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The scattering signal obtained by phase-sensitive x-ray imaging methods provides complementary information
about the sample on a scale smaller than the utilised pixels, which offers the potential for dose reduction by
increasing pixel sizes. Deconvolution-based data analysis provides multiple scattering contrasts but suffers
from time consuming data processing. Here, we propose a moment-based analysis that provides equivalent
scattering contrasts while speeding up data analysis by almost three orders of magnitude. The availability
of rapid data processing will be essential for applications that require instantaneous results such as medical
diagnostics, production monitoring and security screening. Further, we experimentally demonstrate that the
additional scattering information provided by the moments with an order of higher than two can be retrieved
without increasing exposure time or dose.

In the context of phase-sensitive x-ray imaging tech-
niques, scattering refers to the contrast channel arising
from sample inhomogeneities that are smaller than the
utilised pixels. The utilisation of such sub-pixel signals
allows for increasing the pixel size while maintaining the
signal and simultaneously decreasing dose and/or scan
times significantly. The sensitivity towards sub-pixel in-
formation has been established for different x-ray imaging
methods, such as analyser-based imaging (ABI)1,2, grat-
ing interferometry (GI)3–5, speckle-based imaging6–8 and
edge-illumination (EI)9,10. The potential of x-ray scat-
tering is investigated for mammography10–12, bone struc-
ture determination13 and the diagnosis of several pul-
monary diseases both in small14–16 and large animals17.

Commonly used data analysis procedures provide a
single contrast related to sub-pixel information, which is
called the dark-field3 or the scattering signal10. An alter-
native deconvolution-based approach that provides mul-
tiple and complementary scattering contrasts was origi-
nally developed for GI18 and extended to tomography19

and recently translated to EI20. In some applications,
it was shown that deconvolution can provide a higher
contrast to noise ratio and improved dose efficiency21,22.
It was also demonstrated that the complementary con-
trasts can be exploited for quantitative imaging23 with-
out the need for additional scans required by other ap-
proaches5,24,25. While the deconvolution-based analysis
is suitable for ABI, GI and EI, the approach proposed be-
low is not directly applicable to GI due to the sinusoidal
nature of the provided signal. Thus, we will introduce
the approach for EI and note that all results are directly
applicable to ABI.

EI is a non-interferometric, phase-sensitive x-ray imag-
ing technique that uses a pair of apertured masks (Fig. 1).
The pre-sample mask confines the incident x-rays into
smaller beamlets, which are broadened by the sample
due to scattering. The broadening is transformed into a
detectable intensity variation by the detector mask that
features apertures covering most of the detector pixels.
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FIG. 1. Set-up for x-ray imaging based on edge-illumination.
The scattering angle α is given by the geometry of the set-up.

The comparably large structure sizes of the optical ele-
ments (typically tens of microns) allows for simple mask
fabrication23 and renders EI robust against vibrations
and thermal variations. EI is readily compatible with
laboratory-based x-ray tubes due to the achromaticity of
the optical elements and the entire x-ray spectrum con-
tributes to the signal26,27.

Accessing multiple scattering contrasts by deconvolu-
tion is based on the following approach. Scanning the
pre-sample masks laterally by a fraction of its period
provides a Gaussian-like intensity curve in each detector
pixel. Repeating the scan with and without the sam-
ple yields the signals s(α) and f(α), respectively. Here,
the scattering angle α is defined in a plane perpendic-
ular to the line apertures of the utilised mask (Fig. 1).
Scattering in the orthogonal direction does not change
the detectable signal and, thus, can be omitted for the
rest of the discussion. The angularly resolved scatter-
ing distribution g(α), which represents the sample’s scat-
tering signal within one pixel, is then implicitly defined
by9,10,20,28,29

s(α) = f(α) ⊗ g(α), (1)

where ⊗ denotes the convolution operator. The scatter-
ing distribution g(α) can be accessed from experimental
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data by deconvolving s(α) with f(α) and iterative Lucy-
Richardson deconvolution30,31 has been established as a
reliable method20,21. The kth iteration step of the de-
convolution is performed by computing

gk+1 = gk ×
(

s

gk ⊗ f
⊗ ¯̄f

)
, (2)

where ¯̄f denotes f mirrored at the origin. Usually, the
sample signal is chosen as the starting value: g0 = s.
Lucy-Richardson deconvolution features an implicit posi-
tive constraint and is guaranteed to converge to the maxi-
mum likelihood solution if the experimental noise is given
by Poisson statistics, which is commonly the case in x-ray
imaging32,33.

In order to retrieve multiple contrasts relating to the
shape of g a moment analysis can be applied to the scat-
tering distributions. Depending on normalisation and
centralisation different definitions of the moments need
to be distinguished. The un-normalised, un-centralised
moments of an arbitrary function h(α) are given by

Mn(h) =

∫
αnh(α) dα, (3)

where n is an integer denoting the order of the moment.
Dividing by M0 yield the normalised, un-centralised mo-
ments

M̄n(h) = Mn/M0 for n ≥ 1, (4)

and shifting by M̄1 lead to the normalised, centralised
moments

M̃n(h) =

∫ (
α− M̄1

)n
h(α) dα/M0 for n ≥ 2. (5)

It has been experimentally demonstrated that the first
moment of the scattering distribution M0(g) corresponds
to absorption, M̄1(g) to the differential phase signal and

M̃2(g) to scattering strength20. The relation of these
moments to sample properties are provided in23.

Given typical noise levels in experiments, about 1000
iterations steps are required to ensure convergence of the
Lucy-Richardson deconvolution, which may lead to cum-
bersome data processing times. For example, data pro-
cessing of the dragon fly in20 took around 1 h for a 400
by 300 pixel field of view on a standard desktop PC. This
renders iterative deconvolution unsuitable for time sensi-
tive applications.

Therefore, we propose an alternative data analysis ap-
proach that uses the known moments of convolutions34,
the derivation of which is briefly sketched in the follow-
ing. The moments defined in eq. (3) appear as derivatives
at zero frequencies in Fourier space35

Mn(s) =

√
2π

(−i)n
dnŝ

dqn

∣∣∣∣
q=0

, (6)

where the symbolˆdenotes the Fourier transform and q
the variable in Fourier space. Since s is given by a con-
volution its Fourier transform corresponds to a product:

s = f ⊗ g ⇔ ŝ =
√

2πf̂ × ĝ. (7)

Inserting eq. (7) into eq. (6) and dividing by M0 leads to

M̄n(s) =
n∑

k=0

(
n

k

)
M̄k(f) M̄n−k(g) (8)

with the binomial coefficient
(
n
k

)
. Similar equations

hold true for the normalised, centralised moments M̃n
34,

which can be solved for the moments of g. The result for
the first five moments are:

M0(g) = M0(s)/M0(f) (9)

M̄1(g) = M̄1(s) − M̄1(f) (10)

M̃2(g) = M̃2(s) − M̃2(f) (11)

M̃3(g) = M̃3(s) − M̃3(f) (12)

M̃4(g) = M̃4(s) − M̃4(f) − 6M̃2(f)M̃2(g). (13)

First moment terms do not appear in equations with n >
1 because M̃1 = 0. For the scattering width M̃2 the above
equation is in agreement with published results36. Since
the moments of s and f can be directly calculated from
experimental data, eqs. (9)-(13) provide direct access to
the moments of the scattering distribution g without the
need for time consuming iterative deconvolution.

In order to experimentally compare the results of de-
convolution and direct moment analysis, we used an EI-
based imaging system at University College London. A
Rigaku MM007 rotating anode with a Mo target was used
as an x-ray source and operated at 25 mA current and
40 kVp voltage. The pre-sample mask consisted of a
series of Au lines on a graphite substrate with a pitch
of 79 µm and an opening of 10 µm, while the detector
mask had a pitch of 98 µm and an opening of 17 µm.
Both masks were manufactured by Creatv Microtech
(Potomac, MD). The x-ray detector was a Hamamatsu
C9732DK flat panel sensor featuring a binned pixel size
of 100 µm. The sample to detector distance was 0.32 m
and the total set-up length 2 m.

The sample was a dragon fly, which was known to pro-
vide a sufficient signal for the first five moments. The
sample mask was scanned over one pitch with 32 steps
and an exposure time of 25 s per step. The same data
set was used for the deconvolution (eq. 2) and moment
analysis (eqs. 9-13). The resulting scattering contrasts
(Fig. 2) show an excellent visual agreement between the
two approaches, while data processing for direct moment
analysis was about 600 times faster than for deconvo-
lution. Furthermore, direct moment analysis eliminates
the number of iteration steps as a necessary parameter
for deconvolution.

Table I presents a performance comparison of decon-
volution and moment analysis. The high degree of visual
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FIG. 2. Comparison of four moments retrieved by deconvolu-
tion (left column) and moment analysis (right column). The
sample was a dragon fly and the two data analysis approaches
deliver practically identical results. Pixel size is 100 µm and
scale bars are 5 mm.

agreement between the approaches is confirmed by the
correlation factors (≥ 0.9 for all contrasts). Columns 3
and 4 compare the standard deviation of the signals in
a 50x50 pixel background area as a measure of the noise
level in the two analysis approaches. With the exception
of M̃2 (details discussed below), both approaches deliver
the similar noise levels.

For the 2nd moment, the scatter plot of values retrieved
by deconvolution and moment analysis (Fig. 3) reveals a
discrepancy for scattering strengths that are small com-
pared to the width of the flat-field scan (M̃2(g) ≤ 0.05×
M̃2(f)). In this case, the deconvolution approach (eq. 2)

correlation std. deconv. std. mom. ana.

M0 1.00 2.6× 10−3 2.6× 10−3

M̄1 0.99 6.4× 10−8 rad 6.5× 10−8 rad

M̃2 0.99 4.6× 10−12 rad2 8.3× 10−12 rad2

(6.7× 10−11 rad2) (6.7× 10−11 rad2)

M̃3 0.90 3.3× 10−16 rad3 3.1× 10−16 rad3

M̃4 0.90 4.5× 10−20 rad4 4.4× 10−20 rad4

TABLE I. Performance comparison of the two data analysis
approaches for the first five moments shown in Fig. 2. 2nd

column: correlation between the results of deconvolution and
moment analysis. 3rd and 4th column: standard deviation of
the signals in the background. The additional entry for M̃2

relates to the standard deviation of larger scattering values
(see text for explanation).
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FIG. 3. Scatter plot of M̃2 as retrieved by deconvolution and
moment analysis. The M̃2 values have been normalised by
the mean of M̃2 in the flat scan (M̃2(f) = 7 × 10−10 rad2).

For small values of M̃2(g) there is a noticeable discrepancy
between the results of the algorithms, which is due to the
inability of the deconvolution approach to retrieve a scattering
distribution with zero width in the presence of noise.

does not retrieve the correct δ-shaped signal for g due
to the presence of noise22, but will retrieve a signal with
M̃2(g) > 0. The moment analysis, on the other hand, is
not subject to such a restriction. The difference in bias
between the two approaches is also reflected in the mean
of the background areas, which are M̃2 = 2.1×10−11 rad2

for deconvolution and M̃2 = 2.8 × 10−12 rad2 and, thus,
an order of magnitude smaller for direct moment anal-
ysis. However, Tab. I shows that deconvolution pro-
vides M̃2 values with a smaller standard deviation than
moment analysis in the background area. Neverthe-
less, moment analysis would be the preferred option for
quantitative data analysis. For large scattering values
(M̃2(g) ≥ 0.1 × M̃2(f)) the two approaches deliver the

same sensitivity (bracketed entries for M̃2 in Tab. I).

Finally, we investigated the influence of the acquired
number of sample points on the functions s(α) and f(α)
(i.e., number of images per scan). Since at least n+1 scan
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FIG. 4. Standard deviations of the moment values in the
background as a function of the number of scan points with
constant total exposure time. The values have been nor-
malised by the value corresponding to five scan points, which
is the smallest possible number for five linear independent
moments.

points are required for the linear independence of nth
moment, increasing the number of scan points increases
the number of accessible and complementary scattering
information.

To this end, we acquired an additional data set, where
we varied the number of scan points from 4 to 11, while
keeping the total exposure time constant (200 s). We
used the standard deviation of the different scattering
contrasts in a background area retrieved by direct mo-
ment analysis to quantify the dependency. As can be
seen in Fig. 4 the noise levels vary within a small 15 %
interval, which implies that the sensitivity of the differ-
ent contrasts does not change significantly with the num-
ber of scan points. In essence, this means that moment
analysis provides the additional scattering contrasts (i.e.,
moments with order higher than 2) without the need to
increase total exposure time or dose.

In conclusion, we have established a direct moment
analysis as an alternative approach for retrieving multi-
ple scattering contrasts for EI. We also suggest that this
approach can be readily extended to ABI. Direct moment
analysis delivers results equivalent to previously utilised
deconvolution, while speeding up data processing by al-
most three orders of magnitude and providing unbiased
values for small or absent scattering signals. Further-
more, we have experimentally demonstrated that increas-
ing the number of scan points while keeping total expo-
sure time and dose constant provides additional scatter-
ing information without loosing sensitivity. Fast data
processing that provides reliable scattering contrasts will
be crucial for applications demanding rapid feedback,
such as medical diagnostics, production monitoring and
security screening.
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