36 research outputs found

    Direct diagnostics of forming massive stars: stellar pulsation and periodic variability of maser sources

    Full text link
    The 6.7 GHz methanol maser emission, a tracer of forming massive stars, sometimes shows enigmatic periodic flux variations over several 10-100 days. In this Letter, we propose that this periodic variations could be explained by the pulsation of massive protostars growing under rapid mass accretion with rates of Mdot > 10^-3 Msun/yr. Our stellar evolution calculations predict that the massive protostars have very large radius exceeding 100 Rsun at maximum, and we here study the pulsational stability of such the bloated protostars by way of the linear stability analysis. We show that the protostar becomes pulsationally unstable with various periods of several 10-100 days, depending on different accretion rates. With the fact that the stellar luminosity when the star is pulsationally unstable also depends on the accretion rate, we derive the period-luminosity relation log (L/Lsun) = 4.62 + 0.98log(P/100 day), which is testable with future observations. Our models further show that the radius and mass of the pulsating massive protostar should also depend on the period. It would be possible to infer such protostellar properties and the accretion rate with the observed period. Measuring the maser periods enables a direct diagnosis of the structure of accreting massive protostars, which are deeply embedded in dense gas and inaccessible with other observations.Comment: 5 pages, 3 figures, 1 table, accepted for publication in ApJ

    Trigonometric distance and proper motions of H2O maser bowshocks in AFGL 5142

    Get PDF
    We present the results of multi-epoch VLBI observations of water masers in the AGFL 5142 massive star forming region. We measure an annual parallax of π=0.467±0.010\pi=0.467 \pm 0.010 mas, corresponding to a source distance of D=2.140.049+0.051D=2.14^{+0.051}_{-0.049} kpc. Proper motion and line of sight velocities reveal the 3D kinematics of masers in this region, most of which associate with millimeter sources from the literature. In particular we find remarkable bipolar bowshocks expanding from the most massive member, AFGL 5142 MM1, which are used to investigate the physical properties of its protostellar jet. We attempt to link the known outflows in this region to possible progenitors by considering a precessing jet scenario and we discuss the episodic nature of ejections in AFGL 5142