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Two-dimensional turbulence in a rectangular domain self-organises into large-scale unidirectional jets. While
several results are present to characterize the mean jets velocity profile, much less is known about the
fluctuations. We study jets dynamics in the stochastically forced two-dimensional Euler equations. In the
limit where the average jets velocity profile evolves slowly with respect to turbulent fluctuations, we employ
a multi-scale (kinetic theory) approach, which relates jet dynamics to the statistics of Reynolds stresses. We
study analytically the Gaussian fluctuations of Reynolds stresses and predict the spatial structure of the jets
velocity covariance. Our results agree qualitatively well with direct numerical simulations, clearly showing
that the jets velocity profile are enhanced away from the stationary points of the average velocity profile. A
numerical test of our predictions at quantitative level seems out of reach at the present day.

Key words: 2D Turbulence; Zonal Jets; Atmosphere dynamics; Stochastic partial differential equations;
Cumulant Expansion; Homogenisation; Kinetic Theory

1. Introduction

Turbulence in planetary atmospheres, oceans (Vallis 2006), rotating flows (Morize et al. 2005) and two-
dimensional turbulence (Sommeria 1986; Yin et al. 2003) leads very often to self-organisation in large scale
coherent structures. The explanation of their emergence and their characterisation is a major theoretical
issue in atmospheric and oceanic dynamics as well a very challenging question from a fundamental point of
view. One of the commonly observed large scale structures are jets, i.e. flows that are in average orizontal and
unidirectional; the reader can consult the special issue of Journal of Atmospherical Science (higeo Yoden 2008)
for a recent account on the jet dynamics in planetary atmospheres and oceans. A similar self-organization
into jets has also been observed in two-dimensional turbulence (Bouchet & Simonnet 2009; Yin et al. 2003).

Much effort has been devoted in literature to characterise the average structure of jets, such as their mean
velocity profile as a function of the latitude. Little is instead known on the fluctuations, small and large, they
undergo. It is however of obvious crucial importance to understand how far the instantaneous jet velocity
profiles typically are from their average state. The present paper deals with such a question in a very simple,
yet relevant, setup.

The aim of this work is to consider an approach based on statistical mechanics to study the fluctuations
of the jet velocity profile. We will focus on a non-equilibrium statistical mechanics approach: forces and
dissipation induce a flow of energy from small to large scales where it is dissipated. The theoretical framework
we employ has been originally developed in (Bouchet et al. 2013, 2014b) and shares strong similarities with:
i) kinetic theories for plasma and gravitational systems (Nicholson 1983; Balescu 1975; Nardini et al. 2012;
Nardini et al. 2012; Heyvaerts 2010); ii) theories based on quasi-linear approximation such as second-order
cumulant expansion (CE2: (Marston 2010, 2011; Tobias & Marston 2013; Marston et al. 2008; Marston 2011;
O’Gorman & Schneider 2007; Srinivasan & Young 2011; Ait-Chaalal et al. 2015)) and Stochastic Structural
Stability Theory (SSST: (Farrell & Ioannou 2003a; Farrell & Ioannou 2007; Bakas & Ioannou 2014; Parker &
Krommes 2013)); iii) averaging and homogenization theory for stochastic systems (Gardiner 1994; Pavliotis
& Stuart 2008). In few words, our theory is a multi-scale approach: an effective dynamics of the jet velocity
profile is derived integrating out turbulent non-zonal fluctuations.

Even if similar to CE2 at first sight, our multi-scale approach differs from them and is expected to capture
not only the evolution of the average jet velocity profile but also its Gaussian fluctuations. In this paper we
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show for the first time that this is indeed the case: we analytically derive predictions for the fluctuations of
the jet velocity profile close to its steady state and test them against direct numerical simulations. We believe
this to be an important result, as it is well known (Kraichnan 1980; Marston et al. 2014) that improvement
of the cumulant expansion beyond second order suffers of realizability problems: these approaches are not
self-consistent without further ad-hoc approximations (see however (Marston et al. 2014) for a recent careful
discussion of this point and implementations of the cumulant expansion beyond second order).

In order to progress as far as possible with analytical tools, we consider in this paper the stochastically
forced 2-d Euler equation. We analyse the covariance and variance of the jet velocity profile, defined as

C(y1, y2,∞) = lim
t→∞

E[U(y1, t)U(y2, t)]− Ud(y1, t)Ud(y2, t) V(y,∞) = lim
t→∞

C(y, y, t) , (1.1)

where U(y, t) is the jet velocity profile (i.e., the zonal component of the zonally averaged velocity profile) and
Ud is the one averaged over noise realisations. We predict their spatial structure, showing that C(y1, y2,∞) is
highly enhanced at those points where Ud(y1) = Ud(y2), except if U ′d(y1) = 0. Thus, the jet velocity profiles
fluctuates much more away from the stationary points of Ud(y) than close to them.
More precisely, denoting by α the ratio between i) the time-scale for the advection of small scales vortices
by the large scale jet and ii) the time-scale for the evolution of Ud, we consider the limit where (hyper)-
viscosity is negligible and α is a small parameter. If we were dealing with a system with a finite number
of degrees of freedom, one would expect that both the variance and the covariance of the zonal jet velocity
profile were small, of order O(α). However, in the context of the 2D stochastic Euler equations, ultraviolet
divergences renormalise such result. We will indeed show that, in proper non-dimensional units that will be
introduced in section 2, our theory predicts that C(y1, y2,∞) ∼ O(α) except when Ud(y1) = Ud(y2) and
U ′d(y1) 6= 0, where we have C(y1, y2,∞) ∼ O(1). Moreover, V(y,∞) ∼ O(1) unless U ′d(y) = 0, in which case
V(y,∞) ∼ O(α). Mathematically, we can express such result saying that C(y1, y2,∞) (but not V(y,∞) !)
converges in distributional sense.

Employing direct numerical simulations, we find a clear footprint of out predictions in the behaviour
of the fully non-linear stochastic 2D Euler equations: C(y1, y2,∞) and V(y,∞) present a spatial structure
very similar to the one described above. The reader can already consult figures 4 and 5 in this respect.
Unfortunately, a quantitative comparison of our theoretical results with direct numerical simulations seems
out of reach at the present day. In particular, we are unable to verify the correctness of the above scaling
with α: the problem is computationally hard, as one has to work in the limit of negligible (hyper)-viscosity
and very slow evolution.

The paper is organised as follows. In section 2 we briefly recap the theoretical framework originally devel-
oped in (Bouchet et al. 2013): the effective evolution equation for the jet velocity profile is given in (2.15)
and is a stochastic partial differential equation. In section 3 we compute the statistical properties of the noise
for an arbitrary average jet velocity profile. This section contains the central theoretical result of this paper
which is summarised in eq. (3.6) and (3.20): it describes the spatial structure of the covariance of the noise
appearing in the effective evolution of the jet velocity profile. In section 4, we discuss the implication for
the variance and the covariance of the jet velocity profile and compare our predictions to direct numerical
simulations of stochastically forced 2D Euler equation. We conclude in section 5 with a summary and the
perspective of our work. Several appendices contain those results that are too technical to fit in the body of
the paper.

2. Two-dimensional stochastic Euler dynamics in a rectangular domain

We consider the dynamics of a two-dimensional (2D) flow subjected to random forces, described by the
equation

∂ω

∂t
+ v · ∇ω = −λω − νn (−∆)

n
ω +
√
ση , (2.1)

for the vorticity field ω(r, t), where r = (x, y) is the two-dimensional position vector. Following the language
commonly used in geophysical fluid dynamics, we refer to x as the zonal and to y as the meridional directions.
The velocity field v(r, t) = (u, v)(r, t) is related to the vorticity field through the relation ω = (∇× v) · ez,
where ez denotes the unit vector normal to the surface of the flow. Energy is dissipated at large scales by
Rayleigh (or Ekman) friction with coefficient λ and νn is the hyper-viscosity coefficient (viscosity for n = 1).
When n = 1 equation (2.1) is the 2D Navier-Stokes equation; however as we will be particularly interested
in the limit in which viscosity is negligible and only serve to stabilise the numerical integration of (2.1), we
just refer to equation (2.1) as the 2D Euler equation.
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We consider the case of a biperiodic domain D = [0, 2πL/r)×[0, 2πLr) with aspect ratio r2, i.e. the velocity
and vorticity fields satisfy f (x+ 2πL/r, y) = f (x, y) and f (x, y + 2πLr) = f (x, y). The forcing term η is
assumed to be a white in time Gaussian noise with autocorrelation function

E [η(r1, t1)η(r2, t2)] = C(r1 − r2)δ(t1 − t2) (2.2)

where E is the expectation over realizations of the noise η; the covariance C is required to be an even positive
definite function, periodic with respect to x and y. As discussed below, σ is the average energy input rate. We
assume in this paper that the noise autocorrelation function C is translationally invariant in both direction.
The fact that C is invariant in the x-direction is important for some of the computations. However the
generalization to non-meridionally invariant forcing would be straightforward. Moreover, we do not force
directly the jet, by imposing that

Cz ≡
1

2π/r

∫ 2π/r

0

C(r) dx. = 0 . (2.3)

This setup is sounding for many applications, as forcing typically acts at scales much smaller than the ones
where coherent structures develop.

In the turbulent regime that will be defined later on, the stochastic 2D Euler dynamics (2.1) self-organises
into long-living coherent structures at the large scales of the flow (Bouchet & Venaille 2012). In a square
domain (with aspect ratio r = 1), this large-scale structure is a dipole of vortices. In a rectangular domain
with r > 1 (r < 1), the large-scale structure is a parallel flow in the x (y) direction. The situation is similar
to zonal jet formation in models of geophysical turbulent flows (Kraichnan & Montgomery 1980; Vallis 2006).

2.1. Energy balance and non–dimensional equations

Equation (2.1) with λ = σ = νn = 0 describes a perfect 2D flow. The equations are then Hamiltonian and
they conserve the kinetic energy

E [ω] =
1

2

∫
D

dr v2 = −1

2

∫
D

dr ω∆−1ω (2.4)

where ∆−1 denotes the inverse Laplacian operator; and the Casimir functionals

Cs[ω] =

∫
D

dr s(ω), (2.5)

for any sufficiently regular function s.
Because the force η in (2.1) is a white in time Gaussian process, we can compute a-priori the average, with

respect to noise realizations, of the input rate for quadratic invariants. We impose, without loss of generality
(indeed, multiplying C by an arbitrary positive constant amounts at renormalizing σ) that that

−2π2L2
(
∆−1C

)
(0) = 1 .

With the above choice, the average energy input rate is σ and the average energy input rate by unit of area
is ε = σ/4π2L2. We then consider the energy balance for equation (2.1), with E = E [E [ω]]:

dE

dt
= −2λE − νnHn + σ, (2.6)

where Hn = −E
[∫
D ψ (−∆)

n
ω
]
. For most of the turbulent flows we are interested in, the ratio 2λE/νnHn will

be extremely large and (hyper)-viscosity is negligible for energy dissipation. Then, in a statistically stationary
regime, the approximate average energy is E ' σ/2λ, expressing the balance between stochastic forces and
linear friction in (2.1). This average total energy estimate yields the typical jet velocity U ∼

√
σ/2λ, so

that an estimate of the time scale for the advection of small-scale turbulent vortices by the large scale jet is
τ ∼ L/U .

We thus perform a transformation to non-dimensional variables such that in the new units the domain is
D = [0, 2π/r)× [0, 2πr) and the approximate average energy is 1. This is done introducing a non-dimensional
time t′ = t/τ and a non-dimensional spatial variable r′ = r/L with τ = L2

√
2λ/σ. The non-dimensional

physical variables are then ω′ = τω, v′ = τv/L, and the non-dimensional parameters are defined by

α = λτ = L2

√
2λ3

σ
=

L

2π

√
2λ3

ε
, (2.7)

ν′n = νnτ/L
2n = νn

√
2λ/σ/L2n−2. Moreover, a rescaled stochastic Gaussian field η′ appears, with E [η′(r′1, t

′
1)η(r′2, t

′
2)] =
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C ′(r′1 − r′2)δ(t′1 − t′2) with C ′(r′) = L4C(r). Performing the adimensionalization procedure explained above,
the 2D Euler equation reads

∂ω

∂t
+ v · ∇ω = −αω − νn (−∆)

n
ω +
√

2αη , (2.8)

where, for easiness in the notations, we drop here and in the following the primes. We note that in non-
dimensional units, α represents an inverse Reynolds number based on the large scale dissipation of energy
and νn is an inverse Reynolds number based on the viscosity or hyper-viscosity term that acts predominantly
at small scales. Moreover, phenomenologically, one expects that α is the ratio between the time scale for the
evolution of small scales τ defined above with the time scale of evolution of large-scale coherent structures,
given by the dissipative time scale 1/λ. We address the reader to (Bouchet et al. 2016) for a longer discussions
on the adimensionalization procedure and its generalisation to barotropic flows.

2.1.1. Numerical simulations and phenomenlogy

A part of this paper contains the results of direct numerical simulations of the stochastic 2D Euler equation
(2.8) performed employing a pseudo-spectral code. Most of the numerical results shown are obtained at
resolution 256 × 256 with hyper-viscosity of order n = 4 and coefficient ν4 = 7.10−17. Examples of such
simulations with α = 10−3 and α = 5.10−4 are represented in figure 1. We have checked that our results do
not depend on hyper-viscosity by performing few test simulations (data not shown) with resolution 512×512
and hyper-viscosity ν4 = 3, 5.10−17.

All through the paper we use an homogeneous stochastic forcing with spectrum concentrated around
wavenumbers (k, l) such that k2 + l2 = (kf ± δk)

2
with kf = 8 and δk = 1, except for k = 0 (i.e. Cz = 0). The

stochastic forcing is generated with Gaussian random numbers which are added to the evolution equation
every 10 time steps, using an Euler-Maruyama scheme.

The numerical results presented in the paper correspond to the stochastic 2D Euler equation (2.8) in a
biperiodic domain with aspect ratio r = 1.2. We have checked that very similar results are obtained, however,
using different values of r > 1.

In this paper, we will study the regime νn � α� 1, where the zonal jet velocity profile

U(y) ≡ 1

2π/r

∫ 2π/r

0

u(x, y) dx. (2.9)

evolves over (non-dimensional) time scales of order 1/α, while it is forced by Reynolds stresses which evolve
over time scales of order 1. Direct numerical simulations illustrate this phenomenology: a time-scale separation
is indeed present between the time-scale for the jet velocity profile and the one for small turbulent fluctuations.
In figure 1 is reported the Hovmoller diagram for the zonal jet velocity profile (x-component of the velocity
averaged over the x direction) as a function of time, for two different values of α � 1. It is clear that the
zonal jet forms at αt ' 1.

Beside its average (in time) state, it is also clear that the jet undergoes fluctuations in its position, shape
and amplitude on a much shorter time-scale. In figure 2, we report the comparison between snapshots of
the (zonally averaged) velocity profile in the zonal direction with respect to its mean. This plot clarify more
precisely that strong fluctuations are at play; it is the scope of this paper to characterise them.

2.2. Decomposition into zonal and non–zonal components

Introducing non-dimensional variables in section 2.1, the stochastic 2D Euler equations (2.8) turned out to
depend on a parameter α that we defined in eq. (2.7). As already discussed, one expects this parameter to
be the ratio between the time scale for the evolution of small scales τ with the time scale of evolution of
large-scale coherent structures, given by the dissipative time scale 1/λ. Thus, in the regime νn � α� 1 we
expect to observe a time scale separation between the slow evolution of large-scale jets and the fast evolution
of small-scale turbulence. It is this time-scale separation that permits to find an effective dynamics of the
large scales tracing out turbulent fluctuations. This has been the topic of a recent work by us (Bouchet et al.
2013) that we summarise in this and in the following subsections. The interested reader can consult (Bouchet
et al. 2013, 2014b) for more details.

The first step is to separate the slowly evolving from the fast-evolving degrees of freedom. We thus introduce
the zonal projection of a field f

〈f〉 (y) ≡ 1

2π/r

∫ 2π/r

0

f(x, y) dx.

and, clearly we have U(y) ≡ 〈u〉 (y), see eq. (2.9). Assuming that the velocity of perturbations to the zonal
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flow is of the order of the stochastic forcing in (2.8), we decompose the velocity field as v = Uex+
√
αvm with

vm = (um, vm) and the vorticity field as ω = ωz +
√
αωm where ωz ≡ 〈ω〉. Proving that such an hypothesis

is self-consistent is the most difficult part in building the kinetic theory, see sec. 2.3.
The second step is to project the 2D Euler equation (2.8) into zonal

∂ωz
∂t

= −α ∂

∂y
〈vmωm〉 − αωz − νn

(
−∂2

y

)n
ωz (2.10)

and non-zonal parts,

∂ωm
∂t

= −LU [ωm]−
√
αNL [ωm] +

√
2ηm , (2.11)

where we have used that Cz = 0 (i.e. the forcing does not act directly on the jet) and ηm = η − 〈η〉 is a
Gaussian field with correlation function E [ηm(r1, t1)ηm(r2, t2)] = Cm(r1 − r2)δ(t1 − t2) with Cm = C − 〈C〉.
In eq. (2.11), the linear operator LU is

LU [ωm] = L0
U [ωm] + αωm + νn (−∆)

n
ωm , (2.12)

with the operator for the inertial linearised dynamics

L0
U [ωm] = U(y)

∂ωm
∂x
− U ′′(y)

∂

∂x
∆−1ωm , (2.13)

where now the prime denotes the derivative with respect to y. Finally, the non-linear operator NL reads

NL [ωm] = vmωm − 〈vmωm〉.

In the following, instead of dealing with the equation for ωz, see eq. (2.10), it will be more convenient
to consider the equation for the average velocity profile U(y), which can be obtained remembering that
ωz(y) = −U ′(y). One has

∂U

∂t
= α〈vmωm〉 − αU − νn

(
−∂2

y

)n
U . (2.14)

Using the Taylor relation 〈vmωm〉 = ∂y〈vmum〉, we see that 〈vmωm〉 is the divergence of a Reynolds stress
component. In the following, 〈vmωm〉 will be called the Reynolds stress divergence.
The third and final step to obtain our kinetic equation for the slow evolution of U(y, t) is summarised in the
next paragraph.

2.3. Kinetic equation for the slow evolution of jets

From (2.11) and (2.14) it is possible to derive an effective evolution for the zonal velocity profile U(y, t),
valid in the regime νn � α � 1. The approach has been developed in (Bouchet et al. 2013, 2014b) and has
been named kinetic theory because it shares strong similarities with the kinetic theories developed for plasma
and gravitational systems (Nicholson 1983; Balescu 1975; Nardini et al. 2012; Nardini et al. 2012; Heyvaerts
2010). It could have been also named stochastic averaging, borrowing from mathematics the name of the
technique employed to derive the effective evolution (Gardiner 1994; Pavliotis & Stuart 2008).

Kinetic theory provides the effective slow dynamics of U(y, t) with the fast evolution of ωm(r, t) adiabati-
cally relaxed to its statistically stationary state with a fixed background flow U(y). Such effective dynamics
can be obtained with a perturbative expansion in α� 1 (stochastic averaging, see (Gardiner 1994; Pavliotis
& Stuart 2008)). In the case of the stochastic 2D Euler equations (2.11,2.14), the resulting effective slow
dynamics reads (Bouchet et al. 2013, 2014b)

∂U

∂t
= αF 0[U ]− αU + αξ[U ] . (2.15)

where

F 0[U ](y) = E0
U 〈vmωm〉(y) (2.16)

and ξ[U ] is a Gaussian noise with zero mean and correlations (for a fixed U(y))

E [ξ[U ](y1, t1)ξ[U ](y2, t2)] = δ(t1 − t2)Ξ0[U ](y1, y2) (2.17)

with

Ξ0[U ](y1, y2) =

∫ ∞
0

E0
U [[ 〈vmωm〉(y1, s)〈vmωm〉(y2, 0) + (y1 ↔ y2) ]] ds , (2.18)

where (y1 ↔ y2) denotes the symmetric expression obtained inverting y1 and y2. In (2.16), the operator E0
U [·]
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(a) α = 10−3

(b) α = 5.10−4

Figure 1. Spatio-temporal diagram of the x-component of the velocity averaged over the x direction (Hovmoller
diagram of the zonal velocity profile U(y, t)), for (a) α = 10−3 and (b) α = 5.10−4. After a time t ∼ 2/α, the flow
self-organises into a strong jet in the x direction (zonal jet). This jet undergoes fluctuations in its position, shape and
amplitude, see also figure 2. The parameters used in these simulations are detailed in section 2.1.1.

(a) α = 10−3 (b) α = 5.10−4

Figure 2. Mean zonal velocity E[U ](y) (solid curve) and snapshot of the zonal velocity U(y, t) (dashed curve), for
(a) α = 10−3 and (b) α = 5.10−4. The mean zonal velocity is computed over a period 2/α in which the position
of the jet is considered to be almost steady, i.e. over [5/α, 7/α] for α = 10−3 (see figure 1) and over [6/α, 8/α] for
α = 5.10−4 (see figure 1). In both cases, the snapshot is taken at t = 6/α. We see that in both cases, the instantaneous
zonal velocity profile is quite different from its temporal mean, showing that fluctuations of U(y, t) are crucial in the
dynamics of this flow. The parameters used in these simulations are detailed in section 2.1.1.
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denotes the expectation over the stationary distribution of the effective fast dynamics of ωm,

∂ωm
∂t

= −L0
U [ωm] +

√
2ηm , (2.19)

where U(y) is fixed and L0
U is given by (2.13). In (2.18), the operator E0

U [[·]] denotes the covariance over the
stationary distribution of (2.19),

E0
U [[ f [ωm]g[ωm] ]] ≡ E0

U [f [ωm]g[ωm]]− E0
U [f [ωm]]E0

U [g[ωm]] . (2.20)

Using that E0
U is an average in the statistically stationary state of (2.19), we easily get

Ξ0[U ](y1, y2) = lim
∆t→∞

E0
U

[[
1

∆t

∫ ∆t

0

ds1

∫ ∆t

0

ds2 〈vmωm〉(y1, s1)〈vmωm〉(y2, s2)

]]
, (2.21)

i.e. Ξ0[U ](y1, y2) is the covariance of the time-averaged Reynolds stress divergence, properly rescaled in the
limit of infinite time-averaging window ∆t → ∞. In other words, Ξ0[U ] contains the information about the
Gaussian statistics of time-averaged Reynolds stresses, corresponding to the Central Limit Theorem (Bouchet
et al. 2015b; Freidlin & Wentzell 1998).

Note that because we are investigating the regime νn � α and because (hyper-)viscosity acts predominantly
at small scales, viscous dissipation is negligible in the effective dynamics (2.15). Besides, non-linear terms
NL in (2.11) are of order

√
α, which explains why they do not appear in the leading order description (2.19).

Then, (2.19) is a linear equation forced by a Gaussian white noise (Ornstein-Uhlenbeck process (Gardiner
1994)). This property will be crucial in our analysis.

Similar effective descriptions to our (2.15) were obtained previously in phenomenological ways by using
either a quasi-linear approximation of the dynamics (i.e. neglecting the term NL[ωm] in (2.11) (Srinivasan &
Young 2011)) or using a closure in the hierarchy for the cumulants of the vorticity (Ait-Chaalal et al. 2015).
Such approaches have been called Stochastic Structural Stability Theory (S3T (Bakas et al. 2015; Farrell &
Ioannou 2003b)) or Cumulant Expansion at Second order (CE2 (Marston 2010; Srinivasan & Young 2011;
Tobias & Marston 2013)).
We note, however, that i) phenomenological approaches were not able to capture the precise form of the aver-
age E0

U entering in the kinetic equation and, more importantly, ii) they only captured the deterministic part
of the kinetic equation (2.15) (without the noise term ξ[U ]). By contrast, the kinetic equation (2.15) arises
from a formal perturbative expansion in powers of α � 1, and thus justifies the quasi-linear approximation
(or equivalently the closure in the hierarchy for cumulants) in this regime (Bouchet et al. 2013). Moreover,
kinetic theory goes beyond S3T-CE2 approaches as it us expected to describe fluctuations of jets around
their attractors, through the noise term ξ[U ] in (2.15).

The main achievement of our previous work (Bouchet et al. 2013) has been to prove that the average
Reynolds stress divergence F 0[U ] is finite, i.e. ultraviolet divergences are not present in our perturbative
approach when considering the kinetic equation up to order O(α). This result is striking, as we are dealing
with the dynamics (2.19) with stochastic forcing but no energy dissipation and no viscous regularization
at small scales. The properties of F 0[U ] are a consequence of inviscid damping mechanisms, known for the
linearized 2D Euler dynamics as the Orr mechanism and the depletion of vorticity at the stationary streamline
(Bouchet & Morita 2010; Orr 1907), that will be reviewed in section 3.2.

The goal of this paper is to study the effect of the noise term ξ[U ] on the evolution of the zonal velocity
profile. Formally, Ξ0[U ] is defined as the infinite-time limit of an expectation of the process (2.19), where
no dissipation is present. For convenience, we will also consider the linear dynamics of ωm with a small but
non-zero friction coefficient α,

∂ωm
∂t

= −L0
U [ωm]− αωm +

√
2ηm , (2.22)

the expectation in the statistically stationary state of (2.22) will be denoted EαU . Then we define

Ξα[U ](y1, y2) =

∫ ∞
0

EαU [[ 〈vmωm〉(y1, s)〈vmωm〉(y2, 0) + (y1 ↔ y2) ]] ds , (2.23)

and we will be interested in the limit for α→ 0 of Ξα[U ].
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3. Gaussian fluctuations of Reynolds stresses in the inertial limit

We derive in this section our main theoretical result, expressed in eq. (3.6) and (3.20): these equations
give the spatial structure of Reynolds stresses covariance Ξα[U ](y1, y2), at leading order when α� 1 and for
νn = 0. Then in section 4 we discuss the implications of eq. (3.6) and (3.20) on the statistics of fluctuations of
U(y, t) and compare them to results from direct numerical simulations. If we were dealing with a system with
a finite number of degrees of freedom, one would expect the noise αξ in the kinetic equation (2.15) to give a
contribution only at order O(α2). However, we show in this section that ultraviolet divergences renormalise
such result, leading to eq. (3.6) and (3.20).

We start our derivation with some definitions in paragraph 3.1. In paragraph 3.2, we discuss the technical
results (Orr mechanism) that permits to derive (3.20) in the general case. Then, in paragraph 3.3 we derive
(3.20) in a simple esplicitely solvable case, when the background flow U(y) is a constant shear. The proof
of (3.20) for a general background flow, being rather technical, is left in Appendix A. However, the main
technical points to obtain our result will be transparent to the reader after he has read the present section.

3.1. Fourier decomposition and autocorrelation function in terms of two-points correlations

Because the dynamics of non-zonal vorticity ωm is linear, see eq. (2.22), the dynamics of each Fourier mode
can be studied independently and the global result will be obtained by simply adding the contribution from
each mode. We treat here the simple case of a flow in a biperiodic domain D = [0, 2π/r) × [0, 2πr), the
generalization to different geometries being straightforward. In the domain D, the wavevectors read k = (k, l)
with k/r ∈ Z and l × r ∈ Z.
We begin expanding the force correlation function Cm in Fourier series,

Cm(x, y) =
∑
k>0 ,l

ckl cos(kx+ ly), (3.1)

with ckl > 0. We note that because Cm is a correlation, it is a positive definite function, implying the absence
of sin contributions in the above expansion. The generalization to the case of an inhomogeneous force, for
instance for the case of a channel is straightforward. The noise correlation function Cm corresponds to the
noise

ηm(r, t) =

∞∑
k=−∞

∞∑
l=−∞

√
ckl
2

eikx+ilyηkl(t) (3.2)

where η∗kl = η−k,−l and E[ηk1,l1(t1)ηk2,l2(t2)] = δk1,−k2δl1,−l2δ(t1 − t2), and ck,l is defined for k < 0 by
ck,l = c−k,−l, and for k = 0 by c0,l = 0. In the following, all sums over k = (k, l) include negative k.

Let us now consider the dynamics of the non-zonal vorticity in eq. (2.22). Because LU is linear and invariant
under translations in the x direction, the non-zonal vorticity field can be written as

ωm(r, t) =
∑
k

√
ckl
2

eikxωkl(y, t) , (3.3)

where ωkl evolves according to

∂ωkl
∂t

+ L0
U,k[ωkl] = −αωkl +

√
2eilyηkl , (3.4)

where

L0
U,k[ωkl] = ikU(y)ωkl − ikU ′′(y)∆−1

k ωkl (3.5)

with ∆k = ∂2
y − k2.

Let us now consider the decomposition of Ξα[U ] into Fourier modes. Using (2.18) and (3.3), we get

Ξα[U ](y1, y2)=
∑
k,k′

ckl
2

ck′l′

2

∫ ∞
0

EαU [[ (vklω−k,−l) (y1, s) (vk′l′ω−k′,−l′) (y2, 0) + (y1 ↔ y2) ]] ds,

where we recall that EαU [[·]] denotes the covariance in the stationary state of (3.4). In order to analyse the
above expression is very useful to remember that, as ωkl (defined in (3.4)) obey to an Ornstein-Uhlenbeck
processes with zero initial condition, so they are Gaussian random variables at all times (Gardiner 1994).
Moreover, vkl are obtained via a linear transformation of ωkl so that they are also Gaussian random variables
at all times. The Isserlis-Wick theorem can then be applied so that we can reduce the four-points correlation
functions in products of two-points correlation functions. Moreover, using the fact that ωk1,l1 and ω∗k2,l2 are
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Figure 3. Evolution of the perturbation vorticity, advected by the constant shear base flow U(y) = σy.

statistically independent for (k1, l1) 6= (k2, l2), we get

Ξα[U ](y1, y2) =
∑
k

c2kl
{

Ξαkl(y1, y2) + Ξαkl(y2, y1)
}

(3.6)

with Ξαkl(y1, y2) = Cαkl(y1, y2) +Dα
kl(y1, y2) where

Cαkl(y1, y2) =
1

4

∫ ∞
0

EαU [vkl(y1, s)v−k,−l(y2, 0)]EαU [ω−k,−l(y1, s)ωkl(y2, 0)] ds (3.7)

and

Dα
kl(y1, y2) =

1

4

∫ ∞
0

EαU [vkl(y1, s)ω−k,−l(y2, 0)]EαU [ω−k,−l(y1, s)vkl(y2, 0)] ds. (3.8)

Note that, by definition of the covariance (2.20), the two-point correlations involving ω and v evaluated at
the same spatial point have been cancelled in the computation of Ξαkl.

Following a classical procedure for the computation of two-points correlation functions of Ornstein-Uhlenbeck
processes (Bouchet et al. 2013; Gardiner 1994), the two-points correlation functions appearing in (3.7) and
(3.8) can be expressed as

Tαωω(k, l, y1, y2, s) ≡
1

2
EαU [ω−k,−l(y1, s)ωk,l(y2, 0)] =

∫ ∞
0

dt1 ω̃−k,−l(y1, s+ t1)ω̃k,l(y2, t1) , (3.9)

Tαvv(k, l, y1, y2, s) ≡
1

2
EαU [vk,l(y1, s)v−k,−l(y2, 0)] =

∫ ∞
0

dt1 ṽk,l(y1, s+ t1)ṽ−k,−l(y2, t1) , (3.10)

Tαvω(k, l, y1, y2, s) ≡
1

2
EαU [vk,l(y1, s)ω−k,−l(y2, 0)] =

∫ ∞
0

dt1 ṽk,l(y1, s+ t1)ω̃−k,−l(y2, t1) , (3.11)

Tαωv(k, l, y1, y2, s) ≡
1

2
EαU [ω−k,−l(y1, s)vk,l(y2, 0)] =

∫ ∞
0

dt1 ω̃−k,−l(y1, s+ t1)ṽk,l(y2, t1) , (3.12)

where ω̃kl is the solution of the deterministic linear dynamics

∂tω̃kl + L0
U,k[ω̃kl] + αω̃kl = 0 with initial condition ω̃kl(y, 0) = eily (3.13)

and ṽkl is the associated meridional velocity. Equations (3.9–3.12) give two-points correlation functions
in terms of time integrals of deterministic fields. The properties of these correlation functions, and of
Ξα[U ](y1, y2), thus depend on the asymptotic behaviour of these deterministic fields. We now describe in
details this asymptotic behaviour.

3.2. Inviscid damping mechanism for the deterministic linear Euler dynamics

We have seen in the previous paragraph that two-points correlation functions of the Ornstein-Uhlenbeck
process ωm can be computed from time-integrals (3.9–3.12), involving solutions of the associated deterministic
problem in eq. (3.13). When α 6= 0, the deterministic vorticity field ω̃kl(y, t1) decays exponentially with rate
α in the limit t1 → ∞. Then, time integrals (3.9–3.12) always converge. Moreover, the time-correlation
functions given by (3.9–3.12) also decay exponentially with rate α for large s, so that integrals (3.7,3.8)
always converge, and Ξα[U ] is always finite for α 6= 0.

However, we are specifically interested in the regime α → 0. Indeed, by definition the noise correlation
Ξ0[U ] in (2.18) is defined for the linear dynamics (2.19) with no friction. As a consequence, the convergence
of integrals (3.9–3.12) should rely only on an inviscid damping mechanism of the inertial deterministic linear
dynamics ∂t + L0

U,k. This inviscid damping is known for the linearized 2D Euler dynamics as the Orr mech-
anism and the depletion of vorticity at the stationary streamline (Bouchet & Morita 2010; Orr 1907)
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The phenomenology is the following: while the vorticity shows filaments at finer and finer scales when time
increases, non-local averages of the vorticity (such as the one leading to the computation of the streamfunction
or the velocity) converge to zero in the long time limit.

As an example, consider the case of the linear Euler equation in a channel (x, y) ∈ D = [0, 2πLx)× [0, Ly],
or in an infinite domain (x, y) ∈ D = [0, 2πLx)×R, where the background flow is U(y) = σy with a constant
shear rate σ. Then U ′′ = 0 and L0

U,k = ikσy. This is actually the case first studied by Orr (Orr 1907).
According to the discussion of the previous paragraph, we consider the deterministic linear dynamics

∂ω̃k,l
∂t

+ ikσy ω̃k,l(y, t) = 0 , ω̃k,l(y, 0) = eily, (3.14)

which can be solved as ω̃k,l(y, t) = e−ikσyt+ily. This increasing filamentation of the vorticity field as time
goes on can be seen in figure 3. The meridional velocity is then computed as

ṽkl(y, t) = ik

∫
dy′Hk(y, y′)ω̃k,l(y

′, t) , (3.15)

where Hk is the Green function of the Laplacian ∆k = ∂2
y − k2, i.e. such that ∆kHk(y, y′) = δ(y − y′).

Such integral is an oscillating integral. In the limit t→∞, it decays algebraically to zero with a power that
depends on the order of differentiability of Hk. In this case, Orr proved (Orr 1907) that

ṽkl(y, t) ∼
t→∞

e−ikσyt+ily

ikσ2 t2
. (3.16)

The filamentation and the related relaxation mechanism with no dissipation for the velocity and streamfunc-
tion is very general for advection equations and it has an analog in plasma physics in the context of the
Vlasov equation, where it is called Landau damping (Nicholson 1983; Villani 2010).

We note that in (3.16), the shear σ plays the role of an effective damping rate. The generalization of the
Orr mechanism to the case of any strictly monotonic profile U(y) —i.e. when the shear is always non-zero—
has been first considered (Brown & Stewartson 1980). However, zonal jets necessarily have velocity extrema.
The generalization of the Orr mechanism to non-monotonic background flows U(y) has only been considered
recently (Bouchet & Morita 2010). Under the assumption that the linear operator L0

U,k has no modes, it has
been shown that (Bouchet & Morita 2010)

ω̃kl(y, t) ∼
t→∞

ω̃∞kl (y)e−ikU(y)t , (3.17)

where the function ω̃∞kl (y) depends on the whole velocity profile U(y). The Orr mechanism for U(y) = σy is a
particular case of (3.17), where ω̃∞kl (y) = eily. Using again results on oscillating integrals and the properties
of the Laplacian Green function Hk, we have the asymptotic decay of the meridional velocity (Bouchet &
Morita 2010)

ṽkl(y, t) ∼
t→∞

ω̃∞kl (y)

ik(U ′(y))2

e−ikU(y)t

t2
. (3.18)

In (3.17) and (3.18), higher order corrections are present and decay with higher powers in 1/t.
Mathematical proofs of the asymptotic behaviour (3.17), (3.18) have been given recently, either for the

case of a strictly monotic profile U(y) (Zillinger 2014, 2015) or for the relaxation of the non-linear 2D Euler
equation after a small perturbation of the constant shear profile U(y) = σy (Bedrossian & Masmoudi 2013),
following the analogous theorem for non-linear Landau damping (Mouhot & Villani 2011).

At this stage, a natural question is: what happens when the local shear vanishes? Indeed, a jet profile
necessarily presents extrema of the velocity, at points y0 such that U ′(y0) = 0. Such points are called
stationary points of the zonal jet profile. It can be shown that at the stationary points, the perturbation
vorticity also decays for large times: ω̃∞kl (y0) = 0 (Bouchet & Morita 2010). This phenomenon has been called
vorticity depletion at the stationary streamlines. It has been observed numerically that the extend of the
area for which ω̃∞kl (y0) ' 0 can be very large, up to half of the total domain, meaning that in a large part of
the domain, the shear is not the explanation for the asymptotic decay. The formula for the vorticity (3.17) is
valid for any y. The formulas for the velocity and stream functions are valid for any y 6= y0. Exactly at the
specific point y = y0, the damping is still algebraic with preliminary explanation given in (Bouchet & Morita
2010), but a complete theoretical prediction is not yet available.

Equations (3.17) and (3.18) give the asymptotic behaviour of vorticity and meridional velocity in the
deterministic linear 2D Euler equation, with no external damping mechanism. In the following, we will also
be interested in the behaviour of these fields when a small friction or viscosity are present. For simplicity, we
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will only treat the case of a small friction (which acts uniformly at all scales): ν = 0. Then, the linear friction
leads to an exponential damping of all fields, with rate α. It will be useful to generalize (3.17) as

ω̃αkl(y, t) = ω̃∞kl (y)e−(ikU(y)+α)t + ω̃r,αkl (y, t) . (3.19)

The above formula defines ω̃r,αkl . The classical Orr mechanism (3.17) is equivalent to the statement that for
all values of α (even for α = 0), ω̃r,αkl (y, t) is a bounded function both in y and t, and decays to 0 as t→∞.
Actually, a refined formulation of the Orr mechanism is that ω̃r,αkl (y, t) ∼

t→∞
O(e−αt/tγ), with γ > 0 (Bouchet

& Morita 2010).

We have thus seen that, under the hypothesis that the linear operator L0
U,k has no modes, the deterministic

linear dynamics of the eddies leads to an inviscid damping of the velocity and of the streamfunction. These
results form furnish the basis to prove our central result of this paper that will be explained in the next
section.

3.3. Integrated autocorrelation function in the inertial limit

The central theoretical result of the paper is that, for νn = 0 and in the limit of α→ 0, the (spectral content
of the) covariance of the noise entering in the kinetic equation (2.15) is given by

Ξαkl(y1, y2) ∼
α→0

Akl(y1, y2)

ik(U(y1)− U(y2)) + 2α
, (3.20)

where Akl is a regular function independent of α. The full covariance can be then obtained by summing up
different Fourier modes, see eq. (3.6). This result will permit us to predict in section 4.1 the statistics of the
Gaussian fluctuations of U(y).

Before entering in the derivation of eq. (3.20), few comments are mandatory. First, at points such that
U(y1) = U(y2), we readily see that Ξαkl(y1, y2) behaves like 1/α. Using Plemelj formula

lim
α→0+

−i
y − iα

= πδ (y)− iPV
(

1

y

)
, (3.21)

where PV is the Cauchy Principal Value distribution, we also see that Ξαkl(y1, y2) converges in the sense of
distributions as α → 0. Secondly, we show in Appendix A that at points such that U(y1) = U(y2) and if
U ′(y1) = 0, then Akl(y1, y2) = 0. This means that, at such points, Ξαkl(y1, y2) either converges to a finite value
or diverges slower than 1/α as α → 0. Finally, as the total covariance of the noise Ξα[U ](y1, y2) is obtained
by a linear superposition of different modes contributions, see (3.6), the very same behaviour is expected for
Ξα[U ](y1, y2).

In this section we only prove eq. (3.20) in the simple case of U(y) being a constant shear; this case can indeed
be handled easily base because the deterministic linear equation for the eddy vorticity (3.13) can be solved
analytically. The general proof for any background flow U(y), being rather technical, is left in Appendix A:
it is based on estimating the large s-behaviour of Tαωω, Tαvv, T

α
vω and Tαωv by using the asymptotic behaviours

in eq. (3.18) and (3.19) as described in previous section.

3.3.1. Explicit computation in the case of a constant shear

We consider here the case of the linear Euler equation in a channel (x, y) ∈ D = [0, 2πLx)× [0, Ly], or in an
infinite domain (x, y) ∈ D = [0, 2πLx)×R, where the background flow is U(y) = sy with a constant shear s.
In this case, the deterministic linear equation can be solved explicitely, and all the quantities of interest can
be expressed in terms of spatial integrals involving Hk, the Green function of the Laplacian ∆k = ∂2

y − k2.
In the following, we will not need the explicit expression of Hk, but only the fact that Hk is a continuous
function of its two variables, and that the first derivative ∂yHk(y, y′) is discontinous at y = y′, see (Bouchet
& Morita 2010).

The correlation functions Tαvv and Tαωω can be easily computed injecting the expressions of ω̃kl and ṽkl into
(3.9) and (3.10), leading to

Cαkl(y1, y2) ≡ 1

4

∫ ∞
0

[Tαωω · Tαvv] (k, l, y1, y2, s) ds

= − i

ks3

e−il(y1−y2)

y1 − y2 + 2α
ks i

∫
dy′1

∫
dy′2

Hk(y1, y
′
1)H−k(y2, y

′
2)eil(y

′
1−y

′
2)(

y′2 − y′1 + 2α
ks i
) (
y1 − y′1 + 2α

ks i
) . (3.22)
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Hk is a continuous function, so the spatial integrals appearing in the above expression converge to a finite
quantity in the limit α→ 0:∫

dy′1

∫
dy′2

Hk(y1, y
′
1)H−k(y2, y

′
2)eil(y

′
1−y

′
2)(

y′2 − y′1 + 2α
ks i
) (
y1 − y′1 + 2α

ks i
) −→

α→0
A(k, l, y1, y2) (3.23)

where A is a regular function independent of α, that can be written explicitely using Plemelj formula (3.21).
Then, we clearly see that, due to the pre-factor in (3.22), Cαkl(y1, y2) is finite for y1 6= y2 and diverges as 1/α
for y1 = y2.

Similarly, we can compute

Dα
kl(y1, y2) ≡ 1

4

∫ ∞
0

[Tαvω · Tαωv] (k, l, y1, y2, s) ds

= − i

ks3

(∫
dy′1

Hk(y1, y
′
1)e−il(y

′
1−y2)(

y2 − y′1 + 2α
ks i
) (
y1 − y′1 + 2α

ks i
))×(∫

dy′2
Hk(y2, y

′
2)e−il(y

′
2−y1)

y1 − y′2 + 2α
ks i

)
.

(3.24)

We observe that this expression is the product of two integrals. The second one converges to a finite quantity
when α→ 0, for any y1 and y2. Moreover, if y1 6= y2 the first integral also has a finite limit, using again that
the Green function Hk is continuous. However, when y1 = y2, the integral over y′1 becomes∫

dy′1
Hk(y1, y

′
1)e−il(y

′
1−y1)(

y1 − y′1 + 2α
ks i
)2 =

∫
dy′1

∂
∂y′1

(
Hk(y1, y

′
1)e−il(y

′
1−y1)

)
y1 − y′1 + 2α

ks i
, (3.25)

where we used an integration by parts. We now see that this integral diverges when α → 0 because the
quantity at the numerator is not continuous exactly at y1 = y′1. This implies that Dα

kl(y, y) diverges as lnα
when α→ 0†.

Using (3.22) and the fact that Dα
kl(y, y) ∼ lnα, we deduce‡ the asymptotic behaviour of the integrated

autocorrelation function Ξαkl(y1, y2) (defined in (3.6))

Ξαkl(y1, y2) ∼
α→0

Akl(y1, y2)

iks(y1 − y2) + 2α
(3.26)

where Akl(y1, y2) is a finite function independent of α. We have thus proved the result (3.20) in this simple
case.

4. Consequences for the dynamics of the jet velocity profile

We now discuss the consequences of our analysis on the statistics of the large scale flow U(y, t) and, where
possible, compare them with the results obtained from direct numerical simulations. In paragraph 4.1, we
discuss the variance and the covariance of the jet velocity profile; in paragraph 4.2 we discuss the zonal energy
balance, dividing the part contained in the average jet velocity profile and the one due to its fluctuations.

4.1. Covariance and variance of the jet velocity profile

In order to analyse fluctuations of the jet velocity profile U(y), we consider the covariance and variance of
U(y) in the stationary state, i.e., when the mean jet velocity profile is stationary. From a theoretical point of
view, we consider the observables

C(y1, y2, t) = EK [U(y1, t)U(y2, t)]− Ud(y1, t)Ud(y2, t) V(y, t) = C(y, y, t) , (4.1)

where the average is taken over the noise appearing in the kinetic equation (2.15) and Ud(y, t) = EK [U(y, t)]
is the mean jet velocity profile. In order to be precise, we have distinguished the average over the noise
appearing in the kinetic equation (denoted by EK) from the average over the original noise appearing in the

† To understand the rate of this divergence with α, it is enough to observe that the divergence arises from the
neighbourhood y′1 ∈ [y1−ε, y1 +ε]. Then, as y′1 → ∂

∂y′
1
Hk(y1, y

′
1) is analytic in both the neighbouroods y′1 ∈ [y1−ε, y1[

and y′1 ∈]y1, y1 + ε], we can expand it in Taylor series. By direct computation, one finally obtains that the integral in
(3.25) diverges as lnα.

‡ See Appendix A.3 for details.
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stochastic 2D Euler equations (denoted by E).
The evolution equation for the covariance can be obtained straightforwardly from the kinetic equation (2.15)
employing Ito’s calculus and averaging over the noise:

dC(y1, y2, t)

dt
= −2αC(y1, y2, t) + α2EK [Ξ[U ](y1, y2, t)] + αEK [[U(y1, t)F

0[U ](y2, t) + F 0[U ](y1, t)U(y2, t)]](4.2)

and, thus, in a stationary state,

2C(y1, y2,∞) = lim
t→∞

{
αEK [Ξ[U ](y1, y2, t)] + EK [[U(y1, t)F

0[U ](y2, t) + F 0[U ](y1, t)U(y2, t)]]
}
. (4.3)

As the kinetic equation for U is non linear (in U), eq. (4.3) is not closed: the right hand side cannot be
written as a function of the covariance because higher order correlations emerge.

However, a striking qualitative feature emerges from a simple analysis. Assuming that U−Ud small in some
well suited norm, we can Taylor expand the right hand side of eq. (4.3) up to second order. We then find
that C is proportional to αEK [Ξ[Ud]]. From the small α limit of the noise correlation, see eq. (3.20), we know
that the first term of eq. (4.3) is order α for all y1 and y2 except the following case: Ud(y1) = Ud(y2) and
U ′(y1) 6= 0, case in which it is of order one. Unless the non-linear terms involving the Reynold’s stress exactly
cancel out such behaviour, we conclude that the same behaviour is expected for C(y1, y2,∞). Moreover,
V(y,∞) should be peaked when away from the stationary points of the average flow Ud.

The above argument is only qualitative. A more precise analysis would require, first of all, to check that
the coefficients in the Taylor expansion are indeed finite. This would mean to analyse functional derivatives
with respect to U of the Reynolds stress F 0 and of the noise covariance Ξ. Beside the fact that such an
analysis is likely to be technically cumbersome, it is not even clear that it would be useful. It is indeed hard
to imagine how the qualitative picture obtained above might be changed, and it would not permit to get
quantitative results anyway. The other possibility would be to perform numerical integration of the kinetic
equation (2.15). Such second possibility is, however, far from being straightforward and we consider it a very
promising perspective of our work that we leave for future studies.

Here, we content with the qualitative picture obtained above for C(y1, y2,∞) and V(y,∞) and compare
them with results from direct numerical simulations. Such prediction is indeed striking and one might wonder
weather it is confirmed by direct numerical simulations or, indeed, is an artifact of our theoretical approach.

In Fig. 4, the results for the stationary covariance C(y1, y2,∞) of the jet velocity profile (on the right)
is compared with the spatial structure of |Ud(y1) − Ud(y2)|. We reported results for the same resolution,
forcing spectra, hyper-viscosity and two values of α. Large absolute values of the covariance are found in
regions where U(y1) ' U(y2) (along the diagonals). These regions also corresponds to maximal fluctuations
of Reynolds stresses, according to the theoretical result (3.41). Along the diagonals, minimal absolute values
of the covariance correspond to extrema of the mean zonal velocity, see figure 5. We also report the results for
smaller hyper-viscosity ν4 = 3.5× 10−17 and higher resolution (512× 512), hence showing that our results do
not depend on it. It is moreover clear from figure 5 that diminishing α results in an increase of the variance
everywhere except at the extrema of U(y). These results are qualitatively consistent with the theoretical
predictions we obtained from our kinetic theory. We are unfortunately unable to perform simulations on a
sufficiently large range of α values in order to understand weather the 1/α scaling of the V(y,∞) from y
away from the stationary points of U(y) is indeed present.

4.2. Energy balance for the large scales

The kinetic energy associated with the jet is

Ez[U ] ≡ πlx
∫
U2(y) dy , (4.4)

where the subscript z stands for zonal and the average kinetic energy will be denoted by Ez = EK [Ez[U ]].
The evolution equation for Ez is obtained applying the Itō formula to the kinetic equation (2.15)

dEz
dt

= 2απlx

∫
EK [F0[U ](y)U(y)] dy − 2αEz + α2πlx

∫
EK [Ξ[U ](y, y)] dy . (4.5)

Such equation is the average zonal energy balance: the first term represents the injection rate of energy in
the large scales due to non-zonal degrees of freedom; the second term is Rayleigh friction; the last term,
present only due to the noise in the kinetic equation (2.15), represents the energy injection rate in the zonal
flow by the fluctuations of Reynolds stresses. Using our main theoretical result, eq. (3.20), we conclude that
such term is actually of order O(α) for α small. Our approach thus predict that the energy content in the
fluctuations of U is of the same order of magnitude of the energy contained in Ud.



14 Cesare Nardini and Tomás Tangarife

(a) |Ud(y1)− Ud(y2)|, α = 10−3 (b) cov(U(y1), U(y2)), α = 10−3

(c) |Ud(y1)− Ud(y2)|, α = 5.10−4 (d) cov(U(y1), U(y2)), α = 5.10−4

Figure 4. (a) and (c): |Ud(y1)−Ud(y2)| as a function of (y1, y2) for (a) α = 10−3 and (c) α = 5.10−4, where Ū is the
mean zonal velocity. (b) and (d): covariance of the zonal velocity U as a function of (y1, y2) for (b) α = 10−3 and (d)
α = 5.10−4. Other parameters are the same as in figure 1. Large absolute values of the covariance are found in regions
where U(y1) ' U(y2) (along the diagonals). These regions also corresponds to maximal fluctuations of Reynolds
stresses, according to the theoretical result (3.20). Along the diagonals, minimal absolute values of the covariance
correspond to extrema of the mean zonal velocity, see figure 5.

It would be of interest to quantitatively test the above prediction by means of direct numerical simulations.
This would require to study the scaling with α of the energy contained in the fluctuations of the jet velocity
profile Ez[U ]−Ez[EK [U ]]. If the above prediction is correct, such quantity should remain of order O(1) in the
small α limit. The problem is practically difficult to address because one has to be sure that hyper-viscosity
is negligible and α small enough in order to be in the asymptotic regime; we were at the moment unable to
get sufficiently clean results in order to conclude that the above statement is confirmed or disproved by direct
numerical simulations.

5. Conclusions

Self-organisation in jets, i.e. flows that are mostly horizontal and unidirectional, is common in two-
dimensional, quasi two-dimensional and geophysical turbulence. While much effort has been devoted in lit-
erature to the characterisation of their average velocity profile, little is instead known on the fluctuations,
small and large, they undergo.

Some recent studies (Bouchet & Simonnet 2009; Bouchet et al. 2014a, 2011; Rolland et al. 2016; Wouters &
Bouchet 2015; Laurie & Bouchet 2015) concentrated on the description of large and abrupt fluctuations that
large scale structures undergo. Examples of this behaviour are found in the magnetic field reversal for the
Earth, in MHD experiments (Monchaux et al. 2007), in 3D flows (Ravelet et al. 2004), in atmospheric flows
(Weeks et al. 1997), oceaenic currents (Schmeits & Dijkstra 2001), and also in 2D turbulence experiments
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(a) α = 10−3, ν4 = 7.10−17 (b) α = 5.10−4, ν4 = 7.10−17

Figure 5. Mean zonal velocity Ū(y) (dashed blue curve) and variance of the zonal velocity (solid orange curve) as
functions of y for (a) α = 10−3 and (b) α = 5.10−4. Other parameters are the same as in figure 1. For both values of
α, the regions of minimal variance correspond to extrema of the mean velocity Ū(y), i.e. y/ly ' 0 and y/ly ' π. This
is a consequence of the depletion of vorticity at the stationary streamlines, which tends to reduce the fluctuations
of Reynolds stresses in those regions compared to the fluctuations of Reynolds stresses in regions of shearing by the
mean flow (here y/ly ' π/2 and y/ly ' 3π/2). This numerical result is in qualitative agreement with the theoretical
result (3.20).

(Sommeria 1986). The theoretical explanation of this behaviour is commonly done with large deviations tech-
niques (Bouchet et al. 2015a,b) but obtaining explicit theoretical results is a very difficult problem. Here, we
are much more modest and concentrate on small, Gaussian, fluctuations close to the average state.

This paper is devoted to the study of Gaussian fluctuations of jet velocity profiles in the simplest possible
theoretical framework: stochastic 2-d Euler equations defined in eq. (2.1). Our analysis is based on a non-
equilibrium statistical mechanics approach first developed in (Bouchet et al. 2013, 2014b), which has strong
analogies with theories based on quasi-linear approximation such as CE2 (Marston 2010, 2011; Tobias &
Marston 2013; Marston et al. 2008; Marston 2011; O’Gorman & Schneider 2007; Srinivasan & Young 2011;
Ait-Chaalal et al. 2015) and SSST (Farrell & Ioannou 2003a; Farrell & Ioannou 2007; Bakas & Ioannou 2014;
Parker & Krommes 2013). However, our approach goes beyond these theories, giving access not only to the
average evolution of the jet velocity profile but also to the Gaussian fluctuations it undergoes.

Once integrated out turbulent non-zonal fluctuations, the effective evolution for the jet velocity profile is
expressed by eq. (2.15). Such effective evolution is expected to give very good predictions in the limit of
negligible (hyper)-viscosity and when the the mean jet velocity profile evolves much slower than turbulent
non-zonal fluctuations (Tobias & Marston 2013; Constantinou et al. 2014). Such limit has been precisely
discussed in section 2 where, passing in non-dimensional units, it can be cast as νn � α� 1. Here, νn is the
properly non-dimensional (hyper)-viscosity and α is the ratio between the typical time scale for the advection
of the small scales by the large scale jet and the typical time-scale for the evolution of the jet velocity profile.

It is remarkable that we could carry out most of our analysis analytically. Our central theoretical result is the
characterisation of the spatial structure of the noise covariance (2.23) entering in the effective evolution (2.15).
Such characterisation is given by eq. (3.6) and (3.20). It permitted to obtain rather surprising qualitative
predictions on the fluctuations of the jet velocity profile U(y).

In particular, we analysed the covariance and the variance of the zonal velocity profile, defined in eq. (4.1).
If we were considering a system with a finite number of degrees of freedom, we would conclude that both the
variance and the covariance are of order O(α). However, we are dealing with a field problem with ultraviolet
divergences. Then, we predicted that the stationary covariance scales as C(y1, y2,∞) ∼ O(α) except when
Ud(y1) = Ud(y2) and U ′d(y1) 6= 0, where we have C(y1, y2,∞) ∼ O(1). Moreover, the variance of the jet
velocity profile is predicted to behave as V(y,∞) ∼ O(1) unless U ′d(y) = 0, in which case V(y,∞) ∼ O(α).
For finite νn and α, we thus predict where V(y,∞) and C(y1, y2,∞) should be enhanced with a precise spatial
pattern. Mathematically, C(y1, y2,∞) ∼ O(1) converges to a distribution for α→ 0+.
Employing direct numerical simulations, we find a clear footprint of such a prediction, with the C(y1, y2,∞)
and V(y,∞) presenting a spatial structure very similar to the one described above. Our results are summarised
in figures 4 and 5. Unfortunately, a quantitative comparison of our theoretical results seems out of reach at the
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present day. In particular, we are unable to verify the correctness of the above scalings with α. Moreover our
theoretical results indicate that the energy contained in the fluctuations of the zonal jet velocity profile (see
section 4.2) should be of the same order of magnitude of the energy contained in the average velocity profile.
This effect was neglected in (Bouchet et al. 2013, 2014b) but, again, we are unable to get a quantitative test
of it by direct numerical simulations. A careful computational check of these conclusions is very hard, as one
has to work in the limit of negligible (hyper)-viscosity and very slow evolution. However, we believe that it
might be clarified by means of efficient parallel codes and we leave it as a direction for future investigation.

The present work is a first step toward the study of fluctuations of large scale structures two-dimensional
and quasi two-dimensional turbulence. Many points remain indeed open. First of all, both our theoretical and
numerical results are for the moment restricted to the stochastic Euler equations. This is motivated by the
fact that the analytical work can be pushed very far in this case. It would be of certain interest to understand
what is the effect of introducing a β-effect or bottom topography. Preliminary work in this direction suggest
that our results remain unchanged at least when the β-effect or the topography is small. We will devote
future work to the deepening of such an issue.

Secondly we have shown that, at order O(α2) in our perturbative expansion, ultraviolet divergences appear.
It would be of great interest to understand whether the scaling with α of the stationary covariance of U and
of the energy contained in the fluctuations of U precisely holds. One might indeed expect that ultraviolet
divergences result in a non-trivial renormalization of such scaling. In this sense, a renormalization group
approach (Chen et al. 1996) might point to a modification of the scaling with α of these quantities. The
analysis of finite-dimensional systems, as those considered in (Hairer 2009), with homogenization techniques
might shed some light.

Finally, a challenging perspective of our work is to numerically implement our effective evolution (2.15).
This would give access to much more precise quantitative predictions for the evolution of the jet velocity
profile. A very important avenue, in this sense, is to understand whether it is possible to develop numerical
codes for the integration of the effective evolution (2.15) that are significantly faster than the direct integration
of the stochastic Euler equations.
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Appendix A. Proof of the convergence for any base flow

In this appendix we study the behaviour for small α of the integrated autocorrelation function Ξα[U ]
defined in (2.23). More precisely, we prove (3.20). We recall the following definitions:

Ξα[U ](y1, y2) =
∑

(k,l)∈Z2

c2kl
{

Ξαkl(y1, y2) + Ξαkl(y2, y1)
}

(A 1)

with Ξαkl(y1, y2) = Cαkl(y1, y2, T0 = 0) +Dα
kl(y1, y2, T0 = 0) where

Cαkl(y1, y2, T0) =
1

4

∫ ∞
T0

EαU [vkl(y1, s)v−k,−l(y2, 0)]EαU [ω−k,−l(y1, s)ωkl(y2, 0)] ds (A 2)

and

Dα
kl(y1, y2, T0) =

1

4

∫ ∞
T0

EαU [vkl(y1, s)ω−k,−l(y2, 0)]EαU [ω−k,−l(y1, s)vkl(y2, 0)] ds. (A 3)

For future simplicity, we have introduced the variable T0. Indeed, we are only interested in the large s be-
havior of the integrands above because there are no convergence problems around s = 0. In the following, T0
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will be fixed and assumed to be very large.

In sections A.1 and A.2 we study the large-s behaviour of the two-points correlation functions Tαωω, Tαvv,
Tαvω and Tαωv given by (3.9–3.12), using the Orr mechanism (3.19). Then, we will be able to study the small-α
behaviour of Cαkl and Dα

kl given by (A 2, A 3). This is done in section A.3.

A.1. Large time behavior of Tαωω

We report (3.9) for convenience,

Tαωω(k, l, y1, y2, s) ≡
1

2
EαU [ω−k,−l(y1, s)ωk,l(y2, 0)] =

∫ ∞
0

dt1 ω̃−k,−l(y1, s+ t1)ω̃k,l(y2, t1) , (A 4)

where ω̃k,l(y, t) is the solution of the deterministic dynamics ∂t+L
0
U,k+α with initial condition ω̃k,l(y, 0) = eily.

Alternatively, we can write

Tαωω(k, l, y1, y2, s) =

∫ ∞
0

dt1 ω̃
∗(y1, s+ t1)ω̃(y2, t1)e−2αt1 , (A 5)

where ω̃(y, t) is the solution of the deterministic inertial dynamics ∂t+L0
U,k with initial condition ω̃k,l(y, 0) =

eily, for simplicity in the notations we stop denoting the (k, l) dependency and we also denote Tα(y1, y2, s) ≡
Tαωω(k, l, y1, y2, s). We will prove that

Tα(y1, y2, s) =
ω̃∞−k,−l(y1)ω̃∞kl (y2)

ik (U(y1)− U(y2)) + 2α
eikU(y1)s−αs + T r,α(y2, y2, s) , (A 6)

where T r,α(y2, y2, s) is finite for all (y2, y2) such that U(y1) 6= U(y2), and is negligible with respect to 1/α if
U(y1) = U(y2). Also, T r,α(y2, y2, s) is a bounded function of s.

A.1.1. Resolvant of the linearized Euler operator

In order to prove (A 6), we need to give a more complete version of the Orr mechanism. This is briefly
presented in this paragraph, which is a reproduction of the technical results of (Bouchet & Morita 2010).

We define the Laplace transform of the deterministic vorticity as

ω̂(y, c+ iε) =

∫ ∞
0

dt ω̃(y, t)eik(c+iε)t. (A 7)

The inverse Laplace transform is then given by

ω̃(y, t) =
|k|
2π

lim
ε→0+

∫ ∞
−∞

dc ω̂(y, c+ iε)e−ikct. (A 8)

It is also useful to define the Laplace transform of the stream function φ ≡ ∆−1ω̂; this quantity is usu-
ally referred in literature as the resolvent of the operator LU,k. It is related to ω̂ through ω̂(y, c + iε) =(
d2

dy2 − k
2
)
φ(y, c+ iε) and is the solution of the linear ordinary differential equation(

d2

dy2
− k2

)
φ− U ′′(y)

U(y)− c− iε
φ =

eily

ik (U(y)− c− iε)
. (A 9)

The homogeneous part of this equation (with zero right-hand side) is known as the Rayleigh equation (Drazin
& Reid 2004, second edition). For all ε > 0, this equation is a regular ODE. When ε → 0+, this equation
becomes singular at the critical layer c = U(y). It can be shown that φ(y, c+ iε)→ φ+(y, c) as ε→ 0+, where
φ+ is continuous over c ∈ R, with either a logarithmic singularity in its first derivative with respect to c if
U ′(y) 6= 0, or a logarithmic singularity in its second derivative if U ′(y) = 0 (Bouchet & Morita 2010). We
will first consider the case U ′(y) 6= 0. Then we can write, for all c,

φ+(y, c) = φ2(y, c).(U(y)− c) ln |U(y)− c|+ φ1(y, c), (A 10)

where φ1, φ2 are analytic functions of c (Bouchet & Morita 2010).

Using (A 8), (A 9) and Plemelj formula (3.21) to evaluate the limit ε→ 0+, we get

ω̃(y, t1) = ω̃∞(y)e−ikU(y)t1 +

∫ ∗ dc

2πi

ikU ′′(y)φ+(y, c) + eily

U(y)− c
e−ikct, (A 11)
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where

ω̃∞(y) = ikU ′′(y)φ+(y, U(y)) + eily, (A 12)

and where we recall that
∫ ∗

denotes the Cauchy Principal Value of the integral.
The first term is the classical Orr mechanism (3.17), the second term decays for large t1 as 1/tγ1 , where

γ > 0 depends on the order of differentiability of c → φ+(y, c). Then, as c → φ+(y, c) is smoother at points
y such that U ′(y) = 0 than at points such that U ′(y) 6= 0, we can focus on the latter case.

A.1.2. Points such that U(y1) = U(y2)

The Orr mechanism (A 11) can be written ω̃(y, t1) = ω̃∞(y)e−ikU(y)t1 + ω̃r(y, t1) where ω̃r(y, t1) = O(t−γ1 )
as t1 →∞, with γ > 0. Using this expression of the deterministic vorticity and (A 5), we get

Tα(y1, y2, s) =
ω̃∞(y1)ω̃∞∗(y2)

ik(U(y1)− U(y2)) + 2α
+ g̃r(y1, y2) ,

where g̃r contains the corrections involving ω̃r. From Plemelj formula (3.21), the first term converges to a
distribution in the limit α→ 0+. In particular, it diverges point-wise as 1/α at points such that U(y1) = U(y2).
We now prove that the remainder g̃r is negligible compared to this 1/α divergence at such points.

The most divergent part of g̃r is of the form Gα =
∫∞

0
f(t) dt where f is bounded and f(t) = O(e−2αtt−γ)

as t→∞. The behaviour for small α of Gα depends on the value of γ.
• if γ < 1, there exists some K > 0 such that

|Gα| 6 K

∫ ∞
0

e−2αt

tγ
dt,

which is finite for all α > 0 because the integrand is integrable close to t = 0. With the change of variable
u = αt, we get |Gα| 6 K ′αγ−1 with K ′ = K

∫∞
0

e−2uu−γ du.
• if γ = 1, taking the derivative with respect to α and with the change of variable u = αt we get

∂Gα
∂α

=
1

α

∫ ∞
0

e−2ug
(u
α

)
du

with a bounded function g such that g(t) = O(1) as t→∞. By the theorem of dominated convergence,∫ ∞
0

e−2ug
(u
α

)
du −→

α→0
K ′′ ≡

∫ ∞
0

e−2u lim
∞
g du ,

so by integration Gα ∼ −K ′′ lnα.
• if γ > 1 we directly have Gα → G0 <∞ as α→ 0 by the theorem of dominated convergence.

In all three cases, Gα is negligible with respect to 1/α as α → 0. We conclude that g̃r(y1, y2) is negligible
with respect to the 1/α divergence of g̃(y1, y2) at points such that U(y1) = U(y2).

At points such that U(y1) 6= U(y2), the first term in the expression of g̃(y1, y2) converges to a finite value,
so we need to prove that g̃r(y1, y2) also converges. This is done in next paragraph.

A.1.3. Points such that U(y1) 6= U(y2)

Let us now consider

g̃(y1, y2) =

∫ ∞
0

ω̃(y1, t1)ω̃∗(y2, t1)e−2αt1 dt1. (A 13)

Using (A 8) and (A 9) we get

g̃(y1, y2) = lim
ε1,ε2→0+

∫
dc1
2π

dc2
2π

ω̂(y1, c1 + iε1) (ω̂(y2, c2 + iε2))
∗ 1

ik(c1 − c2) + 2α
(A 14)

with ω̂(y, c+ iε) = ikU ′′(y)φ(y,c+iε)+eily

U(y)−c−iε . We easily realize that the infinite bounds of this double integral are

not sources of divergence. The only possible sources of divergence come from the critical layers c = U(y)
when α → 0+. When U(y1) = U(y2), we know that g̃ is equivalent to 1/α as α → 0. We now consider the
case U(y1) 6= U(y2).

Consider a fixed α > 0, g̃ is of the form

Iα = lim
ε1→0+

∫
dx1

f1(x1)

x1 − a1 − iε1
lim

ε2→0+

∫
dx2

f2(x2)

x2 − a2 − iε2
1

x1 − x2 − iα
,

where the functions x→ fk(x) are continuous with a logarithmic singularity in their first derivative at x = ak.
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We also assume that a1 6= a2. Using Plemelj formula (3.21) to estimate successively the limits ε2 → 0+ and
ε1 → 0+, we get

Iα =
π2f1(a1)f2(a2)

a1 − a2 − iα
− iπf2(a2)

∫ ∗
dx1

f1(x1)

x1 − a1

1

x1 − a2 − iα

− iπf1(a1)

∫ ∗
dx2

f2(x2)

x2 − a2

1

a1 − x2 − iα

−
∫ ∗

dx1
f1(x1)

x1 − a1

∫ ∗
dx2

f2(x2)

x2 − a2

1

x1 − x2 − iα
,

(A 15)

where all the principal value integrals are finite because f1 and f2 are continuous, and because α > 0. We
now study the convergence of each term as α→ 0+.

• The first term π2f1(a1)f2(a2)
a1−a2−iα converges to π2f1(a1)f2(a2)

a1−a2 , which is finite for a1 6= a2. This term corresponds
to the most divergent part when a1 = a2 (or U(y1) = U(y2) in g̃). It also means that the convergence of the
remaining terms in (A 15) depends directly on the value of γ in the Orr mechanism, or equivalently on the
regularity of the resolvant c→ φ+(y, c).
• For the second term, Plemelj formula (3.21) can be applied to estimate the limit α → 0+ because the

singularities at x1 = a1 and x1 = a2 are not confounded:∫ ∗
dx1

f1(x1)

x1 − a1

1

x1 − a2 − iα
−→
α→0+

π
f1(a2)

a2 − a1
− i
∫ ∗

dx1
f1(x1)

(x1 − a1)(x1 − a2)

The same result applies to the third term.
• For the last term, let’s consider the function

J(x1) = lim
α→0+

∫ ∗
dx2

f2(x2)

x2 − a2

1

x1 − x2 − iα
.

At any point such that x1 6= a2, this can be estimated using Plemelj formula (3.21),

J(x1) =
πf2(x1)

x1 − a2
− i
∫ ∗

dx2
f2(x2)

(x2 − a2)(x1 − x2)
,

where both terms are finite because x1 6= a2. To estimate the limit at the point x1 = a2, we first use that∫ ∗ f(y)

y
dy =

∫
f(y)− f(0)

y
dy , (A 16)

where the integral on the right-hand side is now a usual Riemann integral if f is continuous at y = 0. This
equality indeed follows from∫ ∗ f(y)

y
dy ≡

∫
PV

(
1

y

)
f(y) dy ≡ lim

ε→0+

[∫ −ε
−∞

+

∫ +∞

ε

]
f(y)

y
dy

and the fact that
∫ ∗

dy/y = 0. We thus have

J(a2) = lim
α→0+

∫
dx2

1

x2 − a2

(
f2(x2)

a2 − x2 − iα
− f2(a2)

−iα

)
and the expression of the resolvant (A 10), here f2(x2) = g(x2)(x2 − a2) ln |x2 − a2| + h(x2), where g and h
are analytic functions,

J(a2) = − lim
α→0+

[∫
dx2

g(x2) ln |x2 − a2|
x2 − a2 + iα

+

∫ ∗
dx2

h(x2)

x2 − a2

1

x2 − a2 + iα

]
, (A 17)

where we have used again (A 16) in order to express the second integral as a Principal Value. The first term
in the brackets finite for all α > 0 because x → lnx is integrable around x = 0. This term converges in the
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limit α→ 0: ∫
dx2

g(x2) ln |x2 − a2|
x2 − a2 + iα

∼
α→0+

∫
dx2

g(x2) ln |x2 − a2 + iα|
x2 − a2 + iα

=

∫
dx2 g(x2)

1

2

d

dx2
ln2 |x2 − a2 + iα|

= −1

2

∫
dx2 g

′(x2) ln2 |x2 − a2 + iα|

→
α→0+

−1

2

∫
dx2 g

′(x2) ln2 |x2 − a2| ,

where the first and last equivalents follow from continuity of z → ln |z|. This expression is finite because g
is analytic and x → ln2(x) is integrable around x = 0. In the second term in (A 17), we use that h can be
expanded in its Taylor series, h(x2) = h0 + h1(x2 − a2) + o(x2 − a2), so∫ ∗

dx2
h(x2)

x2 − a2

1

x2 − a2 + iα
=

∫ ∗
dx2

h0

x2 − a2

1

x2 − a2 + iα
+

∫
dx2

h1 + o(1)

x2 − a2 + iα
,

where the last integral is now a usual Riemann integral because the divergence has been cancelled. The term
involving h0 can be computed explicitely for any α > 0,∫ ∗

dx2
1

x2 − a2

1

x2 − a2 + iα
=

1

iα
lim
ε→0+

[ln |x2 − a2 + iα| − ln |x2 − a2|]a2−εa2+ε = 0.

Then, ∫ ∗
dx2

h(x2)

x2 − a2

1

x2 − a2 + iα
=

∫
dx2

h(x2)− h(a2)

x2 − a2 + iα
−→
α→0+

∫
dx2

h(x2)− h(a2)

x2 − a2
,

which is finite. We conclude that J(x1) is a finite quantity for all x1, and is continuous at x1 = a1 6= a2.
Then,

lim
α→0+

∫ ∗
dx1

f1(x1)

x1 − a1

∫ ∗
dx2

f2(x2)

x2 − a2

1

x1 − x2 − iα
=

∫ ∗
dx1

f1(x1)

x1 − a1
J(x1),

which is finite.
We conclude that Iα has a finite limit for α→ 0+, so g̃(y1, y2) is finite for all points such that U(y1) 6= U(y2).

A.2. Other two–points correlation functions

A.2.1. Large time behavior of Tαvv

We report (3.10) for convenience,

Tαvv(k, ly1, y2, s) ≡
1

2
EαU [vk,l(y1, s)v−k,−l(y2, 0)] =

∫ ∞
0

dt1 ṽk,l(y1, s+ t1)ṽ−k,−l(y2, t1) . (A 18)

We show here that Tαvv decays as or faster than 1/s2.
We have

|Tαvv(k, l, y1, y2, s)| 6
∫ ∞

0

dt1 |ṽk,l(y1, t1 + s)| |ṽ−k,−l(y2, t1)| . (A 19)

Because T0 � 1, we can chose in the above formula s� 1. We thus have

|Tαvv(k, l, y1, y2, s)| 6
∣∣∣∣ ω̃∞k,l(y)

ik(U ′(y))2

∣∣∣∣ ∫ ∞
0

dt1 |ṽ−k,−l(y2, t1)|
{

1

(t1 + s)2
+ o

(
1

(t1 + s)2

)}
. (A 20)

Using the results in section A.4, we have

|Tαvv(k, l, y1, y2, s)| .
t→∞

Rvv(k, l, y1, y2)

s2
+ o

(
1

s2

)
, (A 21)

where Rvv is a positive, bounded function of (y1, y2). It is important to note that Rvv does not depend on α.

A.2.2. Large time behavior of Tαvω

We report (3.11) for convenience,

Tαvω(k, l, y1, y2, s) ≡
1

2
EαU [vk,l(y1, s)ω−k,−l(y2, 0)] =

∫ ∞
0

dt1 ṽk,l(y1, s+ t1)ω̃−k,−l(y2, t1) . (A 22)
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The large-s behavior of Tαvω(k, l, y1, y2, s) is different if U(y1) = U(y2) or if U(y1) 6= U(y2). Indeed, in the first
case, the asymptotic oscillations of the integral cancel out and the large-s decay is slower: it decays as 1/s
in the α → 0 limit. In the second one, the oscillations do not cancel out and the decay is as 1/smin{1+γ,2},
where γ > 0 is the exponent of the decay of ω̃rkl.

We have

Tαvω(k, l, y1, y2, s) ∼
t→∞

ω̃∞k,l(y1)

ik(U ′(y1))2
e−ikU(y1)s−αs

{
ω̃∞−k,−l(y2)

∫ ∞
0

dt1
e−i[kU(y1)−kU(y2)]t1−2αt1

(t1 + s)2

+

∫ ∞
0

dt1
e−ikU(y1)t1−2αt1

(t1 + s)2
ω̃r−k,−l(y2, t1)

}
.

(A 23)

We now see that the decay in s of the expression in parenthesis is different if U(y1) = U(y2) or U(y1) 6= U(y2).
If U(y1) = U(y2), the first integral dominates. We have∫ ∞

0

dt1
e−i[kU(y1)−kU(y2)]t1−2αt1

(t1 + s)2
=

∫ ∞
0

dt1
e−2αt1

(t1 + s)2
6

1

s
. (A 24)

Observe that the equality holds in the α→ 0 limit. We conclude that, if U(y1) = U(y2),

|Tαvω(k, l, y1, y2, s)| .
s→∞

Rslowvω (k, l, y1, y2)

s
e−αs , (A 25)

where

Rslowvω (k, l, y1, y2) =
ω̃∞k,l(y1)ω̃∞−k,−l(y2)

ik(U ′(y1))2
(A 26)

is a regular function which does not depend on α.
If U(y1) 6= U(y2), the asymptotic oscillations on the first term in the parenthesis of Eq. (A 23) do not

cancel out. Using the results of section A.4, we conclude that∣∣∣∣∫ ∞
0

dt1
e−i[kU(y1)−kU(y2)]t1−2αt1

(t1 + s)2

∣∣∣∣ 6 ∣∣∣∣∫ ∞
0

dt1
e−i[kU(y1)−kU(y2)]t1

(t1 + s)2

∣∣∣∣ ∼ 1

s2
. (A 27)

For what concerns the second term in the parenthesis of Eq. (A 23), we have∣∣∣∣∫ ∞
0

dt1
e−ikU(y1)t1−2αt1

(t1 + s)2
ω̃r−k,−l(y2, t1)

∣∣∣∣ 6 ∫ ∞
0

dt1

∣∣∣ω̃r−k,−l(y2, t1)
∣∣∣

(t1 + s)2
∼

s→∞

A(k, l, y2)

s1+γ
, (A 28)

where A is a positive function which does not depend on α. The formula given above is valid for 0 < γ < 1
or γ > 1 but not for γ = 1, in which there is a logarithmic correction, see sections A.4. The logarithmic
correction is not important for the following, so we do not consider it here.

We thus conclude that, for U(y1) 6= U(y2)

|Tαvω(k, l, y1, y2, s)| .
s→∞

Rfastvω (k, l, y1, y2)

smin{1+γ,2} e−αs (A 29)

where

Rfastvω (k, l, y1, y2) =
ω̃∞k,l(y1)

ik(U ′(y1))2
A(k, l, y2) . (A 30)

A.2.3. Large time behaviour of Tαωv

We report (3.12) for convenience,

Tαωv(k, l, y1, y2, s) ≡
1

2
EαU [ω−k,−l(y1, s)vk,l(y2, 0)] =

∫ ∞
0

dt1 ω̃−k,−l(y1, s+ t1)ṽk,l(y2, t1) . (A 31)

We show here that Tαωv defined in Eq. (3.12) is bounded by a function of (k, l, y1, y2), independent of α.
We have

|Tαωv(k, l, y1, y2, s)| 6 e−αs||ω̃||∞(y1)

∫ ∞
0

dt1 |ṽk,l(y2, t1)| , (A 32)

where ||ω̃||∞ = maxt1 ω̃−k,−l(y1, t1) is finite thanks to the Orr mechanism. Using that |ṽk,l(y2, t1)| is a
bounded function of both y2 and t1, and that it decays as 1/t21 for t1 →∞, we conclude that

|Tαωv(k, l, y1, y2, s)| 6 Rωv(k, l, y1, y2)e−αs . (A 33)
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where Rωv(k, l, y1, y2) is a positive, bounded function of (y1, y2) which does not depend on α.

A.3. Four–points correlation functions

A.3.1. Behavior of Cαkl in the limit α→ 0

Using (A 21) and (A 6) in the definition (A 2),

Cαkl(y1, y2, T0) .
ω̃∞−k,−l(y1)ω̃∞k,l(y2)Rvv(k, l, y1, y2)

ik [U(y1)− U(y2)] + 2α

∫ ∞
T0

ds

(
1

s2
+ o

(
1

s2

))
e−αs

+Rvv(k, l, y1, y2)

∫ ∞
T0

ds T r,αωω (k, l, y1, y2, s) e−αs
(

1

s2
+ o

(
1

s2

))
.

From the properties of T r,αωω , we conclude that
• if U(y1) = U(y2),

Cαkl(y1, y2, T0) =
α→0

A1(k, l, y1, y2)

2α
+ o

(
1

α

)
=
α→0

A1(k, l, y1, y2) + o(1)

2α

where

A1(k, l, y1, y2) = ω̃∞−k,−l(y1)ω̃∞k,l(y2)

∫ ∞
T0

ds Tαvv(k, l, y1, y2, s)

∣∣∣∣
α=0

,

which is finite.
• if U(y1) 6= U(y2),

Cαkl(y1, y2, T0) =
α→0

A1(k, l, y1, y2)

ik [U(y1)− U(y2)]
+A2(k, l, y1, y2)

where

A2(k, l, y1, y2) =

∫ ∞
T0

ds Tαvv(k, l, y1, y2, s)T
r,α
ωω (k, l, y1, y2, s)

∣∣∣∣
α=0

,

which is finite.

A.3.2. Behavior of Dα
kl in the limit α→ 0

Using (A 25), (A 29) and (A 33) in the definition (A 3), we have:
• if U(y1) = U(y2),

|Dα
kl(y1, y2, T0)| . Rslowvω (k, l, y1, y2)Rωv(k, l, y1, y2)

∫ ∞
T0

ds
e−2αs

s
.

We can now observe that ∫ ∞
T0

ds
e−2αs

s
∼
α→0

logαT0

so Dα
kl(y1, y2, T0) = lnαB1(k, l, y1, y2) where B1 is finite and doesn’t depend on α.

• if U(y1) 6= U(y2),

|Dα
kl(y1, y2, T0)| . Rfastvω (k, l, y1, y2)Rωv(k, l, y1, y2)

∫ ∞
T0

ds
e−2αs

smin 1+γ,2
. (A 34)

We can now observe that ∫ ∞
T0

ds
e−2αs

smin 1+γ,2
<∞ ∀α > 0 (A 35)

so Dα
kl(y1, y2, T0) = B2(k, l, y1, y2) where B2 is finite and doesn’t depend on α.

A.3.3. Conclusion for Ξαkl
Collecting the previous results and using Ξαkl = Cαkl +Dα

kl, we have
• if U(y1) = U(y2),

Ξαkl(y1, y2) =
α→0

A1(k, l, y1, y2) + o(1) + 2α lnαB1(k, l, y1, y2)

2α
=
α→0

A1(k, l, y1, y2)

2α
.
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• if U(y1) 6= U(y2),

Ξαkl(y1, y2) =
α→0

A1(k, l, y1, y2) + ik [U(y1)− U(y2)] [A2(k, l, y1, y2) +B2(k, l, y1, y2)]

ik [U(y1)− U(y2)]
.

We conclude that for all (y1, y2),

Ξαkl(y1, y2) ∼
α→0

Akl(y1, y2)

ik [U(y1)− U(y2)] + 2α
,

withAkl(y1, y2) = A1(k, l, y1, y2)+ik [U(y1)− U(y2)] [A2(k, l, y1, y2) +B2(k, l, y1, y2)]. However, when U(y1) =
U(y2) and U ′(y1) = 0, then Akl(y1, y2) = 0. This result indeed follows from the fact that ω̃∞kl (y1) = 0 for
such points, see (Bouchet & Morita 2010) and the discussion in section 3.2. Then, at such points, Ξαkl(y1, y2)
either converges to a finite value or diverges slower than 1/α as α→ 0. This is the result we wanted to prove
and anticipated in eq. (3.20).

A.4. Temporal decay of some integrals

A.4.1. Some oscillating integrals

Consider integrals of the form

F (t) =

∫ ∞
0

du e−iguf(t+ u) f(u) ∼
u→∞

1

uN
g 6= 0 , (A 36)

where f is a smooth real function and N > 0. We prove here that

F (t) ∼
t→∞

1

tN
. (A 37)

Let us perform the change of variable w = 1 + u/t:

F (t) = t e−igt
∫ ∞

1

dw e−igtwf(tw) = t e−igt
∫ ∞

1

dw e−igtwht(w) , (A 38)

where we have introduced the function ht(w) = f(tw); clearly, ht(w) ∼
t,w→∞

1
tNwN . We also have h

(n)
t (1) ∼

t→∞
1
tN

for all n, where h
(n)
t indicates the n-th derivative.

Now perform part integration iteratively on the last expression, for example after two parts integrations:

F (t) ∼
t�1

e−igt
{
−i
g
ht(1) +

1

g2t
h

(1)
t (1)− 1

g2t

∫ ∞
1

dw e−igtwh
(2)
t (w)

}
. (A 39)

Each successive term converges faster to zero than the previous one in the limit t� 1, thanks to the relation

h
(n)
t (1) ∼

t→∞
1
tN

for all n. We thus have the desired result.

A.4.2. Non oscillating integrals

Consider integrals of the form

G(t) =

∫ ∞
0

du
g(u)

(u+ t)2

∫ ∞
0

du g(u) <∞ ; (A 40)

where g(u) > 0 everywhere in [0,∞). We prove here that

G(t) ∼
t→∞

A

t2
0 <

∫ ∞
0

du
g(u)

(1 + u)2
< A <

∫ ∞
0

du g(u) . (A 41)

We have

G(t) =
1

t2

∫ ∞
0

du
g(u)

(1 + u
t )2

; (A 42)

let us observe that
1

(1 + u)2
<
t>1

1

(1 + u
t )2

< 1 (A 43)

where in the first passage we assumed t > 1 as we are interested in the t→∞ limit of G. Then,

1

t2

∫ ∞
0

du
g(u)

(1 + u)2
<
t>1

G(t) <
1

t2

∫ ∞
0

du g(u) . (A 44)
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We have then proved the desired result in Eq. (A 41).
These results can be easily extended to the case of integrals of the form

G(t) =

∫ ∞
0

du
g(u)

(u+ t)N

∫ ∞
0

du g(u) <∞ N > 0 (A 45)

and one would obtain the result

G(t) ∼
t→∞

A

tN
0 <

∫ ∞
0

du
g(u)

(1 + u)N
< A <

∫ ∞
0

du g(u) . (A 46)

A.4.3. Non oscillating integrals where the previous estimation does not work

Consider integrals of the form

G(t) =

∫ ∞
0

du
g(u)

(u+ t)2
g(u) ∼

u→∞

1

uγ
0 < γ 6 1, (A 47)

where g(u) > 0 everywhere in [0,∞). In this case, the hypothesis of the previous section do not work because∫∞
0

du g(u) =∞.
We prove in this subsection that

G(t) .
t→∞

A1

t1+γ
0 < γ < 1 (A 48)

and

G(t) .
t→∞

A2

t2
log t γ=1 (A 49)

where A1 and A2 are suitable positive constants. As usual the symbol .
t→∞

means that there is a function

G1(t) which dominates G(t) and behaves as described for t→∞.
The proof of Eq. (A 48) and (A 49) is easily done by observing that g can be majorated for every u by

g(u) 6
a1

uγ
if 0 < γ < 1 (A 50)

and

g(u) 6
a2

u+ a3
if γ = 1 . (A 51)

where a1, a2 and a3 are positive constants. The case 0 < γ < 1 is easily completed by observing that

G(t) < G1(t) ≡
∫ ∞

0

du
1

(u+ t)2

a1

uγ
= a1π

(
1

t

)1+γ

γCsc[πγ] ∼
t→∞

A1

t1+γ
. (A 52)

where Csc is the cosecant†
The case γ = 1 is also easily accomplished by observing that

G(t) < G2(t) ≡
∫ ∞

0

du
1

(u+ t)2

a2

u+ a3
=
a2(a3 − t− t ln a3 + t ln t)

(a3 − t)2t
∼

t→∞

A2

t2
ln t. (A 53)
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