pop->bestOfPopulation); 
printTexStyle=O; 

cout << "Generation " << gen << ", Fitness " 
<< pop->NthGP (pop->bestOfPopulation)->getFitness() << endl; 

// Stop the clock, calculate the elapsed time, and save it to the MATfile 
finish = clock(); 
double duration = (double) (finish - start)/CLOCKS-PER-SEC; 
SaveToMFile(MFile, "test", duration, "ElapsedTimeN, DATADOUBLE); 
SaveToMFile (MFile , I' " , gen-I, "Gen", DATAINT); 

// TeX-file: end of document 
printTexStyle=l; 
tout << "Generation " << gen << ", fitness I' 

<< pop->NthGP (pop->bestof Population) ->getFitness 0 
<< endl; 

tout << *pop->NthGP (pop- best of Population) ; 
printTexStyle=O; 

tout << end1 
<< "\\end{document)" 
<< end1 ; 

tout. close 0 ; 

cout << "\nBest of run: " << endl; 
cout << "Generation " << gen << ", Fitness " 

<< pop->NthGP (pop->bestOfPopulation)->getFitness() << endl; 

cout << "\nResults are in " << cfgl.hfoFileDir 
<< cfgl.InfoFileName << ".dat, " 
<< cfgl.InfoFileName << ".tex, " 
<< cfgl.InfoFileName << ".stc." << ends; 

// Create stream object 
strstream strBest; 

// Stream best of Pop to object 
strBest << *pop->NthGP (pop->bestOfPopulation) << ends; 



// Convert stream to char and save to MATfile. 
char *buffer = strBest.str0; 
if ( ! OutFlag) SaveToMFile("fun.mat" , buffer, 0.0, "Vx" , DATASTRING) ; 

// Delete some stuff. 
delete [I buffer ; 
delete pop; 

1 



Appendix B 

The Lyapunov Class 

The Interface: LyapVars.cpp 

class LyapVariables 
C public: 
LyapVariables 0 ; 
"LyapVariables 0 C); 

int MaxLength , 
NumberOf States, 
NumberOfPointsCircle, 
NumberOfPointsGrid, 
TestGrid, 
TestStability, 
VMinMax , 
MaxROA , 
DecayRat e ; 

double MaxRelDif, 
ValDecayRate; 

float RadiusCircle, 
RadiusGrid, 
PercentROA; 

char *InfoFileName; 
char *InfoFileDir; 
char *InfoTitle; 
char *funl; 
char *fun2; 

friend ostream &operator<< (ostream& os, LyapVariables) ; 

1; 

The Implementation: LyapVars.cpp 



extern grids FineGrid, CoarseGrid; 

// Setup default values 
LyapVariables : : LyapVariablesO 
i 
Numberof States = 2; 
MaxLength = 15; 
MaxRelDif = 1; 
MaxROA = 0; 

1 

// Write variables to ostream 
ostream &operator<<(ostream& os, LyapVariables lv) 
C 

os << I1\nLyapunov Variables 11 

<< I1\nNumber of States _ - 11 << lv. NumberOf States 
// << "\nNumber of points on Coarse grid = " << 1v.NumberOfPointsCoarse 
// << "\nRadius Coarse grid = I t  << lv . RadiusCoarse 
// << "\dumber of points on Fine grid = " << 1v.NumberOfPointsFine 
// << "\nRadius Fine grid = " << 1v.RadiusFine 

<< "\nVMin-Max Rule = " << (lv.VMinMax?"Yes":"No") 
<< "\decay Rate _ - II << (lv. DecayRate?I1Yes ":"NoH) 
<< "\nMaximize Region of Attraction = " << (Iv.MaxROA?"Yest1 : "No") ; 

os << "\n\nSaved file 
<< endl; 

return 0s; 
1 



Appendix C 

Grids Class 

The interface: grids. h 

class grids ( 
public: grids(); 

grids(const mxArray *) ; 

grids &operator= (const grids &) ; 

void declare(const mxArray *); 
grids& disturb(grids , int , float) ; 

double *xl,*x3,*x2; 
int NumberOfPoints; 

void makeMT () ; 

friend ostream &operator<<(ostream &, grids); 

private: int NumberOfStates; 
grids &create(int, int); 

The implent at ion: grids.cpp 

#include "grids. h" 
#include <iomanip.h> 
#include <fstream.h> 
#include "mat.hM 
#include "mex.hn 

grids : :grids () 



C 
NumberOf States = 0; 
NumberOfPoints = 0; 

> 
grids::grids(const mxArray *pal) 
C 

declare (pal) ; 
> 
void grids::declare(const mxArray *pal) 
C 

double *pa-x; 
int i = 0; 

if (Numberof States ! =0) 
C 

makeMT ( ) ; 
Numberofstates = 0; 
declare (pal) ; 

3 

//count number of points on grid 
NumberOf States = mxGetN (pal) ; 
NumberOfPoints = mxGetM(pa1); 

//get pointer to mxArray 
pa-x = mxGetPr (pal) ; 

//create and fill vectors 
switch (NumberOf States) 
C 
case 3: 

x3 = new double [NumberOfPoints] ; 
for (i=O; i<NumberOfPoints; i++) x3 [i] = pa-x [NumberOf Points*2+i] ; 

case 2: 
x2 = new double[NumberOfPoints] ; 
for (i=O; i<NumberOf Points ; i++) x2 [i] = pa-x [NumberOf Points+i] ; 

case i: 
xi = new double [NumberOf Points] ; 
for (i=O; i<NumberOf Points ; i++) xi [i] = pa-x [i] ; 

3 

void grids::makeMTO //free memory 
C 

switch (NumberOf States) 
C 

case 3: delete[] x3; 
case 2: delete [I x2; 
case 1: delete[] xi; 

3 
3 



grids &grids::operator=(const grids &s) 
{ 

if (this ! =&s) 
C 

NumberOfStates = s.Number0fStates; 
NumberOfPoints = s.Number0fPoints; 

this->create(NumberOfPoints, NumberOfStates); 

for (int i=~;i<NumberOfPoints;i++) 
C 

switch (Numberof States) 
C 
case 3 : this->x3 [i] = s . x3 [i] ; 
case 2 : this->x2 [i] = s . x2 [i] ; 
case 1 : this->xi [i] = s .XI [i] ; 
3 

1 

return *this; 
3 

grids &grids::create(int NumP, int NumS) 
C 

//Create a new grid 
this->NumberOfPoints = NumP; 
this->Numberofstates = NumS; 

switch (NumberOf States) 

case 3: x3 = new double[NumberOfPoints]; 
case 2: x2 = new double[NumberOfPoints]; 
case i : xi = new double [Numberof Points] ; 

3 

return *this; 
1 

grids& grids::disturb(grids st, int s, float k) //changes values of grids s 
{ 

this->create(st.NumberOfPoints, st.Number0fStates); 

for (int i=O;i<NumberOfPoints;i++) 
C 

switch (NumberOf States) 
C 

case 3: x3CiI = st.x3[il; 
case 2: x2 [i] = st .x2[i] ; 



case 1: xl[il = st.xiCi1; 
3 
switch (s) 
C 

case 3: x3[il = st.x3[il+k; break; 
case 2: x2[i] = st.x2[il+k; break; 
case I: xi [il = st .xl[il+k; break; 

3 

return *this; 
3 

ostream &operator<<(ostream &ct, grids st) 
( switch(st.Number0fStates) 

( case 3: ct << setw(l5) << "x3"; 
case 2: ct << setw(l5) << "x2"; 
case I: ct << setw(15) << "xl\n\nn; 

3 
for (int i=O;i<st.NumberOfPoints;i++) 
( switch(st .Numberof States) 
( case 3 : ct << setw (15) << st .x3 [i] ; 

case 2: ct << setw(l5) << st .x2 [i] ; 
case 1: ct << setw(l5) << st .xi [i] ; 

3 ct << endl; 
3 
return ct; 



Appendix D 

Printing 

The implementation: printfile.cpp 

#include <stdlib.h> 
#include <new.h> // For the new-handler 
#include <math. h> // f abs () 
#include <string.h> 
//using namespace std; 

// Include header file of genetic programming system. 
#include "gp . h" 
#include "gpconf ig . h" 

// The TeX-f ile 
of stream tout; 
int printTexStyle=O; 

// Print out a gene in typicai math styie. Don't be confused, I don't 
// make a difference whether this gene is the main program or an ADF, 
// I assume the internal structure is correct. 
void MyGene::printMathStyle (ostream& os, int lastprecedence) 
x 
int precedence; 

// Function or terminal? 
if (isFunction 0) 

C 
// Determine operator priority 
switch (node->value 0 ) 

case ' * ' :  
case '% '  : 
case ' ^ ' :  



precedence=i; 
break; 

case '+' : 
case '-' : 
case 's': 
case 'c': 
precedence=O; 
break; 

case ' A '  : 
precedence=2; 
break; 

default : 
GPExitSystem ("MyGene: :printMathStyleM, 

"Undefined function value"); 
3 

// Do we need brackets? 
if (lastPrecedence>precedence) 

0s << "("; 

/ /  Print out the operator and the parameters 
switch (node->value 0) 

case ' * ' :  
NthMyChild(0)->printMathStyle (os, precedence); 
0s << "*"; 
~th~yChild(1)->printMathStyle (os, precedence); 
break; 

case '+ ' :  
NthMyChild(0)->printMathStyle (os, precedence); 
0s << "+"; 
~th~yChild(1)->printMathStyle (os, precedence); 
break; 

case ' - ' :  
NthMyChild (0) ->printMathSt yle (0s , precedence) ; 
OS << "-11. 

3 

NthMyChild(1) ->printMathStyle (os, precedence) ; 
break; 

case ' - ' :  
0s << "(I1; 
NthMyChild(0) ->printMathStyle (0s , precedence) ; 
0s << ")-2"; 
break ; 

case '% '  : 
NthMyChild(0) ->printMathStyle (0s , precedence) ; 
0s << "/"; 
NthMyChild(1)->printMathStyle (os, precedence); 
break; 

case ' s ' :  
os << "sin("; 
NthMyChild(0) ->printMathStyle (os, precedence) ; 
0s << ")I1 ; 
break; 

case 'c': 



0s << "cos("; 
NthMyChild(0) ->printMathStyle (os, precedence) ; 
0s << ")"; 
break; 

case 'A' : 
// This is the ADFO-function. We put the parameters in 
// brackets and start again with precedence 0. 
os << "ADFO (";  
NrhMyCniid(0) ->print~athStyie (os, 0) ; 
0s << " , " ; 
~thM~Child(1) ->printMathStyle (os, 0) ; 
0s << "j"; 
break; 

default : 
GPExitSystem ("MyGene::printMathStyleU, 

"Undefined function value"); 
1 

// Do we need brackets? 
if (lastPrecedence>precedence) 

0s << 'I) " ; 

1 

// Print the terminal 
// if (isTermina1 0) 
// os << *node; 

if (isTermina1 0) 
switch (node->value 0 ) 

C 
case TERMINALXI: 

0s << "xi"; 
break; 

// case TERMINALX2: 
// 0s << "x-2"; 
// break; 

default : 
os<< *node; 
> 

// Print out a gene in LaTeX-style. Don't be confused, I don't make a 
// difference whether this gene is the main program or an ADF, I 
// assume the internal structure is correct. 
void MyGene: :printTeXStyle (ostream& os, int lastprecedence) 
C 
int precedence=O; 

// Function or terminal? 
if (isFunction 0) 



// Determine operator priority 
switch (node->value()) 

case ' * ' :  
case '%' : 
case I - ' :  

precedence=2; 
break; 

case '+; : 
case ' - ' :  
case Is': 
case 'c': 
precedence=l; 
break; 

case 'A' : 
precedence=3; 
break; 

default : 
GPExitSystem ("MyGene::printTeXStyleM, 

"Undefined function value") ; 
1 

// Do we need brackets? 
if (lastPrecedence>precedence) 

os << "\\left (" ; 

// Print out the operator and the parameters 
switch (node->value () ) 

case ' * ' :  
NthMyChild(0)->printTeXStyle (os, precedence); 
0s << " "; 
~thMychild(1)->printTeXStyle (os, precedence); 
break; 

case '+' : 
NthMyChild(0) ->printTeXStyle (os, precedence) ; 
0s << "+"; 
NthMyChild(1)->printTeXStyle (os, precedence); 
break; 

case '-' : 
NthMy~hild(0)->printTeXStyle (os, precedence); 
0s << 11-11 ' 

9 

Nth~y~hild(1)->printTeXStyle (os, precedence); 
break; 

case '%' : 
// As we use \frac, we start again with precedence 0 
os << "\\frat("; 
NthMyChild(0)->printTeXStyle (os, 0); 
0s << ")(It; 

NthMyChild(1) ->printTeXStyle (os, 0) ; 
0s << ")"; 
break; 

case ' ^ ' :  
~thMychild(0) ->printMathStyle (os, precedence) ; 



0s << "-2"; 
break; 

case 's): 
os << "sin("; 
NthMyChild(0)->printMathStyle (os, precedence); 
0s << ")"; 
break; 

case 'c': 
OS (< !! CoS (!! . 

9 

NthMyChild(0)->printMathStyle (os, precedence); 
0s << ")"; 
break ; 

case 'A' : 
// This is the ADFO-function. We put the parameters in 
// brackets and start again with precedence 0. 
0s << "f-2("; 
NthMyChild(0)->printTeXStyle (os, 0); 
0s << ","; 
NthMyChild(1)->printTeXStyle (os, 0); 
0s << ") "; 
break; 

default : 
GPExitSystem ("MyGene::printTeXStylem, 

"Undefined function value"); 
3 

// Do we need brackets? 
if (lastPrecedence>precedence) 

os << "\\right)"; 
3 

// We can't let the terminal print itself, because we want to modify 
// it a little bit 
if (isTermina1 0) 
switch (node->value 0) 

C 
case TERMINALXI: 

0s << "x-1"; 
break; 

case TERMINALX2: 
0s << "x-2"; 
break; 

case TERMINALADFI: 
0s << "x-1"; 
break; 

case TERMINALADF2: 
0s << "x-2"; 
break; 

default : 
os << node->value(); 

//GPExitSystem ("MyGene: :printTeXStyle","Undefined terminal value"); 
3 



// Print a Gene. 
void MyGene::printOn (ostream& 0s) 
C 
if (printTexStyle) 
printTeXStyle (0s) ; 

else 
printPiathStyie (OS> ; 

3 

// Print a GP. If we want a LaTeX-output, we must provide for the 
// equation environment, otherwise we simply call the print function 
// of our base class. 
void MyGP: :printon (ostream& 0s) 
C 

// If we use LaTeX-style, we provide here for the right equation 
// overhead used for LaTeX. 
if (printTexStyle) 
C 
tout << "\\begin(eqnarray)" << endl; 

// Print all ADF's, if any 
GPGene* current; 
for (int n=O; n<containerSize () ; n++) 

C 
if (n!=O) 

os << ~~\\end{eqnarray>\\\\\\begin(eqnarray)" << endl; //for SWP 
//OS << It\\\\" << endl; //for ~ i n ~ d t  

os << "f-" << (n+l) << "(x-i,x-2) & = & " ; 
if ((current=NthGene (n))) 
0s << *current; 

else 
os << " NONE"; 
os << "\\nonumber "; 

3 
tout << !!\\end{eqnarray)!! << endl ;< encll; 

3 
else 

// Just call the print function of our base class to do the 
// standard job. 



Appendix E 

Configuration file 

The implement at ion: config. cpp 

GPConfiguration::GPConfiguration (ostream &out, char *MFile, 
struct GPConf igVarInf ormat ion cf g [I ) 

// Constructor: Read in MAT-configuration file. 

pmat = matGpen(MFiie, "r") ; //open matf iie 
if(pmat == NULL) cout << "Error reading functions-file\nl'; 

// We save a pointer to the describing structure, if we need it 
// later in other routines. This is quick&dirty, but well in this 
// case I say use your own code if you think so 
saveStruc=cfg; 

// Search for variable name in configuration array. Don't report 
// an error, if not found there. This is probably done by 
// purpose. 

//int f ound=O ; 
for (int i=O ; cf g Cil . varPtr !=NULL; i++) 
< 

int found = 0; 



const char *name = cf g [i] .name ; 
mxArray *pa = matGetArray (pmat , name) ; 
i f  (pa==NULL) 
C 

found = 0;  
cout << "Parameter " << cf g [i] .name << l1 was not f ound\nl' ; 

3 
e l s e  found = I ;  

i f  (found == I )  
C 

double v a l  = *mxGetPr (pa) ; 
switch(cf g [il . typ) 
C 
case DATAINT: * ( i n t  *) cf g [i] . varPt r  = ( i n t )  va l ;  break; 
case DATAFLOAT: * ( f l o a t  *) cf g [i] . varPt r  = ( f l o a t )  va l  ; break;  
case DATADOUBLE: * (double *) cf g [i] . varPt r  = v a l  ; break; 
case DATASTRING: 

i f  ( mxIsChar(pa) != 1) cout << "Input must be a s t r i n g .  \n" ; 

i n t  buflen = (mx~etM(pa) * mxGetN(~a)) + I ;  
char *input-buf = new char [buf len l  ; 

char &input-buf 2 = *new char [buf len l  ; 
/ / input_buf2 = &input-buf; 
strcpy(&input_buf2, input-buf); 

de l e t e  input-buf; 
break; 

3 
case DATAGRID: 

C 
g r i d s  &grid1 = *new g r i d s ;  
g r id1  .dec lare  (pa) ; 
*(grids*)  cf g[i] . varPt r=gr id l ;  

mxDestroyArray (pa) ; 

1 

i f  (matClose(pmat)!= 0 ) cout << "Error closing funct ions- f i le ! \n l ' ;  

3 



GPConfiguration: :-GPConfiguration () 
// Destructor 

€ 
3 

void GPConfiguration::printOn (ostream& o) const 
// Print all configuration variables to o 

€ 
o << "# Configuration (default values), created by class configuration)\nfl; 

for (int i=O; saveStruc[i].varPtr!=NULL; i++) 
{ 
o << savestruc Ci] .name ; 
for (int j=strlen (savestruc [il .name) ; j<31; j++) 

0 << ' '; 
<( 11 = l l .  

J 

switch (savestruc [il . typ) 
{ 
case DATAFLOAT: 
o << *(float *) savestruc [il .varPtr ; 
break; 

case DATADOUBLE: 
o << *(double *) save~truc [i] .varPtr ; 
break; 

case DATAINT: 
o << * (int *) savestruc [i] . varPtr ; 
break ; 

case DATASTRING: 
o << *(char **) savestruc [il .varPtr ; 
break ; 

default : 
o << "Unknown data type in internal structure\nU; 

3 
o << endl; 

3 





Appendix F 

The Parser 

Function parser for C++ v1.3 by Warp. 

What's new 

What's new in v1.3: (Thanks to Roland Schmehl for these bug reports). 

0 The library parsed wrongly sinh, cosh and tanh (confused them with sin, cos and tan and 
than reported a syntax error for the 'h7). 

0 The library parsed an expression like "-cos(x)+cos(y)" like if it was "-(cos(x)+cos(y))" 
instead of " (-cos(x))+cos(y)" as it should. Fixed. 

0 The library didn't parse correctly numbers in the form " le-2". Fixed. 

0 Added some explanations at the end of the file. 

What's new in v1.21: 

0 Fixed several memory leaks (thanks to Stephen Agate for the bug report). 

What's new in v1.2: 

0 If you define the identifier NO-ASINH (see the beginning of fparser.cc), then support for 
the functions asinh, acosh and atanh will be removed (they are not part of the ANSI C 
standard and thus not supported by most compilers). 

0 A tiny bug fixed. 

What's new in vl.1: 

0 Fixed bug that made a negated function (eg. "-sin(x)") crash. 

Often people need to ask some mathematical expression from the user and then evaluate values 
for that expression. The simplest example is a program which draws the graphic of a user-defined 
function on screen. 
This library adds C-style function string parsing to the program. This means that you can 
evaluate the string sqrt (I-xA2+y-2) with given values of x and y. 



The library is intended to be very fast. It byte-compiles the function string at parse time and 
interpretes this byte-code at evaluation time. The evaluation is straightforward and no recur- 
sions are done (uses stack arithmetic). Empirical tests show that it indeed is very fast (specially 
compared to libraries which evaluate functions by just interpreting the raw function string). 

The library is made in ANSI C++. 

To use the FunctionParser class, you have to include "fparser.hhn. When compiling, you have 
to compile fparser.cc and link it to the main program. You can also make a library from the 
fparser.cc (see the help on your compiler to see how this is done). 

The FunctionParser class has the following methods: 

0 i n t  Parse(const char* Function, unsigned Vars, . . .  ) ;  

Parses the given function (and converts it to internal format). Destroys previous function. 
Following calls to Eval () will evaluate the given function. The string pointed by 'Function' 
is not needed anymore after parsing. 

- Parameters: 

Function: Pointer to the function string 
Vars : Number of variables in the function 
... . List of variable names, char type. Eg. 'x' 

- Return values: 

* On success the function returns -1 

* On error the function returns an index to the string where the error was found 
(0 is the first character, 1 the second, etc). If the error was not a parsing error 
returns an index to the end of the string +l. 

- Example: Parse(3*x+yn, 2, 'x', 'y');" 

0 const char* ErrorMsg(void) ; 

Returns a pointer to an error message corresponding to  the error caused by Parse(). If no 
such error has occurred, returns 0. 

0 double Eval(doub1e x=O, . . .  ) ;  double Eval(double* Vars); 

Evaluates the-function given to Parse () with the values given to Eval 0. Each value given 
to  Eva10 corresponds the variables given to  Parse(). There must be as many parameters 
as given to Parse 0. 

- Parameters: List of doubles, one for each variable given to the P a r s e 0  function. 

Alternatively you can give a pointer to an array of doubles (it may be a little bit 
faster). There must be as many items in the array as number of variables given to 
Parse 0 

- Return values: 

* On success returns the evaluated value of the function given to Parse 0. 
* On error (such as division by 0) the return value is unspecified, probably 0. 

- Example: 



int EvalError (void) ; 

Used to test if the call to Eval 0 succeeded. 

- Return values: If there was no error in the previous call to EvalO, returns 0 else 
returns a positive value as follows: 

1: division by zero 
2: sqrt error (sqrt of a negative value) 
3: log error (logarithm of a negative value) 
4: trigonometric error (asin or acos of illegal value) 

- Example program: 

#include <iostream> 
#include "fparser.hhm 
using namespace std; 

int main(void) 
{ 

Functionparser Func; 

double Vars [I={ 1 . 5 ,  -2.5 1; 

cout << I1f (1.5,-2.5) = << Func.Eval(Vars) << endl; 

return 0 ;  

1 

The function string 

The function string understood by the class is very similar to the C-syntax. Arithmetic float 
expressions can be created from float literals, variables or functions using the following operators 
in this order of precedence: 

0 expressions in parentheses first 
-A unary minus 
A ̂  B exponentiation (A raised to the power B) 
A*B A/B multiplication and division 
A+B A-B addition and subtraction 

Since the unary minus has higher precedence than any other operator, for example the following 
expression is valid: x*-y 



The class supports these functions: 

abs(A) 
acos( A) 
acosh(A) 
asin(A) 
asinh(A) 
at an (A) 
at anh (A) 
ceil( A) 
cos (A) 
cosh (A) 

exp(A) 

floor (A) 
log( A) 
sin (A) 
sinh (A) 
sqrt(A) 
tan( A) 
t anh (A) 

Absolute value of A. If A is negative, returns -A otherwise returns A. 
Arc-cosine of A. Returns the angle, measured in radians, whose cosine is A. 
Same as acos() but for hyperbolic cosine. 
Arc-sine of A. Returns the angle, measured in radians, whose sine is A. 
Same as asin() but for hyperbolic sine. 
Arc-tangent of (A). Returns the angle, measured in radians, whose tangent is (A). 
S z z e  2s 2 t 4 )  but fer hyperbo!ic tangext . 
Ceiling of A. Returns the smallest integer greater than A. Rounds up to the next higher integer. 
Cosine of A. Returns the cosine of the angle A, where A is measured in radians. 
Same as cos() but for hyperbolic cosine. 
Exponential of A. Returns the value of e raised to the power A where e is the base of 
the natural logarithm, i.e. the non-repeating value approximately equal to 2.71828182846. 
Floor of A. Returns the largest integer less than A. Rounds down to  the next lower integer. 
Natural logarithm of A. Returns the natural logarithm base e of the value A. 
Sine of A. Returns the sine of the angle A, where A is measured in radians. 
Same as sin() but for hyperbolic sine. 
Square root of A. Returns the value whose square is A. 
Tangent of A. Returns the tangent of the angle A, where A is measured in radians. 
Same as tan() but for hyperbolic tangent. 

Examples of function string understood by the class: 

Contacting the author 

Any comments, bug reports, etc. should be sent to warp@iki.fi 

The algorithm used in the library 

The whole idea behind the algorithm is to convert the regular infix format (the regular syntax 
for mathematical operations in most languages, like C and the input of the library) to postfix 
format. The postfix format is also called stack arithmetic since an expression in postfix format 
can be evaluated using a stack and operating with the top of the stack. 

For example: 
infix postfix 
2+3 2 3 + 
1+2+3 I 2 + 3 + 
5*2+8/2 5 2 * 8 2 / + 
(5+9)*3 5 9 + 3 * 

The postfix notation should be read in this way: 
Let's take for example the expression: 5 2 * 8 2 / + 

0 Put 5 on the stack 

0 Put 2 on the stack 

0 Multiply the two values on the top of the stack and put the result on the stack (removing 
the two old values) 



0 Put 8 on the stack 

0 Put 2 on the stack 

0 Divide the two values on the top of the stack 

0 Add the two values on the top of the stack (which are in this case the result of 5*2 and 
812, that is, 10 and 4). 

At the end there's only one vahe in the stack, and that value is the result of the expression. 

Why stack arithmetic? 
The last example above can give you a hint. In infix format operators have precedence and 
we have to  use parentheses to group operations with lower precedence to be calculated before 
operations with higher precedence. This causes a problem when evaluating an infix expression, 
specially when converting it to byte code. For example in this kind of expression: (x+l) / (y+2) 
we have to  calculate first the two additions before we can calculate the division. We have to also 
keep counting parentheses, since there can be a countless amount of nested parentheses. This 
usually means that you have to do some type of recursion. 

The most simple and efficient way of calculating this is to convert it to  postfix notation. The 
postfix notation has the advantage that you can make all operations in a straightforward way. 
You just evaluate the expression from left to right, applyifig each operation directly a d  that's 
it. There are no parentheses to worry about. You don't need recursion anywhere. You have to 
keep a stack, of course, but that's extremely easily done. Also you just operate with the top of 
the stack, which makes it very easy. You never have to  go deeper than 2 items in the stack. And 
even better: Evaluating an expression in postfix format is never slower than in infix format. All 
the contrary; in many cases it's a lot faster. The above example could be expressed in postfix 
format: x I + y 2 + /. 

The good thing about the postfix notation is also the fact that it can be extremely easily ex- 
pressed in byte-code form. You only need a byte value for each operation, for each variable and 
to push a constant to the stack. Then you can interpret this byte-code straightforwardly. You 
just interpret it byte by byte, from the beginning to the end. You never have to go back, make 
loops or anything. 

This is what makes byte-coded stack arithmetic so fast. 
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Abstract 

In this paper Genetic Programming is used 
to find Lyapunov functions for (non)linear 
differential equations of autonomous sys- 
tems. As Lyapunov functions can be dif- 
ficult to  find, we use GP to make the deci- 
sions concerning the form of the Lyapunov 
function. As an example two systems are 
taken to compute Lyapunov functions for. 
Although the GP algorithm is programmed 
to search for local stability, for most runs 
the result is a Lyapunov function that as- 
sures global stability. Further testing is nec- 
essary to demonstrate if similar results can 
be obtained for more complex systems. 

1 INTRODUCTION 

In 1892 Lyapunov introduced a way to prove stability 
of mechanical nonlinear systems (Lyapunov, 1892). 
Lyapunov's theory was based on energy considera- 
tions. If a system, linear or nonlinear, is always dis- 
sipating energy, except a t  the origin, then the sys- 
tem must eventually settle down to the equilibrium 
point in the origin. So the energy must be a positive 
definite function for all non-zero states. This the- 
orem can easily be extended to arbitrary nonlinear 
systems. Faced with a set of nonlinear differential 
equations, the basic procedure of Lyapunov's direct 
method is to generate a scalar 'energy-like' function 
for the dynamic system and examine the variation in 
time of it. 

The problem lies in finding such a Lyapunov func- 
tion, given the fact that the inability to find a Lya- 
punov function does not mean that the system is un- 
stable. Several techniques, e.g. the variable gradient 
method (Schultz and Gibson, 1962) and Krasovskii's 
theorem (Krasovskii, 1963) have been developed to 
find a Lyapunov function, but there is still no uni- 
versally 'best' method for finding a Lyapunov func- 
tion. The problem with these techniques is that 
before finding the Lyapunov function restrictive as- 
sumptions on the system have to be made. As will 

be shown, few restrictions and assumptions are nec- 
essary when trying to find a Lyapunov function using 
GP. 

In Section 2 the Lyapunov theorem will be explained 
in more detail. Section 3 explains the GP algorithm. 
Then, in Section 4, the GP algorithm will be applied 
to two problems. The paper will be concluded in 
Section 5. 

2 LYAPUNOV'S DIRECT 
METHOD 

Consider the set of (non)linear differential equations 
represented as in Eq. (1) 

The Lyapunov theorem for local stability states that 
the equilibrium at the origin is locally (asymptoti- 
cally) stable when two conditions are met. 

Theorem 1 (Local stability) Ih in a ball BR,, 
there exist a scalar function V(x) with continuous 
first partial derivatives such that 

0 V(x) is positive definite (locally i n  BRo) 

V(X) i s  negative semi-definite (locally in BE,) 

then the equilibrium point 0 i s  locally stable. If actu- 
ally the derivative V(X) i s  locally negative definite i n  
BRo, then the stability i s  asymptotic. 

~ ( x )  can be calculated as follows: 

To ensure global stability Lyapunov posed the fol- 
lowing theorem: 

Theorem 2 (Global stability) Assume that there 
exists a scalar function V of the state x, with contin- 
uous first order derivatives such that 



Figure 1: Graphical interpretation of a positive defi- 
nite 

0 

0 

0 

function 

Figure 2: Example of open contour curves 

V(x) i s  positive definite for all x 

V(X) i s  negative definite for all x 

V(x) 4 cc as llxll 4 cc 

then the equilibrium at  the origin i s  globally asymp- 
totically stable. 

As an example, a graphical representation of a posi- 
tive definite function for a 2-dimensional system can 
be made as follows: taking XI and xz as Cartesian 
coordinates we can draw contour curves, each cor- 
responding to a positive value of V, see Figure 1. 
Furthermore, we would like the curves to be closed, 
at least locally around the origin. If the curves are 
not closed, it is possible for the state trajectories to  
drift away from the equilibrium point, even though 
the state keeps going through contours corresponding 
to smaller and smaller V's, see Figure 2. 

3 GP ALGORITHM 

We present a set of (non)linear differential equations 
to the GP algorithm. The GP algorithm evolves a set 
of Lyapunov functions candidates and assigns them a 

fitness value, based on how well the candidate func- 
tion satisfies the conditions of the local stability the- 
orem (Theorem 1). 

The GP run is performed using a C++ program 
(Fraser and Weinbrenner, 1997) with modifications 
to allow evaluation in MATLAB (The MathWorks 
Inc., 1999). Calculations are performed on a 500 
MHz Pentium 2 processor with 128 Mb internal mem- 
ory, running Windows 95. 

Before the fitness of the GP-generated Lyapunov 
function can be calculated, a number of fitness cases 
has to be defined. 

3.1 CHOICE OF FITNESS CASES 

To prove local stability around the origin, the Lya- 
punov function has to meet the criteria stated in The- 
orem 1 within a certain area. Points in this area are 
taken as fitness cases, starting with the points on the 
edge of this area. These points are typically taken 
in a circle around the origin for a 2 dimensional sys- 
tem (see Figure 3), and in a hyper-ball around the 
origin for higher dimensional systems. Also a rectan- 
gular grid is defined (see Figure 4). The circle grid 
is always calculated in a way that it always includes 
the points on the axes to assure a positive definite 
function containing all nonzero states. The origin is 
excluded from the rectangular grid because it cannot 
meet the Lyapunov requirements, i.e. in the origin 
V(x) = 0 and ~ ( x )  = 0. 

Figure 3: Circle grid 

3.2 FITNESS CALCULATION 

Best of run is the function with fitness value zero. 
The fitness of a GP-generated Lyapunov function 
candidate can be calculated as follows: 

1. Evaluate V(x) for all fitness cases p. If V(x) 5 
0 b' p then increase the fitness value. 

2. Calculate ~ ( x ) .  

3. If ~ ( x )  2 0 V p then increase the fitness value. 



Figure 4: Circle and fine grid 

4. (optional) Calculate difference between Vmi, 
and Vmax. If this value is larger than a then 
increase the fitness value. 

5. If f i tness = 0 then calculate fitness for the 
points on the rectangular grid (repeating step 
1 to 3). 

6. If fitness # 0 then 

where npg is the number of points on the rect- 
angular grid. Candidates that do not meet all 
the conditions for the circIe grid, are not evalu- 
ated on the rectangular grid. Suppose that can- 
didate A does not meet the conditions on the 
circular grid, it lacks one point. According to  
the rules described above, candidate A would be 
assigned fitness value 1. Suppose now that can- 
didate B does meet all conditions for the circle 
grid points, but doesn't meet all the conditions 
for the rectangular grid, it lacks five points. In 
the end this would mean that candidate A is a 
better candidate than B, which is not true. To 
prevent this, the number of points on the rectan- 
gular grid is added to the fitness value of candi- 
dates that are not evaluated on the rectangular 
grid. 

7. (optional) Standardize or normalize fitness 
value. 

Item 4 has been added to promote that the contour 
curves of the Lyapunov function will be closed, as 
discussed in Section 2. By choosing a value for a we 
can control the form of the contour curves. When a! 

is a large value, Vmi, and Vmax are allowed to dif- 
fer greatly, and therefore the forms of the contour 
curves do not much resemble circular forms. When 
the value for a! is chosen zero, then Vmin and VmaX 
are forced to become equal, which will result in con- 
tour curves that approximate circles, and are there- 
fore closed curves. 

4 TESTING THE GP 
ALGORITHM 

We have to  keep in mind that the Lyapunov function 
found by the GP algorithm is only valid for the points 
tested on the grid, and not for the whole domain. So 
the function has to  be tested analytically afterwards. 
One of the options to perform this test is by looking 
at the contour plot of V(x), as described in Section 2. 
To test the GP algorithm some problems have been 
posed, beginning with a very simple system. The 
settings for the GP algorithm are the same for each 
problem discussed: 

Population Size 100 
Crossover probability 0.7 
Mutation probability 0.3 
Genetic Operators +,-, x 
Tournament selection 

4.1 SIMPLE PROBLEM 

To test the GP algorithm we start with a very simple 
problem of which we know the answer in advance. 

A valid Lyapunov function for the system described 
in Eq. (3) is V(x) = xf+xz. This function is positive 
definite for x E R2.  Furthermore, the derivative of 
V X )  is V )  = -22:-2x;, which is negative definite 
for x E R . 
We start the GP run with 24 fitness cases on a circle 
with radius 1 around the origin, and we do not en- 
force the Vmtn/Vmax rule. The results are listed in 
Table 1. 

Fitness I V(x) 
0 I x 4 + x i  

xq + 2; + X l X 2  

x:: + 5; 

x:: - 2x; + 4x1 - 2 2  

2:: + 3x2 + (2x2 - 2)z1 
x:: + 2: + XlXZ 

x? + XE 
xq + 2; + 21x2 
x:: + x; 
x:: + x: + 21x2 

Table 1: Results 

Only 4 out of 10 runs resulted in V(x) = x: + xz 
which ensures global asymptotic stability. The Lya- 
punov function V(x) = xf + x; + 21x2, does have 
closed contour curves, but its derivative is: ~ ( x )  = 
-22: - 22;(1 + 2 2 ) .  This result is only negative 
definite if (1 - 2) > 0, so only local stability is as- 
certained. The Lyapunov functions of runs 4 and 5 
are not even positive definite. The reason that these 
functions are found as an answer of the GP run, is 



that for each of the points that was tested, the con- 
ditions of theorem 1 are valid, but they are not for 
the whole domain. 

When applying the Vm~,/Vm,, rule, 9 out of 10 runs 
result in V(x) = xf + xf .  The last result didn't end 
up with fitness zero. The maximum number of gen- 
erations was set to  100. At generation 100 V(x)had 
fitness 4. It would probably had resulted in fitness 
0, if the maximum number of generations had been 
higher. 

Although we were only looking for local stability, the 
er,d result V(X) = z?+z$ meets the criteria for global 
stability (Theorem 2). 

4.2 NONLINEAR PROBLEM 

We submitted the set of nonlinear differential equa- 
tions, described in Eq. (4), to the GP algorithm. 

We use only the circle grid with radius 1 and 24 
points. The demand for Vmin = Vmaz is in use. 

Although the number of generations needed to 
achieve fitness zero differed, the Lyapunov functions 
found for the system are all the same: V(x) = xq+x;. 
The derivative for this Lyapunov function is ~ ( x )  = 
-4s: - 4x$ (1 - xlx2). In the region (1 - xlxz) > 0 
~ ( x )  is locally negative definite. As V(x) is positive 
definite, the stability is (locally) asymptotic. 

A similar result is deduced using the variable gradi- 
ent method (see Slotine and Li, 1991). To use the 
variable gradient method, one has to assume a form 
of the Lyapunov function beforehand. Using GP to 
find a Lyapunov function, we do not need to do this. 

5 CONCLUSIONS AND FUTURE 
RESEARCH 

Finding a Lyapunov function and thereby proving 
(local) stability of the equilibria of a system is not 
an easy task, but GP can lighten the task a little. 
Although only simple systems have been investigated 
here, the results are promising. Admittedly, not ev- 
ery run ends up in a valid Lyapunov function, but 
one does not have to  go into complex mathematical 
calculations to obtain a Lyapunov function. Only 
validation of the Lyapunov function is needed after- 
wards. 

functions, because the problems evaluated here could 
be solved using only the circle grid. We expect that, 
when evaluating more complex problems, the rectan- 
gular grid will be needed. 

So far, only systems with two states have been tested. 
The program is capable of searching for Lyapunov 
functions for higher dimensional systems, which will 
be tested in the near future. 

During the runs we did not experiment with the GP 
settings for e.g. number of generations, the popula- 
tion size etc. Further testing is needed on how these 
parameters can influence the search for a Lyapunov 
function. Furthermore, we did not use more than 
three genetic operators, thereby reducing the flexi- 
bility of the solutions. By using more operators a 
greater variety of possible solutions can be addressed. 

Another point for future research is to  compare this 
method of finding Lyapunov functions to  other tech- 
niques. It  is clear that by using GP we do not need to 
use difficult mathematical methods, but we still have 
to  examine whether GP finds comparable or even 
better Lyapunov functions than other techniques. 

The next step is to use this GP algorithm in a larger 
problem, namely identification of systems. In previ- 
ous research we tried to dynamically identify a phys- 
ical system. Using GP resulted in a mathematically 
correct function, but in simulation it turned out to 
be an unstable system. By applying the Lyapunov 
search during the identification process, we expect to 
overcome this problem. 
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To assure that more runs will result in a valid Lya- 
punov function, the fitness evaluation has to be im- 
proved. More specifically: the fitness cases have to 
be chosen carefully. We need to try to choose the grid 
density in a way that will ensure that ~ ( x )  will not 
significantly change between two grid points. This 
concept has to be investigated further. The rectangu- 
lar has not been used, during the search for Lyapunov 




