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1 Introduction

Two-point current correlation functions are relevant for the calculation of important ob-

servables of quantum field theories. In particular, for confining gauge theories they allow

one to construct the so-called hadronic tensor of deep inelastic scattering (DIS) processes,

which is an invaluable tool to extract fundamental information about the structure of

hadrons. When considering a DIS process the idea is that a lepton is scattered from a

hadron, being the interaction mediated by a virtual photon exchanged from the lepton to

the hadron. The process is called inclusive since only the scattered lepton is measured,

while the hadronic final state is not. The differential cross section of DIS is given by the

contraction of a leptonic tensor, which is obtained from Quantum Electrodynamics, and a

hadronic tensor,Wµν , which carries the information about the strong interaction. By using
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the optical theorem in quantum field theory the hadronic tensor can be written in terms

of the vacuum expectation value of the product of two currents. Wµν has a Lorentz tensor

decomposition which depends on the spin of the hadron, and it can be expressed as a sum

of several terms. In addition, there are functions multiplying each of these terms. These

structure functions, like the tensor Wµν , should in principle be derived from QCD. How-

ever, the non-perturbative character of QCD makes it extremely difficult to obtain such

functions in that way. The structure of the hadronic tensor lies on the two-point current

correlation functions, which are affected by the non-perturbative nature of soft processes

of QCD.

On the other hand, the gauge/string duality provides holographic dual models which

can actually be used to calculate the structure functions of hadrons derived from such

models, in terms of two-point current correlation functions. This is so because within this

duality the non-perturbative regime of the quantum field theory corresponds to the per-

turbative regime of the holographic string theory dual model. In this paper we investigate

properties of two-point current correlation functions, and therefore the DIS hadronic ten-

sor, using different holographic string theory dual models with flavors in the fundamental

representation of the gauge group, and within the quenched approximation. The hadrons

we consider are mesons. Notice that these mesons are not exactly those of QCD because

at present there is not any holographic dual model which accounts for all the properties

of QCD, even in the large N limit. However, it is very interesting to be able to explore

their internal structure, since it could manifest a universal character, which obviously is

inherent to the two-point current correlation functions. In fact we find such a universal

behavior. Particularly, we are interested in the study of two-point correlation functions

of non-Abelian symmetry currents, which allows one to describe hadrons with different

flavor content.

Polchinski and Strassler proposed a model for the holographic dual description of DIS

of confining gauge theories [1] that we briefly describe below. They calculated hadronic

structure functions for the Bjorken parameter x of order one within the supergravity ap-

proximation. They also considered a small-x calculation by using a dual string theory

analysis. Their approach is in the large N limit of confining supersymmetric Yang-Mills

theories in four dimensions, such as certain deformations of N = 4 SYM, from which they

study DIS from glueballs and spin-12 hadrons. The gauge theories studied in [1] are UV

conformal or nearly conformal, which makes the dual string theory defined on a background

of the type AdS5 × M5, being M5 a compact five-dimensional Einstein manifold. Thus,

this is a solution of type IIB supergravity whose metric can be written as

ds2 =
ρ2

R2
ηµν dy

µ dyν +
R2

ρ2
dρ2 +R2 d̂s

2

M5
, (1.1)

where the AdS5 radius is R = (4πgsN)1/4α′1/2 when M5 is S
5. The four-dimensional gauge

field theory coordinates are identified with yµ, while ρ is the holographic radial coordinate

related to the dual quantum field theory energy scale. Up to powers of the ’t Hooft coupling

λ = g2YMN ≡ 4πgsN , the ten-dimensional energy scale is given by R−1, where the string
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coupling is denoted by gs. Thus, the four-dimensional energy is given by

E(4) ∼ ρ

R2
. (1.2)

In the large N limit of confining gauge theories, the geometry of the holographic dual

model whose metric is given by eq. (1.1) must be modified at a radius corresponding to

ρ ∼ ρ0 = ΛR2. Notice the presence of a confinement scale Λ. It is worth mentioning

that the dynamics of interest for q ≫ Λ lies on the region where ρint ∼ qR2 ≫ ρ0, where

ρint denotes the bulk region where the relevant interaction occurs. Within this region the

conformal metric (1.1) can be used. Thus, it is possible to calculate the dual of the matrix

element of the Tµν tensor, which as we shall explain in section 2, is related to the hadronic

tensor. As commented before, by using the optical theorem we can write its imaginary

part as

Im Tµν = π
∑

PX ,X

〈P,Q|Jν(0)|PX , X〉〈PX , X|J̃µ(q)|P,Q〉

= 2π2
∑

X

δ(M2
X + [P + q]2)〈P,Q|Jν(0)|P + q,X〉〈P + q,X|Jµ(0)|P,Q〉 , (1.3)

which has been written in terms of the hadron (Pµ) and virtual photon (qµ) momenta, and

the currents Jµ. There is a sum over intermediate states X with mass MX . Notice that

ηµν raises their Lorentz indices which are four-dimensional ones.

In the large N limit of the gauge theory only single hadron states will contribute. If

−P 2 ≪ q2, i.e. |t| ≪ 1, then in the s-channel we can approximate

s = −(P + q)2 ≃ q2
(
1

x
− 1

)
, (1.4)

where we have used the Bjorken variable

x ≡ − q2

2P · q , (1.5)

and also

t ≡ P 2

q2
. (1.6)

The condition −P 2 ≪ q2 is equivalent to |t| ≪ 1. On the other hand, in ten dimensions

the scale s̃ is set by the relation

s̃=−gMNPX,MPX,N ≤ −gµν(P+q)µ(P + q)ν ∼ R2

ρ2int
q2
(
1

x
− 1

)
=

(
x−1 − 1

)

α′(4πgsN)1/2
. (1.7)

The ’t Hooft parameter appears in the denominator, so if (gsN)−1/2 ≪ x < 1 we have α′s̃≪
1. Therefore, in this limit only massless string states are produced, and we are dealing with

a purely supergravity process [1]. Through this work we assume the Bjorken variable to

be within the kinematical regime where the supergravity approximation is reliable.
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One can describe the DIS process from the bulk theory perspective. The idea is

that within the four-dimensional boundary theory we consider the two-point function of

two global symmetry currents inside the hadron. So, let us consider the effect of the

insertion of a current operator at the boundary of the AdS5 space-time. This leads to a

perturbation on the boundary condition of a bulk gauge field. This perturbation produces a

non-normalizable mode propagating in the bulk [2, 3]. In order to find this mode we should

look at the isometry group of the manifoldM5, which corresponds to an R-symmetry group

on the boundary field theory. If one takes a U(1)R subgroup, the associated R-symmetry

current can be identified with the electromagnetic current inside the hadron. Notice that

for the global symmetry group, which corresponds to the isometry of M5, there is a Killing

vector υj which produces the non-normalizable mode of a Kaluza-Klein gauge fieldAm(y, r).

Therefore, the metric perturbation induced by the R-symmetry current operator is

δgmj = Am(y, r) υj(Ω) . (1.8)

This mode Am(y, r) propagates in the bulk and couples to a bulk field which is dual

to a certain quantum field theory state. For instance when considering glueballs, the

holographic dual field in [1] corresponds to the dilaton. Thus, the incoming bulk dilaton

field Φi couples to the bulk U(1)-gauge field Aµ (induced by a current operator inserted

at the boundary) and to another dilaton ΦX , which represents an intermediate hadronic

state.1 The intermediate state propagates in the bulk and couples to an outgoing dilaton

Φf (corresponding to the final hadronic state) and a gauge field Aν in the bulk which

comes from the insertion of a second boundary theory current operator. This is nothing

but a holographic dual version of the quantum field theory optical theorem. This can

be generalized to other situations, namely mesons including flavors in the fundamental

representation of the gauge group. In this case Am(y, r) in the bulk couples to either scalar

or vector fluctuations of flavor probe branes, and the two-point functions which lead to the

hadronic tensor correspond to non-Abelian global symmetry currents.

Another interesting issue is related to the role of the sub-leading corrections to the

Operator Product Expansion (OPE) of two symmetry currents. From this, the moments

of the structure functions can be obtained. These moments have different kind of contri-

butions to the 1/N expansion, i.e. while at weak coupling single-trace twist-two operators

dominate the expansion, at strong coupling double-trace operators become relevant [1].

We can summarize our main results as follows. We have performed a detailed analysis

of the structure of the two-point correlation functions of generic symmetry currents at

strong coupling, associated with flavors in the fundamental representation of the gauge

group, in the quenched approximation, in terms of the corresponding holographic string

theory dual description. This includes the large N limit of supersymmetric and non-

supersymmetric Yang-Mills theories in four dimensions. In particular, we have explicitly

investigated the cases of the D3D7-brane, the D4D8D8-brane, and the D4D6D6-brane

systems. We would like to emphasize that we have found a universal structure of the

1The corresponding tree level supergravity Witten’s diagram can be seen in figure 1, which describes a

forward Compton scattering. Notice that in that figure solid lines indicate mesons.
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two-point correlation functions of generic global symmetry currents at strong coupling.

For each holographic dual model we have found that the two-point correlation functions of

non-Abelian (Nf > 1) global symmetry currents can generically be written as the product

of a constant, which depends on the particular Dp-brane model, times flavor preserving

Kronecker deltas multiplying the corresponding Abelian (Nf = 1) result for the same

Dp-brane model. We have obtained a universal factorization of the two-point correlation

functions for non-Abelian symmetry currents in a model-dependent factor times a model-

independent one. More precisely, we should stress that these results strictly hold in the

large N limit, i.e. to leading order in the 1/N expansion. Sub-leading corrections in this

expansion would likely induce some modifications, obviously negligible in the large N

limit. The model-dependent and model-independent factorization has already been seen

for the two-point functions of Abelian symmetry currents in our previous paper [4]. This

factorization comes from the structure of the flavored holographic dual model in the probe

approximation, where the probe Dp-brane action is taken to be the non-Abelian version

of the Dirac-Born-Infeld action [5]. Thus, in general we can write the Wµν
(a) tensor for a

holographic dual model corresponding to a certain gauge field theory in the large-N limit as

Wµν
(a) = A(a,b)(x)W

µν
(b) , (1.9)

for models (a) and (b), where A(a,b) is a conversion factor which depends on the pair of Dp-

brane models considered. This allows one to write the corresponding structure functions

F
(a)
i (x, t), where subindex i indicates the i-th structure function for every meson in each

particular model, as

F
(a)
i (x, t) = A(a,b)(x)F

(b)
i (x, t) . (1.10)

Besides, we have found that a modified version of the Callan-Gross relation is satisfied by

the class of flavored holographic dual models we have investigated, when the parameter

t → 0. We have obtained new relations between structure functions for the Nf > 1 case

within each particular model. This confirms our results for Nf = 1 given in [4]. This

suggests that these relations among structure functions are generic and, therefore it may

indicate that they hold for any confining gauge theory in the appropriate kinematical

regime. In addition, we have shown that all the moments of certain structure functions

satisfy the corresponding inequalities derived from unitarity, as expected [7].

A very interesting aspect of the present work is that we have investigated the 1/N

and Nf/N contributions to the leading order calculations of the hadronic tensor, from

the supergravity dual model point of view. Particularly, we have focused on the structure

of the relevant Lagrangians and Witten’s diagrams. Indeed, we have derived all relevant

Lagrangians. On the other hand, although we have not calculated these Witten’s diagrams

explicitly, we have discussed how they arise from supergravity. We have pointed out that the

1/N and Nf/N expansions of the Witten’s diagrams correspond to analogous expansions

in the dual quantum field theory. We also have shown how these Witten’s diagrams are

suppressed by 1/N2 and Nf/N powers, respectively, in the supergravity dual models.

This paper essentially contains two parts. The first one, which includes sections 2, 3

and 4, develops a non-trivial generalization of our results of reference [4] when the number
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of flavors is larger than one, but still within the quenched approximation. In section 3 we

begin with a general background metric, which includes the two cases studied in [4], as well

as the D4D6D6-brane system [6]. We calculate the structure functions for scalar and vector

mesons. In section 4, we extend this approach to study flavored vector mesons, which is

done in the gravity dual theory by adding Nf flavor probe Dp-branes, with 1 < Nf ≪ N .

The second part is introduced in section 5 and it contains very interesting new results

about the 1/N expansion. We have discussed results corresponding to a DIS process

where the lepton is scattered from an entire hadron, which becomes excited but is not

fragmented. Beyond it, in section 5 we have considered the 1/N and Nf/N expansions.

It would be very interesting to investigate the effects of the back-reaction of the probe

Dp-branes on the background beyond the probe approximation. Another aspect we have

not considered concerns the kinematic regime where the Bjorken parameter is very small,

whose holographic dual description goes beyond pure supergravity. In section 6 we carry

out a discussion of our results. Two appendices are included to account for details of

expressions commented in the main text, and in order to include explicit results of the

two-point current correlations functions for the D4D6D6-brane model.

2 Two-point current correlation functions and DIS

In what follows we adopt the conventions of Manohar [7], except for the Minkowski metric,

which we define as being mostly plus. A brief review of the relevant ideas and definitions

for the present work can be found in our previous paper [4]. A more detailed derivation of

DIS structure functions is available in references [7] and [8].

We consider an incoming lepton beam with four-momentum kµ (with k0 ≡ E) which

will be scattered from a fixed hadronic target. The four-momentum of the scattered lepton

k′µ (with k′0 ≡ E′) is measured, but the final hadronic state called X is not. The lepton

and the initial hadronic state exchange a virtual photon with four-momentum qµ. Thus,

this virtual photon is able to probe the hadron structure at distances as small as 1/
√
q2.

The DIS differential cross section can be written as

d2σ

dE′dΩ
=

e4

16π2q4
E′

ME
lµνWµν(P, q)h′ h , (2.1)

where we have defined the leptonic tensor as follows

lµν =
∑

final spin

〈k′|Jν
l (0)|k, sl〉〈k, sl|Jµ

l (0)|k′〉 , (2.2)

which for a spin-12 lepton becomes

lµν = 2 [kµk′ν + kνk′µ − ηµν(k · k′ −m2
l )− i ǫµναβ qα slβ] , (2.3)

being ml the lepton mass. In addition, the hadronic tensor is

Wµν(P, q)h′ h =
1

4π

∫
d4x eiq.x 〈P, h′|[Jµ(x), Jν(0)]|P, h〉 , (2.4)
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where Pµ and Pµ
X denote the hadronic initial and final momenta, h and h′ are the polar-

izations of the initial and final hadronic states, and M2 = −P 2 and M2
X = −P 2

X are the

initial and final hadronic squared masses, respectively. The hadronic tensor can be recast

in terms of its structure functions. In fact, the so-called partonic distribution functions,

which can be calculated from the structure functions, give the probability that a hadron

contains a given constituent with a given fraction x of its total momentum. Due to the

non-perturbative character of QCD, since the partonic distribution functions depend on

soft QCD dynamics, they cannot be extracted perturbatively.

In the case of hadrons composed by massless partons, the probability of finding a

parton with a momentum xPµ is given by the distribution function f(x, q2). In the case

of free partons this function leads to the Bjorken scaling, which is not actually true for

QCD since it is not a free field theory. Notice that the hadronic structure functions are

dimensionless functions of P 2, P · q and q2. It is usual to write their functional dependence

in terms of t and x variables described in the introduction, with 0 < x ≤ 1 and t ≤ 0.

The structure functions are obtained from the most general Lorentz decomposition of the

hadronic tensor Wµν , satisfying parity invariance, time reversal symmetry, and invariance

under translations.

The most general form for spin-zero targets is [1]

W scalar
µν = F1

(
ηµν −

qµqν
q2

)
− F2

P · q

(
Pµ +

qν
2x

)(
Pν +

qν
2x

)
. (2.5)

After contracting with lµν , terms containing qµ and qν vanish. Therefore, we can just

neglect these terms from the beginning obtaining a simpler expression

W scalar
µν = F1 ηµν −

F2

P · qPµPν . (2.6)

For spin-one targets, on the other hand, the full general form of the hadronic tensor is [8]

W vector
µν = F1 ηµν −

F2

P · qPµPν + b1rµν −
b2
6
(sµν + tµν + uµν)−

b3
2
(sµν − uµν) (2.7)

− b4
2
(sµν − tµν)−

i g1
P · q ǫµνλσ q

λ sσ − i g2
(P · q)2 ǫµνλσ q

λ (P · q sσ − s · q P σ) ,

where we have already omitted terms proportional to qµ and qν , as explained before.

Functions rµν , sµν , tµν , uµν and s
σ, which depend on the hadron polarization, on the hadron

and virtual photon momenta, and on the t and x variables, are defined in appendix A.

DIS amplitudes can be obtained from the imaginary part of the forward Compton

scattering amplitudes. Thus, it is possible to define the tensor

Tµν = i 〈P,Q|T̂ (J̃µ(q) Jν(0))|P,Q〉 , (2.8)

where Jµ and Jν are the electromagnetic current operators. In addition, P is the four-

momentum of the initial hadronic state, q is the four-momentum of the virtual photon,

and Q is the charge of the hadron. T̂ (Ô1Ô2) indicates time-ordered product between the

operators Ô1 and Ô2, and the Fourier transform is indicated with a tilde. The tensor
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Tµν ≡ Tµν(P, q, h) has identical symmetry properties as Wµν(P, q, h), thus having similar

Lorentz-tensor structure to Wµν . By using the optical theorem one obtains

Im F̃j = 2π Fj , (2.9)

where F̃j is the j-th structure function of the Tµν tensor, while Fj is the one corresponding

to the Wµν tensor.

3 DIS from scalar and vector mesons with Nf = 1

3.1 General background

In this section we study a general approach to obtain the structure functions for scalar

and vector mesons with a single flavor, Nf = 1, in terms of two-point correlation functions

of global U(1) symmetry currents. This is a holographic dual approach based on [1]. In

particular, we show that the structure functions can be written as the product of a model-

dependent factor times a model-independent one. We explicitly calculate both factors

in terms of the parameters defining a general holographic dual model. This includes the

structure functions derived from the D3D7-brane model and from the D4D8D8-brane model

that we already obtained in our previous paper [4], as well as those obtained from the

D4D6D6-brane model which we introduce in appendix B of the present work.

Let us consider a general ten-dimensional background metric in the Einstein frame

written as

ds2 =

(
ρ

R

)α

ηµνdx
µdxν +

(
ρ

R

)β

d
−→
Z · d−→Z , (3.1)

where xµ = (x0, . . . , x3), while
−→
Z = (Z1, . . . , Z6), with α > 1, β < −1. We then add a

probe Dp-brane with an induced metric of the form

ds2Dp =

(
ρ

R

)α

ηµν dx
µdxν +

(
ρ

R

)β[
dρ2 + ρ2 dΩ2

p−4

]
, (3.2)

where ρ is the radial direction of the Dp-brane world-volume. The radius R is the length

scale of the system, while Ωp−4 indicates coordinates on Sp−4.

This general induced metric also describes the D3D7, D4D8D8, and D4D6D6-brane

models. In particular, for the D3D7-brane model we must set p = 7, α = 2, and β = −2.

The asymptotic geometry is AdS5 × S5, and R gives the sphere and AdS5 radii. In the

case of the D4D8D8-brane system we set p = 8, α = 3
2 , and β = −3

2 . In addition, for the

D4D6D6-brane model we have p = 6, α = 3
2 , and β = −3

2 . In all these cases, we only

recover the asymptotic metric, i.e. for ρ ≫ ρ0 (U ≫ U0 in the notation of [11]), which is

the relevant induced metric to the DIS process.

Scalar and vector mesons correspond to excitations of open strings ending on the probe

Dp-brane. The dynamics of the Dp-brane fluctuations is described by the action

SDp = −µp
∫
dp+1ξ

√
−det(P̂ [g]ab + 2πα′Fab) +

(2πα′)2

2
µp

∫
P̂ [C(p−3)] ∧ F ∧ F , (3.3)

where gab stands for the metric (3.2), µp =
[
(2π)pgsα

′
p+1
2

]−1
is the Dp-brane tension and

P̂ denotes the pullback of the background fields on the Dp-brane world-volume.
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3.2 DIS from scalar mesons

The equations of motion for scalar mesons are obtained from fluctuations of the probe

Dp-brane which are orthogonal to the directions of the brane world-volume. Let us take

a coordinate Zi in eq. (3.1), which is perpendicular to the Dp-brane world-volume, and

slightly perturb it as follows

Zi = Zi
0 + 2πα′Φ , (3.4)

where Φ is a scalar fluctuation whose Lagrangian is straightforwardly derived from the

action of eq. (3.3), by setting Fab = 0. By expanding to second order in the fluctuation,

one obtains

Sscalar
0 = −µp

∫
dp+1ξ

√
− det g

[
1 +

(2πα′)2

2

(
ρ

R

)β

gab ∂aΦ ∂bΦ

]
, (3.5)

which corresponds to the Lagrangian

Lscalar
0 = −µp

√
− det g

[
1 +

(2πα′)2

2

(
ρ

R

)β

gab ∂aΦ ∂bΦ

]
, (3.6)

where all indices denote directions along the Dp-brane world-volume. The probe brane

wraps a Sp−4. By plugging the metric (3.2) into the quadratic Lagrangian, one obtains the

equations of motion (EOM) for scalar fluctuations of the Dp-brane in the probe approxi-

mation

∂a

[(
ρ

R

)θ−β√
g̃ gab ∂bΦ

]
= 0 , (3.7)

where we have defined

θ = 2α+

(
p

2
− 3

2

)
β + (p− 4) . (3.8)

Notice that g̃ij is the metric on Sp−4, which together with ρ span coordinates (Z1, · · · ,
Zp−3). The EOM can be more explicitly written as

�Φ+

(
ρ

R

)α−β−2

R−2∇i∇iΦ+ θR−1

(
ρ

R

)α−β−1

∂ρΦ+

(
ρ

R

)α−β

∂2ρΦ = 0 , (3.9)

where ∇i is the covariant derivative on Sp−4.

We propose the following Ansatz 2

Φℓ = φℓ(ρ) eiP ·y Y ℓ(Sp−4) , (3.10)

where Y ℓ(Sp−4) are the scalar spherical harmonics on Sp−4, which satisfy the eigenvalue

equation

∇i∇iY
ℓ(Sp−4) = −ℓ (ℓ+ p− 5)Y ℓ(Sp−4) . (3.11)

2This solution will be exact for the metric (3.2). Since this metric is only asymptotic for the models that

we consider, i.e. D3D7, D4D8D8, and D4D6D6-brane models, we must assume the condition ρint ∼ qR2 ≫

ρ0 ≡ ΛR2, where ρint denotes the interaction region, while Λ is an infrared cutoff of the four-dimensional

gauge theory.
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Now, by replacing the Ansatz (3.10) in the EOM (3.9), we obtain

Φℓ
IN/OUT = ci

(
ρ

R

)A−γB

eiP ·y Y ℓ(Sp−4) , (3.12)

Φℓ
X = cX s1/4 Λ−1/2

(
ρ

R

)A

Jγ

[
s1/2R

B

(
ρ

R

)−B]
eiP ·y Y ℓ(Sp−4) , (3.13)

were we have used the full solution for Φ in the second case, corresponding to the interme-

diate state X, and the leading behavior in the region ρ ∼ ρint for the initial/final hadronic

state (IN/OUT). Jγ is the Bessel function of first kind, and s = −(P + q)2 = M2
X is the

mass-squared of the intermediate state, while cX and ci are dimensionless constants. The

order of the Bessel function is given by

γ2 =
A2 + ℓ(ℓ+ p− 5)

B2
, (3.14)

with the definitions

A =
1− θ

2
, B =

α− β − 2

2
. (3.15)

These are scalar and pseudoscalar mesons for even and odd values of ℓ, respectively. This

can be seen from the fact that under parity transformation the spherical harmonics satisfy

the equation [Y ℓ(Sp−4)]P = (−1)ℓ Y ℓ(Sp−4).

By applying the method developed in [4], we couple these holographic scalar mesons

to a gauge field in the bulk. This is done by considering a metric fluctuation as given in

eq. (1.8). Then, we use the eigenvalue equation υj ∂jY
ℓ(Ω) = iQℓ Y

ℓ(Ω), obtaining the

interaction Lagrangian3

Lscalar
interaction = iQµp (πα

′)2
√
− det g

(
ρ

R

)β

Am (Φ ∂mΦ∗
X − Φ∗

X ∂mΦ) . (3.16)

The angular dependence on the spherical harmonics corresponds to functions which are

charge eigenstates, with charge Q under the U(1) symmetry group which is induced by

transformations on the internal Sp−4 in the direction of the Killing vector υj .

Alternatively, as we explained in [4], Lscalar
interaction can be obtained from the coupling of the

gauge field Am to the Noether’s current corresponding to the global transformations which

leave invariant the Lagrangian (3.6). These are transformations of a U(1) ⊆ SO(p − 3),

being the latter the isometry group of Sp−4. The referred Noether’s current is

jscalarm = i µp (πα
′)2

(
ρ

R

)β

(Φ ∂mΦ∗
X − Φ∗

X ∂mΦ) , (3.17)

and by defining Lscalar
interaction = Q√− det g Am jscalarm , we obtain the same Lscalar

interaction given by

eq. (3.16) from the metric fluctuation. Consequently, Lscalar
interaction is given by the coupling of

the gauge field Am to the conserved Noether’s current jscalarm . Notice that the scalar fields

in eq. (3.10) are charged under the global U(1) ⊆ SO(p− 3), with Qℓ 6= 0 for ℓ > 0.

3We have dropped the label ℓ corresponding to the spherical harmonics from the scalar field Φℓ, as well

as from the charges Qℓ.
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Now let us obtain the relevant matrix element for the hadronic tensor, with the pre-

scription proposed in [1]

Sinteraction = (2π)4 δ4(PX − P − q) ñµ 〈P + q,X|Jµ(0)|P,Q〉 , (3.18)

where ñµ indicates the polarization unit vector.

In order to calculate the gauge field we have to solve the Maxwell’s equation DmF
mn =

0, where m,n = 0, 1, 2, 3, ρ. We propose the Ansätze

Aµ = ñµ e
iq·y f(ρ) ,

Aρ = eiq·y g(ρ) , (3.19)

which imply a Lorentz-like gauge. The solution is

Aµ = ñµ e
iq·y 1

Γ(n+ 1)

(
qR

2B

)n+1( ρ

R

)−(n+1)B

Kn+1

[
qR

B

(
ρ

R

)−B]
,

Aρ = −eiq·y i(q · ñ)
Γ(n+ 1)

(
qR

2B

)n+1( ρ

R

)D

Kn

[
qR

B

(
ρ

R

)−B]
= − i

q2
ηµν qµ∂ρAν , (3.20)

with

D =
−4α+ 3β + 2

4
, n =

2 + β

4B
, (3.21)

and B is given in eq. (3.15). The current conservation equation reads4

∂ · jscalar =
(
ρ

R

)−α−
(p+3)

2
β−(p−4)

∂ρ

[(
ρ

R

)2α+
(p−5)

2
β+(p−4)

jscalarρ

]
= 0 , (3.22)

while the coupling is

Am j
m
scalar =

(
ρ

R

)−α

Aµ

[
jµscalar − i

qµ

q2
(∂ · jscalar)

]
− i

qν

q2

(
ρ

R

)3−θ

∂ρ

[(
ρ

R

)θ−1

jscalarρ Aν

]
.

(3.23)

Then, the interaction reads

Sscalar
interaction = Q

∫
∞

ρ0

dp+1x
√
−detg Am j

m
scalar

= Q
∫

∞

ρ0

dp+1x
√
−detg

(
ρ

R

)−α

Aµ

[
jµscalar − i

qµ

q2
(∂ · jscalar)

]
+

qν

q2
Q
∫

∞

ρ0

dp+1x
√
−detg

(
ρ

R

)−θ

∂ρ

[(
ρ

R

)θ−1

jscalarρ Aν

]

≡ Iscalar1 + Iscalar2 . (3.24)

4Note that the subindex ρ only indicates the variable ρ, thus there is no sum whenever it appears

repeated.
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It can be seen that in the limit Λ ≪ q, Iscalar2 → 0. On the other hand, by evaluating Iscalar1

and using the Ansatz (3.18), we find

〈P + q,X|Jµ(0)|P,Q〉 = 2γ+2Bγ+1 π2
Γ(γ + n+ 2)

Γ(n+ 1)
ci c

∗
X µpQα′2 (s1/4Λ−1/2)

× q2n+2 s
γ
2 Rp−γ−5

(q2 + s)2+γ+n

(
Pµ +

qµ

2x

)
. (3.25)

For |t| ≪ 1 we can approximate s ≃ q2(1/x− 1), thus the above expression becomes

〈P + q,X|Jµ(0)|P,Q〉 = 2γ+2Bγ+1 π2
Γ(γ + n+ 2)

Γ(n+ 1)
ci c

∗
X µpQα′2Rp−3

×
(
Λ

q

)γ+ 3
2

x
γ
2
+ 7

4
+n(1− x)

γ
2
+ 1

4

(
Pµ +

qµ

2x

)
. (3.26)

Following [1] and [4], we can calculate ImTµν by multiplying eq. (3.26) by its complex

conjugate and summing over radial excitations. We estimate the density of states by

introducing an IR cutoff at ρ0 ≡ ΛR2. The distance between zeros of the Bessel function

of eq. (3.13) is Mn′ = n′πΛ, which in the large N limit and for large q gives

∑

n′

δ(M2
n′ − s) ∼

(
∂M2

n′

∂n′

)−1

∼ (2πs1/2Λ)−1 . (3.27)

Finally, we obtain

Im Tµν = 22γ+4B2γ+2 π5
Γ(γ + n+ 2)2

Γ(n+ 1)2
|ci|2 |cX |2 µ2pQ2 α′4R2p−4 (3.28)

×
(
Λ2

q2

)γ+2

xγ+4+2n (1− x)γ
(
Pµ +

qµ

2x

)(
P ν +

qν

2x

)
.

After checking that our Wµν satisfies all the symmetry requirements described above, we

obtain the structure functions for the scalar mesons from eq. (2.9):

F1 = 0, F2 = Ascalar
0 µ2pQ2α′4R2p−6

(
Λ2

q2

)γ+1

xγ+3+2n(1− x)γ , (3.29)

where Ascalar
0 = 22γ+4B2γ+2 π5 Γ(γ+n+2)2

Γ(n+1)2
|ci|2 |cX |2 is a dimensionless normalization con-

stant. We can easily check that our previous results for D3D7 and D4D8D8-brane systems

introduced in [4] are recovered. Also, for the D4D6D6-brane system we obtain the results

shown in appendix B of the present work.

3.3 DIS from vector mesons

In this subsection we calculate the hadronic tensor for vector mesons arising from a single

probe brane, i.e. Nf = 1. Next, we will decompose this tensor in order to obtain the

structure functions. The procedure will be analogous to that developed in last subsection,

though the calculations are more tedious.
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Vector mesons arise from fluctuations of the vector fields on the Dirac-Born-Infeld

(DBI) action of the probe Dp-brane, which are in the directions parallel to the brane

world-volume [10]. The starting point is the action (3.3). We calculate the EOM for vector

fluctuations, keeping Zi constant, i.e. Φ = 0, and then by expanding the Lagrangian up to

quadratic order in the fluctuation. This new Lagrangian gives the following EOM

∂a

(√
−detgF ab

)
= 0 , (3.30)

where F ab = ∂aBb − ∂bBa, and the indices a, b = 0, . . . , p run over all directions within

the Dp-brane world-volume. We have considered only the DBI term of eq. (3.3), since the

Wess-Zumino term does not contribute at first order for the set of solutions in which we

are interested. By expanding eq. (3.30) we can write

�Bµ − ∂µ(∂ ·B) + θR−1

(
ρ

R

)α−β−1

∂ρB
µ +

(
ρ

R

)α−β

∂2ρB
µ +∇i∇iBµ = 0. (3.31)

We propose the same Ansatz used in [10] for the solution of vector mesons Bµ

Bℓ
µ = ζµ φ

ℓ(ρ) eiP ·y Y ℓ(Sp−4), P · ζ = 0, Bρ = 0, Bi = 0 , (3.32)

where it has been done an expansion in Y ℓ(Sp−4), which are spherical harmonics on Sp−4

satisfying eq. (3.11). φℓ(ρ) is a function to be determined, ζµ is the polarization vector and

the relation ζ · P = 0 comes from ∂µBµ = 0.

By plugging the Ansatz (3.32) in eq. (3.31), we obtain

Bℓ
µ IN/OUT = ζµΛ

−1ci

(
ρ

R

)A−γB

eiP ·y Y ℓ(Sp−4) , (3.33)

Bℓ
µX = ζµXΛ−1cX(s−1/4Λ1/2)

(
ρ

R

)A

Jγ

[
s1/2R

B

(
ρ

R

)−B]
eiP ·y Y ℓ(Sp−4) . (3.34)

We have used the full solution for Bℓ
µ in the second case, corresponding to the intermediate

state X and the leading behavior in the region ρ ∼ ρint for the initial/final hadronic state.

As before, Jγ is the Bessel function of first kind, γ2 = A2+ℓ(ℓ+p−5)
B2 and s = −(P+q)2 =M2

X

is the mass-squared of the intermediate state, while cX and ci are dimensionless constants.

We have also used the definitions for θ, A, and B in eqs. (3.8) and (3.15). We can classify

the solutions as vector mesons for even values of ℓ, and axial vector mesons for odd values

of ℓ. This comes from the relations [Y ℓ(Ω)]P = (−1)ℓ Y ℓ(Ω) and [ζµ]P = (ζ0,−~ζ).
From the expansion of Bµ in spherical harmonics on Sp−4 it can be seen that the

gauge fields on the Dp-brane correspond to charged fields in M5. Following an analogous

procedure as in [4] it can be seen that the modes with ℓ = 0 correspond to an Abelian

gauge field B0
µ. The rest of the vector fields, Bℓ

µ with ℓ > 0, are charged massive fields.

Their charges under the U(1) ⊆ SO(p − 3) of Sp−4 are Qℓ, while their masses are m2
ℓ =

ℓ(ℓ+ p− 5)/R2. The EOM for the vector mesons in the interaction region, eq. (3.31), can

also be derived from the following quadratic Lagrangian,5

LSF
0 = −µp (πα′)2

√
− det g F ab F ∗

ab . (3.35)

5We use Bℓ
µ ≡ Bµ, with ℓ > 0, therefore there is a field Bµ for each ℓ. The superscript SF stands for

single-flavored (Nf = 1) vector mesons.

– 13 –



J
H
E
P
0
1
(
2
0
1
4
)
1
6
6

We reproduce the bulk interaction as we have done in the last subsection, by perturbing

the metric with the fluctuation (1.8), as explained before. We use again υj ∂jY
ℓ(Ω) =

iQℓ Y
ℓ(Ω), obtaining the interaction Lagrangian

LSF
interaction = iQµp (πα

′)2
√
− det g Am [B∗

Xn F
nm −Bn (F

nm
X )∗] , (3.36)

where Am is the five-dimensional gauge field given in eq. (3.20). As in last subsection, the

same interaction Lagrangian can be obtained from the coupling of the gauge field Am to

the Noether’s current corresponding to the internal global symmetry of the action, in this

case eq. (3.35). We can write LSF
interaction = Q√−detg Am j

m
SF where

jmSF = i µp (πα
′)2 [B∗

Xn F
nm −Bn (F

nm
X )∗] , (3.37)

is a conserved current. Following a similar procedure as for scalar mesons, we have the

action of the interaction

SSF
interaction = Q

∫
∞

ρ0

dp+1x
√
−detg Am j

m
SF

= Q
∫

∞

ρ0

dp+1x
√
−detg

(
ρ

R

)−α

Aµ

[
jµSF − i

qµ

q2
(∂ · jSF )

]

+
qν

q2
Q

∫
∞

ρ0

dp+1x
√
−detg

(
ρ

R

)−θ

∂ρ

[(
ρ

R

)θ−1

jSFρ Aν

]
(3.38)

≡ ISF1 + ISF2 . (3.39)

In particular, ISF2 → 0 when Λ ≪ q. By evaluating ISF1 and using the Ansatz (3.18),

we find

〈P + q,X|Jµ(0)|P,Q〉 = 2γ Bγ+1 π2
Γ(γ + n+ 2)

Γ(n+ 1)
ci c

∗
X µpQα′2Rp−γ−5

× (s−1/4Λ1/2)
q2γ+2s

γ
2

(q2 + s)2+γ+n
Nµ , (3.40)

with

Nµ = 2 (ζ · ζX)

(
Pµ +

qµ

2x

)
+ (ζX · q)ζµ − (ζ · q)ζµX . (3.41)

We can see that Nµ, which carries all the information about the vector dependence in the

matrix element (3.40), and therefore in the structure functions, does not depend on the

particular model.

For |t| ≪ 1 we can approximate s ≃ q2( 1x − 1), and we obtain

〈P + q,X|Jµ(0)|P,Q〉 = 2γ Bγ+1 π2
Γ(γ + n+ 2)

Γ(n+ 1)
ci c

∗
X µpQα′2Rp−3

×
(
Λ

q

)γ+ 5
2

x
γ
2
+ 9

4
+n(1− x)

γ
2
−

1
4Nµ

≡ f
(γ)
Λ (x, q)Nµ. (3.42)
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We now multiply eq. (3.42) by its complex conjugate and sum over the radial excitations

and over the polarizations of the final hadronic states ζµX , since we want to calculate ImTµν

from eq. (1.3). The density of states is estimated in the same way as we have done for the

scalar mesons, obtaining

Im Tµν =
πff∗

Λs1/2

∑

λ

NµN∗ν . (3.43)

By using the solution (3.32), then we normalize the polarizations as ζµ(PX , λ)·ζ∗µ(PX , λ
′) =

−M2
Xδλ,λ′ , and by neglecting terms proportional to qµ and qν , we finally obtain

ImTµν ≡ 2
πx

1
2 ff∗

Λq(1− x)
1
2

Hµν = 2
πx

1
2 ff∗

Λq(1− x)
1
2

(HS
µν +HA

µν) , (3.44)

where HS
µν and HA

µν are the symmetric and antisymmetric parts of Hµν , respectively,

HS
µν = −ηµν(ζ.q)(ζ∗.q)(P + q)2 + PµPν

[
− 4P 2(P + q)2 + (q.ζ)(q.ζ∗)

]

+ (ζµζ
∗
ν + ζνζ

∗
µ)

1

2

[
(P · q)2 − P 2q2

]

+ (Pµζ
∗
ν + Pνζ

∗
µ)(ζ · q)

1

2

[
P · q + q2

]
+ (Pµζν + Pνζµ)(ζ

∗ · q)1
2

[
P · q + q2

]
, (3.45)

and

HA
µν =

1

2
(ζµζ

∗
ν − ζνζ

∗
µ)

[
(P · q)2 − P 2q2

]

+
1

2
(Pνζ

∗
µ − Pµζ

∗
ν )(ζ · q)

[
4P 2 + 7P · q + 3q2

]

+
1

2
(Pµζν − Pνζµ)(ζ

∗ · q)
[
4P 2 + 7P · q + 3q2

]
. (3.46)

It is straightforward to calculate the tensorWµν from ImTµν . By comparing theWµν tensor

obtained in this way with the general form of eq. (2.7) we can extract the eight structure

functions (recall that we have derived these equations for |t| ≪ 1)

F1 = ASF (x)
1

12x3
(1− x− 2xt− 4x2t+ 4x3t+ 8x3t2) ,

F2 = ASF (x)
1

6x3
(1− x+ 12xt− 14x2t− 12x2t2) ,

b1 = ASF (x)
1

4x3
(1− x− xt) ,

b2 = ASF (x)
1

2x3
(1− x− x2t) ,

b3 = ASF (x)
1

24x3
(1− 4x+ 8x2t) , (3.47)

b4 = ASF (x)
1

12x3
(−1 + 4x− 2x2t) ,

g1 = ASF (x)
t

8x2
(−7 + 6x+ 8xt) ,

g2 = ASF (x)
1

16x4
(3− 3x− 4xt+ 2x2t) ,
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where

ASF (x) = ASF
0 µ2pQ2α′4R2p−6

(
Λ2

q2

)γ

xγ+2n+5(1− x)γ−1 , (3.48)

and ASF
0 = (2B)2γ+2 π5 Γ(γ+n+2)2

Γ(n+1)2
|ci|2 |cX |2 is a dimensionless normalization constant. Re-

call that γ is given in eq. (3.14) and n in eq. (3.21). Constants α and β come from the

definition of the general background metric (3.1), A and B are defined in eqs. (3.15) and

θ is given by eq. (3.8).

We can see that, as it happened with the scalar mesons, the results for D3D7 and

D4D8D8-brane systems from [4] are recovered,6 as well as that for D4D6D6-brane system

given in appendix B.

4 DIS from vector mesons with Nf > 1

4.1 General background calculations

In this section, we study a general approach to obtain the structure functions for polarized

vector mesons with Nf > 1 flavors. From the string theory dual model these mesons arise

by consideringNf > 1 probe Dp-branes. In particular, we show that the structure functions

can be decomposed in model-dependent and model-independent factors, as it occurs when

Nf = 1. We calculate both factors for a general model with an induced metric given

by eq. (3.2). All the calculations in this section are within the tree-level approximation.

One-loop corrections are discussed in section 5.

We consider the same background as in section 3, given by the induced metric (3.2)

on the Nf probe Dp-branes

ds2 =

(
ρ

R

)α

ηµνdx
µdxν +

(
ρ

R

)β[
dρ2 + ρ2 dΩ2

p−4

]
,

at least in the asymptotic region, ρint ≫ ρ0 = ΛR2.

We start from the non-Abelian Dirac-Born-Infeld action [5]

SMF
0 = −µp

∫
dp+1ξ

√
−detg (πα′)2Tr(F 2) , (4.1)

where Fab = ∂aBb−∂bBa+ i [Ba, Bb] and µp = [(2π)pgsα
′
p+1
2 ]−1. This is the generalization

of eq. (3.35) for the case of mesons with Nf > 1.

In order to calculate the hadronic tensor using the holographic dual prescription we

consider that the holographic meson couples to a gauge field (3.20) in the bulk of the string

theory dual model as in section 3.

We can expand the action eq. (4.1) in terms of Bµ obtaining7

LMF
0 =−µp (πα′)2

√
− det g Tr

{
F̂ ∗
abF̂

ab+

(
i F̂ ∗

ab[B
a, Bb]+c.c.

)
−[B∗

a, B
∗
b ][B

a, Bb]

}
, (4.2)

6We have found a mistake in the equation for g1 in our previous work [4]. The present solution is the

correct one.
7We write Tr(F ∗

abF
ab) instead of Tr(FabF

ab) since their EOM’s are the same.
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where we have defined F̂ab = ∂aBb−∂bBa = Fab− i [Ba, Bb]. As we shall see in section 5.4,

the last two terms are sub-leading with respect to the first one in the 1/N expansion. There-

fore, at leading order we only keep the first term. Thus, we obtain the same interaction

Lagrangian as for vector mesons with Nf = 1.

The EOM can be expanded and we obtain

�Bµ − ∂µ(∂ ·B) + θ R−1

(
ρ

R

)α−β−1

∂ρB
µ +

(
ρ

R

)α−β

∂2ρB
µ +∇i∇iBµ = 0, (4.3)

which is the same as eq. (3.31). The Ansatz for the solution of the vector mesons Bµ is

Bℓ
µ =

Nf∑

A=1

B(A)ℓ
µ τA ,

B(A)ℓ
µ = ζµ c

(A)φℓ(ρ) eiP ·y Y ℓ(S(p−4)), P · ζ = 0, B(A)ℓ
ρ = 0, B

(A)ℓ
i = 0 , (4.4)

where τA are the generators of the flavor group SU(Nf ), which satisfy the Lie algebra

[τA, τB] = i fABC τC . (4.5)

We have also expanded B
(A)
µ in spherical harmonics Y ℓ(S(p−4)), satisfying eq. (3.11). The

radial dependence φ(ρ) is to be determined, ζµ is the polarization vector and the relation

ζ · P = 0 comes from ∂µBµ = 0. By using the Ansatz (4.4) in eq. (4.3), we obtain the

solution for each component B
(A)
µ which coincides with the vector mesons with Nf = 1

studied in previous section, namely

B
(A)ℓ
µ IN/OUT = ζµΛ

−1c
(A)
i

(
ρ

R

)A−γB

eiP ·y Y ℓ(S(p−4)) , (4.6)

B
(A)ℓ
µX = ζµXΛ−1c

(A)
X (s−1/4Λ1/2)

(
ρ

R

)A

Jγ

[
s1/2R

B

(
ρ

R

)−B]
eiP ·y Y ℓ(S(p−4)) . (4.7)

We have used the full solution for B
(A)ℓ
µ in the second case, corresponding to the interme-

diate state X and the leading behaviour in the region ρ ∼ ρint for the initial/final hadronic

state (IN/OUT). As before, Jγ is the Bessel function of first kind, γ2 = A2+ℓ(ℓ+p−5)
B2 and

s = −(P + q)2 = M2
X is the mass-squared of the intermediate state, while c

(A)
X and c

(A)
i

are dimensionless constants. We have also used the definitions for θ, A, and B in eqs. (3.8)

and (3.15). From the expansion of B
(A)
µ in spherical harmonics on S(p−4), it can be seen that

the gauge fields on the branes correspond to charged massive fields in the five-dimensional

space spanned by coordinates 0, 1, 2, 3, and ρ, for ℓ > 1, and a gauge field B0
µ.

By considering the metric fluctuation from eq. (1.8), and equation υj ∂jY
ℓ(Ω) =

iQℓ Y
ℓ(Ω), we obtain the interaction Lagrangian8

LMF
interaction = iQµp(πα′)2

√
− det g

{
AmTr

(
B∗

XnF̂
nm −Bn(F̂

nm
X

)∗
)

+ iAmTr
(
Bn[B

m∗
X , Bn∗

X ]
)
+ iAmTr

(
B∗

Xn[B
m, Bn]

)}
(4.8)

≡ LMF
interaction1 + LMF

interaction2 + LMF
interaction3 .

8In what follows we denote Bµ ≡ Bℓ
µ, i.e. we omit the ℓ index to make our notation simpler. The label

MF stands for multi-flavored vector mesons, i.e. those with Nf > 1.
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It is easy to see that the term LMF
interaction3

does not contribute to the process of interest, since

it involves two initial states for the hadron Bµ. On the other hand, we will show in the next

section that the term LMF
interaction2

contributes only to diagrams which are sub-leading in the

1/N expansion. Therefore, the only diagram which contributes to leading order is that of

figure 1, which only involves the first term LMF
interaction1

. This is the same diagram present in

the Nf = 1 vector mesons studied in last section. We can see it as the coupling of the gauge

field Am to a certain current jmMF . Therefore, LMF
interaction1

= Q√−detg Am j
m
MF where

jmMF = i µp (πα
′)2 Tr

(
B∗

XnF
nm −Bn(F

nm
X )∗

)
. (4.9)

The action of interaction is then

SMF
interaction = Q

∫
∞

ρ0

dp+1x
√
−detg Am j

m
MF

= Q
∫

∞

ρ0

dp+1x
√
−detg

(
ρ

R

)−α

Aµ

[
jµMF − i

qµ

q2
(∂ · jMF )

]

+
qν

q2
Q

∫
∞

ρ0

dp+1x
√
−detg

(
ρ

R

)−θ

∂ρ

[(
ρ

R

)θ−1

jMF
ρ Aν

]

≡ IMF
1 + IMF

2 . (4.10)

As we have seen, IMF
2 = ISF2 → 0 in the limit of interest, Λ ≪ q. On the other hand, by

evaluating IMF
1 we can see that

〈P + q,X|Jµ(0)|P,Q〉 = Cf δAB I
SF
1

= Cf δAB (2B)γ+2 π2
Γ(γ + n+ 2)

Γ(n+ 1)
ci c

∗
X µpQα′2Rp−γ−5

(s−1/4Λ1/2)
q2γ+2s

γ
2
−n

(q2 + s)2+γ+n
Nµ

= Cf δAB f
(γ)
Λ (x, q)Nµ , (4.11)

where we define f
(γ)
Λ (x, q) as in last section and have used

Bµ IN/OUT = B
(A)
µ IN/OUT τA, (no sum)

BµX = B
(B)
µX τB, (no sum) (4.12)

and

Nµ = 2(ζ · ζX)

(
Pµ +

qµ

2x

)
+ (ζX · q)ζµ − (ζ · q)ζµX . (4.13)

We also use

[τA, τB] = i fABC τC , T r(τAτB) = Cf δAB , (4.14)

being Cf the Casimir of SU(Nf ).

For |t| ≪ 1 we can approximate s ≃ q2( 1x − 1), as we have done in the previous section

〈P + q,X|Jµ(0)|P,Q〉 = CfδABQµp(2)γBγ+1Γ(γ + n+ 2)

Γ(n+ 1)
(πα′)2cic

∗
XN

µRp−3

×
(
Λ

q

)γ+ 5
2

x
γ
2
+n+ 9

4 (1− x)
γ
2
−

1
4 . (4.15)
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4.2 Results for the structure functions

In order to obtain ImTµν , we multiply eq. (4.15) by its complex conjugate and sum over the

radial excitations and over the polarizations of the final hadronic states ζµX . The density of

states can be estimated as for the scalar and vector mesons. We then sum over polarizations

and neglect terms proportional to qµ and qν as in the previous section, obtaining

Im Tµν = C2
f δABX

πff∗

Λs1/2

∑

λ

NµN∗ν = C2
f δABX

π x
1
2 ff∗

Λq(1− x)
1
2

(HS
µν +HA

µν) , (4.16)

where we have defined 〈P + q,X|Jµ(0)|P,Q〉 = Cf δABX
f
(γ)
Λ (x, q)Nµ, while HS

µν and HA
µν

are exactly the same as eqs. (3.45) and (3.46).

By rewriting the hadronic tensor for spin-1 hadrons Wµν from eq. (2.7), we obtain the

following structure functions

F1 = AMF (x)
1

12x3
(1− x− 2xt− 4x2t+ 4x3t+ 8x3t2) ,

F2 = AMF (x)
1

6x3
(1− x+ 12xt− 14x2t− 12x2t2) ,

b1 = AMF (x)
1

4x3
(1− x− xt) ,

b2 = AMF (x)
1

2x3
(1− x− x2t) ,

b3 = AMF (x)
1

24x3
(1− 4x+ 8x2t) , (4.17)

b4 = AMF (x)
1

12x3
(−1 + 4x− 2x2t) ,

g1 = AMF (x)
t

8x2
(−7 + 6x+ 8xt) ,

g2 = AMF (x)
1

16x4
(3− 3x− 4xt+ 2x2t) ,

where

AMF (x) = AMF
0 µ2pQ2α′4R2p−6

(
Λ2

q2

)γ

xγ+2n+5(1− x)γ−1 , (4.18)

and AMF
0 = 2C2

f δABX
(2B)2γ+2 π5 Γ(γ+n+2)2

Γ(n+1)2
|c(A)
i |2| c(BX)

X |2 is a dimensionless normaliza-

tion constant. Subindex A labels the flavor of the incoming meson state, and BX that of

the intermediate state. These equations have been obtained in the limit |t| ≪ 1.

Notice that if we take the Abelian (single-flavored) limit we obtain the same full set

of structure functions calculated in section 3. Some particular cases have been calculated

in [4] and in appendix B.9 Thus, we can summarize our results in a compact form

F
(a)MF
i (x, t) = C2

f δABX
F

(a)SF
i (x, t) , (4.19)

for each holographic dual model (a), where i indicates the each particular structure func-

tion, i = 1, · · ·, 8.
9We can redefine the normalization constants as c

(A)
i = ci/

√

Cf and c
(BX )
X = cX/

√

Cf for the

Abelian case.
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On the other hand, for each pair of holographic dual models (a) and (b) we find

the relation F
(a)
i (x, t) = A(a,b)(x)F

(b)
i (x, t), which leads to the following relation for the

hadronic tensor

Wµν
(a) = A(a,b)(x)W

µν
(b) . (4.20)

Very interestingly, the set of eqs. (4.17) leads to the following inequality10

F1 ≥ |g1| , (4.21)

which holds for |t| ≪ 1 for each Dp-brane model. This relation implies the following

inequality among moments of the structure functions

Mn(F1) ≥ |Mn(g1)| n = 1, 2, . . . (4.22)

which must be satisfied from unitarity [7]. On the other hand, since F1 ≥ 0 and 0 ≤ x ≤ 1,

the chain of inequalities

Mn(F1) ≥Mn+1(F1) n = 1, 2, . . . (4.23)

is satisfied. The moments of the structure functions F1 and g1 are defined as follows

Mn(F1) =

∫ 1

0
dxxn−1 F1(x, q

2) , (4.24)

Mn(g1) =

∫ 1

0
dxxn−1 g1(x, q

2) . (4.25)

In addition, we have found relations between different structure functions that we shall

discuss in the conclusions.

5 Sub-leading contributions to the 1/N expansion

In this section we investigate the sub-leading contributions to the 1/N and Nf/N expan-

sions of the two-point correlation functions of global symmetry currents. We explain why

in the large N limit we only have to consider the tree-level Witten’s diagram displayed in

figure 1, which is the holographic dual version of the Feynman’s diagram of the forward

Compton scattering of a charged lepton by a hadron. We consider the full relevant La-

grangians of the three cases studied in sections 3 and 4, corresponding to scalar mesons,

Nf = 1 vector mesons, and Nf > 1 vector mesons, respectively. We study the sub-leading

contributions given by one-loop diagrams.

5.1 Five-dimensional reduction of type IIB supergravity

We very briefly review the five-dimensional reduction of type IIB supergravity on S5 as

presented in [12] (other relevant references for this section are [13–15]), in order to give an

example of the N -power counting in supergravity Feynman’s diagrams.

10These comments also hold for Nf = 1, see eqs. (3.47).
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Let us begin with the ten-dimensional type IIB supergravity action written in the

Einstein frame, which contains the graviton, dilaton φ, the Ramond-Ramond axion field C
and the five-form field strength F5

SSUGRA
IIB = − 1

2κ210

∫
d10x

√
| det g|

[
R10 −

1

2
(∂φ)2 − 1

2
e2φ (∂C)2 − 1

4 · 5! (F5)
2

]
. (5.1)

We consider the AdS5 × S5 metric with the radius R4 = 4πgsNα
′2.

Now, the five-dimensionally reduced action, in terms of the five-dimensional dilaton

φ5(x) takes the form

SSUGRA
5d = − 1

2κ25

∫
d5x

√
| det g5|

[
R5 −

1

2
(∂φ5)

2 + · · ·
]
, (5.2)

where dots indicate other terms which are not relevant for the present discussion, since

we are only interested in the N -power counting. We consider the constant κ5, which is

defined as
1

2κ25
=
N2

8π2
. (5.3)

Hence, we can see how the factor N2 appears in the five-dimensional action. When we con-

sider the D3D7-brane system, for instance, the power-counting structure for the pure five-

dimensional supergravity action plus the DBI-action of the Nf probe D7-branes schemati-

cally reads

S = N2

[
S̃SUGRA
IIB +

Nf

N
S̃DBI

]
, (5.4)

where S̃ indicates the corresponding actions with kinetic terms which do not depend on

N . Thus, in order to obtain canonically normalized fields we redefine the five-dimensional

dilaton as φ̃5 ≡ Nφ5, and similarly for the graviton. By plugging the normalized fields

into the action S one obtains the correct power of N in each interaction vertex. Therefore,

one can construct the Witten’s diagrams for holographic dual processes, displaying the

corresponding N -power counting in each case.

5.2 Scalar mesons

The relevant part of the free Lagrangian for scalar mesons eq. (3.6) can be rewritten as11

Lscalar
0 = −µp(2πα′)2

√
− det g

(
ρ

R

)β 1

2
gab∂aΦ∂bΦ

∗ . (5.5)

By factorizing the scalar field as

Φ(ρ, yµ,Ω) =
∑

ℓ

ϕℓ(ρ, yµ)Y ℓ(Ω) , (5.6)

and by defining the squared root of the determinant of the five-dimensional piece of the

metric as
√
−detg5 =

(
ρ

R

)α+β
2

, (5.7)

11We exclude the first term in eq. (3.6) since it does not contribute to the EOM.
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we can write down the reduced five-dimensional free action for each ϕℓ as follows

Sscalar
0 =−µp (πα′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)[
∂mϕℓ ∂mϕ

ℓ∗+M2
ℓ ϕ

ℓ ϕℓ∗

]
,

(5.8)

where we have used ∫
dp−4Ω

√
detg̃ Y ℓ Y ℓ′∗ = δℓℓ′ , (5.9)

and we have defined
∫
dp−4Ω

√
detg̃ ηij ∂iY

ℓ ∂jY
ℓ′∗ ≡ δℓℓ′M

2
ℓ . (5.10)

Notice that eq. (5.8) is the action for a scalar complex field.12 Recall the interaction

Lagrangian given in eq. (3.16)

Lscalar
interaction = iQµp (πα

′)2
√
−detg

(
ρ

R

)β

Am (Φ∂mΦ∗ − Φ∗ ∂mΦ) ,

which under the same five-dimensional reduction becomes13

Sscalar
interaction= iQµp(πα′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

Am

[
ϕ∂mϕ

∗−ϕ∗ ∂mϕ

]
.

(5.11)

At the order at which we are interested in, graviton-like perturbations are relevant. By

considering the hmn fluctuation on the metric

gmn → gmn + hmn , (5.12)

this induces the interaction terms14

hmn ∂mΦ ∂nΦ
∗; hmnAmΦ ∂nΦ

∗, (5.13)

which, upon five-dimensional reduction of the action given in eq. (5.8), become

hmn ∂mϕ∂nϕ
∗ . hmnAm ϕ∂nϕ

∗. (5.14)

By assembling all factors, we obtain the full five-dimensional action

Sscalar
total =Sscalar

0 + Sscalar
interaction

=−µp(πα′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)[
∂mϕ∂mϕ

∗ +M2
ℓ ϕϕ

∗

+ hmn∂mϕ∂nϕ
∗−iQAm(ϕ∂mϕ

∗ − ϕ∗∂mϕ)−iQhmnAm(ϕ∂nϕ
∗−ϕ∗∂nϕ)

]
, (5.15)

12Recall that we are using the signature (-,+,+,+,+). The full action is Sscalar
0 =

∑

ℓ S
scalar ℓ
0 , and we are

writing only one Sscalar ℓ
0 in eq. (5.8).

13Notice that on the last equation we have dropped the subindex X from the interaction Lagrangians.

We keep this convention in the rest of this section. Besides, we shall not write the superscript ℓ.
14The kinetic term for the graviton as well as that for the gauge field Am come from the ten-dimensional

supergravity action discussed in the last subsection. Here we only consider the SDBI discussed in sections 3

and 4, defined in the probe-brane worldvolume.
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which includes the kinetic term for the scalar mesons, as well as the interaction terms with

the graviton and the gauge field Am. The last two terms can be seen as part of a covariant

derivative in the kinetic term for the scalar meson. We can redefine the fields in order to

be canonically normalized

ϕ̃ ≡
√
N ϕ ,

Ãm ≡ N Am ,

h̃mn ≡ N hmn . (5.16)

By considering that

µp(πα
′)2 =

(πα′)2

(2π)pgsα
′
p+1
2

=
1

2pπp−2

N

λα′
p−3
2

, (5.17)

we can write Sscalar
total explicitly in terms having different powers of N as

Sscalar
total =

Rp−4

2pπp−2λα′
p−3
2

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

[
∂mϕ̃∂mϕ̃

∗ +M2
ℓ ϕ̃ϕ̃

∗ +N−1h̃mn∂mϕ̃∂nϕ̃
∗

−N−1iQÃm(ϕ̃∂mϕ̃
∗ − ϕ̃∗∂mϕ̃)−N−2iQh̃mnÃm(ϕ̃∂nϕ̃

∗ − ϕ̃∗∂nϕ̃)

]
. (5.18)

Now, we can construct the relevant diagrams to our process as shown in figures 1 and 2.

We can see that only the tree-level diagram of figure 1 contributes to leading order in N ,

namely, N−2, while diagrams of figure 2 are sub-leading, i.e. of order N−4.

5.3 Vector mesons with Nf = 1

Let us consider the relevant part of the free Lagrangian for Nf = 1 vector mesons given in

eq. (3.35)

LSF
0 = −µp (πα′)2

√
− det g F abF ∗

ab ,

and define

Ba(ρ, yµ,Ω) =
∑

ℓ

ba ℓ(ρ, yµ)Y ℓ(Ω) ,

f ℓmn = ∂mb
ℓ
n − ∂nb

ℓ
m . (5.19)

Then, we can write the reduced five-dimensional free action for each bℓn as15

SSF
0 = −µp (2πα′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)[1
4
fmnf∗mn +

1

2
M2

ℓ b
mb∗m

]
,

(5.20)

which is a Proca-like Lagrangian.

15From now on we drop the superscript ℓ in the rest of this subsection. The following equation is the

part of the action corresponding to only one bℓn.
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J J

X
in out

r = 

r = r0

Figure 1. Five-dimensional tree-level Witten’s diagram which is the holographic dual version of the

forward Compton scattering of a charged lepton by a hadron in four-dimensions. This diagram is

made of five-dimensional fields obtained from dimensional reduction of ten-dimensional supergravity

on a compact Einstein manifold. The dual field of the hadron is indicated with a solid line. The

hadron can be a scalar, a Nf = 1 vector meson, or a Nf > 1 vector meson. Wavy lines indicate

the dual field corresponding to a virtual photon exchanged from the lepton (not drawn in this

diagram) and the hadron. This field (wavy line) is a fluctuation induced by the insertion of the

global symmetry current operator at the boundary theory. This Witten’s diagram gives the leading

contribution to the 1/N expansion. Notice that r → ∞ corresponds to the boundary where the

four-dimensional gauge theory is defined and where current operators J are inserted.

After five-dimensional reduction the interaction Lagrangian (3.36)

LSF
interaction = iQµp (πα

′)2
√

− det g Am [B∗
nF

nm −Bn(F
nm)∗] ,

can be written as

SSF
interaction= iQµp (πα

′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

Am

[
b∗nf

mn−bnfmn∗

]
.

(5.21)

By considering a metric fluctuation, it introduces the interaction terms

hmq Fn
q F

∗
mn, hmq Am (B∗

n F
n
q −B∗

n F
n∗
q ) , (5.22)

which, after dimensional reduction, become

hmq fnq f
∗
mn; hmq Am (b∗nf

n
q − b∗n f

n∗
q ) , (5.23)

If we gather all these terms we obtain the full action

SSF
total = SSF

0 + SSF
interaction

=− 4µp(πα
′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)[1
4
fmnf∗mn +

1

2
M2

ℓ b
mb∗m

+
1

4
hmqfnq f

∗
mn − i

4
QAm

(
b∗nf

mn − bnf
mn∗

)
− i

4
QhmqAm

(
b∗nf

n
q − b∗nf

n∗
q

)]
. (5.24)

We can redefine the fields in order to make the kinetic terms canonically normalized in

terms of powers of N , thus

b̃m ≡
√
N bm , (f̃mn ≡

√
N fmn )

Ãm ≡ N Am ,

h̃mn ≡ N hmn . (5.25)
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J J

X
in out

r = 

r = r0

J J

X
in out

r = 

r = r0

J J

X
in out

r = 

r = r0

Figure 2. Illustration of some of one-loop Witten’s diagrams. Five-dimensional one-loop ladder

graviton (top), rainbow graviton (middle), fish graviton (bottom) Witten’s diagrams corresponding

to sub-leading corrections to the forward Compton scattering Feynman’s diagrams contributing

to DIS in four-dimensions. These diagrams are made of five-dimensional fields obtained from

dimensional reduction on a five-dimensional Einstein manifold. The dashed line indicates a graviton

hmn. These Witten’s diagrams contribute to order N−2 relative to the leading-order contribution

in the 1/N expansion displayed in figure 1.

By using eq. (5.17) we can write SSF
total in terms of the powers of N as

SSF
total =

Rp−4

2p−2πp−2λα′
p−3
2

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

[
1

4
f̃mnf̃∗mn +

1

2
M2

ℓ b̃
mb̃∗m +N−1 1

4
h̃mqf̃nq f̃

∗
mn

−N−1 i

4
QÃm

(
b̃∗nf̃

mn − b̃nf
mn∗

)
−N−2 i

4
Qh̃mqÃm

(
b̃∗nf̃

n
q − b̃∗nf̃

n∗
q

)]
. (5.26)
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The relevant diagrams to our process are very similar to the ones in the case of scalar

mesons. They are those in figures 1 and 2, just noting that the meson line now corresponds

to the vector meson bm instead of the scalar meson ϕ in last subsection. We can see again

that only the tree-level diagram in figure 1 contributes to leading order in N , namely, N−2,

while diagrams in figure 2 are sub-leading, i.e. order N−4.

5.4 Vector mesons with Nf > 1

We begin with the relevant part of the Lagrangian for vector mesons with Nf > 1 from

eq. (4.2)

LMF
0 = −µp(πα′)2

√
− det g Tr

{
F̂abF̂

ab ∗ +

(
iF̂ ∗

ab[B
a, Bb] + c.c.

)
− [B∗

a, B
∗
b ][B

a, Bb]

}
,

with F̂ab = ∂aBb − ∂bBa = Fab − i[Ba, Bb], and we define

Ba(ρ, yµ,Ω) =
∑

ℓ

ba ℓ(ρ, yµ)Y ℓ(Ω),

f̂ ℓmn = ∂mb
ℓ
n − ∂nb

ℓ
m = f ℓab − i[bℓa, b

ℓ
b]. (5.27)

Then, we can write the reduced 5-dimensional free action as16

SMF
0 =−2µp(πα

′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

Tr

{
1

2
f̂mnℓf̂ ℓ ∗mn+M

2
ℓ b

mℓbℓ ∗m

+
∑

ℓ′ ℓ′′

[
i

2
aℓ ℓ′ ℓ′′ [b

ℓ′

m, b
ℓ′′

n ]f̂mnℓ∗+c.c.

]
−

∑

ℓ′ ℓ′′ ℓ′′′

cℓ ℓ′ ℓ′′ ℓ′′′

2
[bℓm, b

ℓ′

n ][b
mℓ′′∗, bn ℓ′′′∗]

}
, (5.28)

where we have used eqs. (5.9) and (5.10), and defined

aℓ ℓ′ ℓ′′ ≡
∫
dp−4Ω

√
g̃ Y ℓ∗ Y ℓ′ Y ℓ′′ , (5.29)

cℓ ℓ′ ℓ′′ ℓ′′′ ≡
∫
dp−4Ω

√
g̃ Y ℓ Y ℓ′ Y ℓ′′∗ Y ℓ′′′∗. (5.30)

After five-dimensional reduction the interaction Lagrangian (4.8)

LMF
interaction = iQµp (πα

′)2
√

−detg

{
Am Tr

(
B∗

n F̂
nm −Bn (F̂

nm
)∗
)

+ i Am Tr
(
B∗

n [B
m , Bn]

)
+ i Am Tr

(
Bn [B

m∗ , Bn∗]
)}

, (5.31)

≡ LMF
interation1 + LMF

interation2 + LMF
interation3 ,

can be written as

SMF
interaction = Qµp(πα′)2

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

(5.32)

{
iAmTr

(
bℓ ∗n f̂

mnℓ − bℓnf̂
mnℓ∗

)
−
∑

ℓ′ ℓ′′

(
aℓ ℓ′ ℓ′′AmTr

(
bℓ ∗n

[
bmℓ′ , bnℓ

′′])
+c.c.

)}
.

16We write the piece of the action corresponding to a single bℓ.
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Graviton-like perturbations are relevant, thus it introduces the interaction terms

hmqTr(F̂n
q F̂

∗
mn) ; hmqTr[Am(B∗

nF̂
n
q −B∗

nF̂
n∗
q )], (5.33)

which, after dimensional reduction, become

hmqTr(f̂nq f̂
∗
mn) ; hmqTr[Am(b∗nf̂

n
q − b∗nf̂

n∗
q )]. (5.34)

By assembling all factors, we obtain the full action

SMF
total = SMF

0 + SMF
interaction

= −2µp(πα
′)2Rp−4

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

Tr

{
1

2
f̂mnℓf̂ ℓ ∗mn +M2

ℓ b
mℓbℓ ∗m +

∑

ℓ′ ℓ′′

(
i

2
aℓ ℓ′ ℓ′′ [b

ℓ′

m, b
ℓ′′

n ]f̂mnℓ∗ + c.c.

)

−
∑

ℓ′ ℓ′′ ℓ′′′

cℓ ℓ′ ℓ′′ ℓ′′′

2
[bℓm, b

ℓ′

n ][b
mℓ′′∗, bn ℓ′′′∗]

}
+

1

2
hmqTr(f̂n ℓ

q f̂ ℓ ∗mn)

− i

2
QAmTr

(
b∗n ℓf̂

mnℓ − bℓnf̂
mnℓ ∗

)
− i

2
QhmqAmTr

(
bℓ ∗n f̂

n ℓ
q − bℓ ∗n f̂

n ℓ ∗
q

)

+

[
i

2

∑

ℓ′ ℓ′′

aℓ ℓ′ ℓ′′AmTr

(
b∗n ℓ[b

mℓ′ , bn ℓ′′ ]

)
+ c.c.

]}
. (5.35)

As before, we redefine the fields in order to be canonically normalized:

b̃m ≡
√
N bm , (

˜̂
f
mn

≡
√
N f̂mn )

Ãm ≡ NAm,

h̃mn ≡ Nhmn . (5.36)

By using eq. (5.17), we can write SMF
total in terms of the powers 1/N as

SMF
total =

Rp−4

2p−1πp−2λα′
p−3
2

∫
d5x

√
−detg5

(
ρ

R

)(α+β)+(p−4)(1+β
2
)

Tr

{
1

2
˜̂
f
mnℓ˜̂

f
ℓ ∗

mn +M2
ℓ b̃

mℓb̃ℓ ∗m +N−
1
2

∑

ℓ′ ℓ′′

(
i

2
aℓ ℓ′ ℓ′′ [̃b

ℓ′

m, b̃
ℓ′′

n ]
˜̂
f
mnℓ∗

+ c.c.

)

−N−1
∑

ℓ′ ℓ′′ ℓ′′′

cℓ ℓ′ ℓ′′ ℓ′′′

2
[̃bℓm, b̃

ℓ′

n ][̃b
mℓ′′∗, b̃n ℓ′′′∗]

}
+N−1 1

2
h̃mqTr(

˜̂
f
n ℓ

q
˜̂
f
ℓ ∗

mn)

−N−1 i

2
QAmTr

(
b̃∗n ℓ

˜̂
f
mnℓ

− b̃ℓn
˜̂
f
mnℓ ∗

)
−N−2 i

2
Qh̃mqAmTr

(
b̃ℓ ∗n

˜̂
f
n ℓ

q − b̃ℓ ∗n
˜̂
f
n ℓ ∗

q

)

+N−
3
2

[
i

2

∑

ℓ′ ℓ′′

aℓ ℓ′ ℓ′′AmTr

(
b̃∗n ℓ [̃b

mℓ′ , b̃n ℓ′′ ]

)
+ c.c.

]}
. (5.37)

Since we have more vertices, we can construct more diagrams relevant to our process.

These are, in addition to the ones in figures 1 and 2, those in figure 3. These new diagrams
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r = r0

J J

X
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J J

X
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r = r0

Figure 3. Illustration of some one-loop Witten’s diagrams. Five-dimensional one-loop ladder

meson (top), rainbow meson (middle), fish-like meson (bottom) Witten’s diagrams corresponding

to sub-leading corrections to the forward Compton scattering Feynman’s diagrams contributing

to DIS in four-dimensions. These diagrams are made of five-dimensional fields obtained from

dimensional reduction on a five-dimensional Einstein manifold. The solid line indicates a vector

meson with Nf > 1. These Witten’s diagrams contribute to order Nf/N relative to the leading-

order contribution in the 1/N expansion displayed in figure 1.

are sub-leading in N as well but, since they have a meson loop, we have to sum over all

the different flavors, obtaining then a factor Nf . In addition, notice that these three last

diagrams, while sub-leading with respect to the tree-level diagram of figure 1, are dominant

with respect to those of figures 2, 3 and 4. The suppression of the diagrams of figure 2

with respect of that of figure 1 is of order 1/N2.
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5.5 Higher-order contributions to the supergravity calculation

In the previous subsections we have discussed the next-to-leading order terms correspond-

ing to the 1/N expansion from the scalar and vector mesons. We have obtained those terms

after re-scaling the meson fields. The result is that one obtains more vertices in comparison

with the leading order Lagrangian. Therefore, we can construct more diagrams which are

relevant to the holographic dual description of the forward Compton scattering process.

The additional diagrams are of the type presented in figures 2, 3 and 4. In figure 2 we

display three types of five-dimensional one-loop Witten’s diagrams: a ladder-graviton dia-

gram (top), a rainbow-graviton diagram (middle), and a fish-graviton diagram (bottom).

They correspond to sub-leading corrections to the forward Compton scattering Feynman’s

diagrams contributing to DIS in four-dimensions. Notice that these diagrams are made

of five-dimensional fields obtained from dimensional reduction of the type IIA or IIB su-

pergravity (depending on the model we consider) on a five-dimensional Einstein manifold.

The dashed line indicates a graviton hmn. These Witten’s diagrams contribute to order

N−2 relative to the leading-order contribution in the 1/N expansion displayed in figure 1.

Notice that it can be additional one-loop and multi-loop diagrams to the ones indicated

in the figures, however the present analysis of their contributions to the 1/N and Nf/N

expansions will be valid.

In figure 3 we display five-dimensional one-loop ladder meson (top), rainbow meson

(middle), fish-like meson (bottom) Witten’s diagrams corresponding to sub-leading cor-

rections to the forward Compton scattering Feynman’s diagrams contributing to DIS in

four-dimensions. As in figure 2 these diagrams are made of five-dimensional fields obtained

from dimensional reduction of ten-dimensional supergravity on a five-dimensional Einstein

manifold. The solid line in the top figure indicates a vector meson with Nf > 1. Thus,

these diagrams are sub-leading in the 1/N expansion, but since they have a meson loop,

we have to sum over all different flavors, obtaining a factor Nf .

Therefore, the suppression of the diagrams in figure 2 is of order 1/N2 while the

suppression of diagrams in figure 3 is of the order Nf/N .

In addition, we can also consider multi-loop contributions as in figure 4. Five-

dimensional two-loop meson (top), n-loop ladder graviton (middle), n-loop rainbow gravi-

ton (bottom) Witten’s diagrams corresponding to sub-leading corrections to the forward

Compton scattering Feynman’s diagrams contributing to DIS in four-dimensions. These

diagrams are made of five-dimensional fields obtained from dimensional reduction on a

five-dimensional Einstein manifold. The solid line in the top diagram indicates a vector

meson with Nf > 1. These Witten’s diagrams contribute to order (Nf/N)2 (top) and

(1/N2)n (middle and bottom) relative to the leading-order contribution in the 1/N expan-

sion displayed in figure 1. Therefore, we can summarize the contributions as:

• Figure 1: leading contribution.

• Figure 2: sub-leading contributions, of order N−2 relative to the one in figure 1.

• Figure 3: sub-leading contributions, of order Nf/N relative to the one in figure 1.

– 29 –



J
H
E
P
0
1
(
2
0
1
4
)
1
6
6

J J

X
in out

r = 

r = r0

J J

X

in out

r = 

r = r0

J J

X

in out

r = 

r = r0

Figure 4. Illustration of some multi-loop Witten’s diagrams. Multi-loop contributions from Wit-

ten’s diagrams corresponding to sub-leading corrections to the forward Compton scattering Feyn-

man’s diagrams contributing to DIS in four-dimensions.

• Figure 4: sub-leading contributions, of order (Nf/N)2 and (1/N2)n relative to the

one in figure 1.

We have not explicitly obtained these sub-leading contributions from the diagrams illus-

trated in figures 2–4. Notice that the UV completion of these diagrams should be done in

terms of string theory calculations.

5.6 Comments on the quantum field theory OPE

In this section we aim at relating the 1/N and Nf/N expansions discussed in the previous

subsection from the supergravity point of view with the corresponding expansions from
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the operator product expansion of two-currents in the four-dimensional dual gauge theo-

ries. First notice that the Tµν tensor, whose expectation value enters the definition of the

hadronic tensor Wµν , is given by the product of two currents

T̂µν ≡ i

∫
d4x eiq·xT̂ (Ĵµ(x) Ĵν(0)) .

For deep inelastic scattering the leading operators in the OPE of two currents are twist

two when the gauge theory is weakly coupled. So, to zeroth order in QCD one can write17

T̂µν =
∞∑

n=2,4,···

C(1)
n

(
− gµν +

qµqν
q2

)
2nqµ1 · · · qµn

(−q2)n Ôµ1···µn

V

+
∞∑

n=2,4,···

C(2)
n

(
gµµ1 −

qµqµ1

q2

)(
gνµ2 −

qνqµ2

q2

)
2nqµ3 · · · qµn

(−q2)n−1
Ôµ1···µn

V

+
∞∑

n=1,3,···

C(3)
n i ǫµνλµ1 q

λ 2nqµ2 · · · qµn

(−q2)n Ôµ1···µn

A , (5.38)

where C
(1)
n = C

(2)
n = C

(3)
n = 1 +O(αs), where αs is the QCD coupling. The operators are

defined as follows

Ôµ1···µn

V =
1

2

(
i

2

)n−1

Ŝ

(
ψ̄ γµ D̂µ1 · · · D̂µn Q̂2

qcm ψ

)
, (5.39)

Ôµ1···µn

A =
1

2

(
i

2

)n−1

Ŝ

(
ψ̄ γµ D̂µ1 · · · D̂µn γ5 Q̂2

qcm ψ

)
, (5.40)

where the derivative operator D̂µ acts on left and right, while Q̂qcm is quark charge matrix,

Ŝ indicates symmetrization and it removes all traces over µ1 · · · µn.
Now, in order to calculate the structure functions in this regime one has to calculate

the matrix element of Tµν between two hadronic states, in the present case of spin-1, which

leads to

< P,E|Ôµ1···µn

V |P,E >= Ŝ[an P
µ1 · · · Pµn + dn

(
E∗µ1Eµ2 − 1

3
Pµ1 Pµ2

)
Pµ3 · · · Pµn ] ,

(5.41)

< P,E|Ôµ1···µn

A |P,E >= Ŝ[rn ǫ
λστµ1 E∗

λEσ Pr P
µ2 · · · Pµn ] , (5.42)

which define the coefficients an, dn and rn.

The leading diagram in the parton model is displayed in figure 5 where the virtual

photon strikes a parton. This is a tree-level perturbative QFT calculation in the weakly

coupled theory. Thus, the operators which appear in the JJ OPE at weak coupling have

twist τ = 2, 4, · · ·, even, and therefore twist-two single-trace operators dominates the OPE.

Notice that at finite coupling these operators develop anomalous dimensions γn, where

17This expression of the OPE follows the notation and metric convention of [8], which has an overall

minus sign in the metric.
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Figure 5. Forward Compton scattering from a meson in the parton model. A parton is struck by

the virtual photon indicated with a wavy line.

the subindex stands for the quantum numbers of the corresponding operator. In leading

perturbation theory γn ∼ αs(q
2)N , and in this regime the parton model for spin-1/2

partons leads to the Callan-Gross relation F2 = 2xF1, where the Bjorken variable x is the

fraction of the total momentum (Pµ) of the hadron carried by the specified parton. The

idea is that a parton evolves, which means that it splits into more partons which leads to

reduce the momentum carried by each individual parton.

On the other hand, at large coupling the situation changes dramatically because the

above operators have large anomalous dimensions and then they no longer dominate the

OPE. The point is that on general grounds there are double-trace operators which do not

receive large anomalous dimensions for any value of the ’t Hooft coupling. It turns out

that these operators dominate the OPE at strong coupling. They are protected operators.

Basically, the discussion is similar to that presented for the case of a theory with adjoint

fields, where leptons are scattered by glueballs [1], but now there are contributions from

fields in the fundamental representation of the gauge group, which leads us to replace the

factor N by
√
N wherever it corresponds when considering fundamental fields instead of

adjoint ones. Also, there will be a Nf factor coming from summing over flavor loops. The

first difference with respect to the weak coupling situation is that the lepton cannot strike

individual partons any more, and instead it strikes the hole hadron. This can be represented

by a quark-gluon diagram as in figure 6, which represents a multi-gluon exchange in a

planar diagram which can be calculated in terms of its dual tree-level Witten’s diagram

of figure 1, and they are the calculations that we have presented in sections 2 and 3. In

principle, one can go beyond the planar limit and include non-planar diagrams for gluon

exchange as depicted in figure 7. This is the quark-model diagram which corresponds

to sub-leading supergravity dual calculations of the type given by the one-loop Witten’s

diagram of figure 2. Moreover, it is also possible to consider multi-flavor loops as shown

in figure 8.
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Figure 6. Forward Compton scattering at strong coupling. The meson is struck by the virtual

photon indicated with a wavy line. This is the quark-model diagram which corresponds to the

leading supergravity dual calculation given by the tree-level Witten’s diagram of figure 1. Multi-

gluon exchange between quark-anti quark pair is shown. This is a planar diagram.

Figure 7. Forward Compton scattering at strong coupling. The meson is struck by the virtual

photon indicated with a wavy line. Non-planar multi-gluon exchange between quark-anti quark

pair is shown.

6 Discussion

As we mentioned in the introduction we have performed a detailed analysis of the struc-

ture of the two-point correlation functions of generic global symmetry currents at strong

coupling, associated with flavors in the fundamental representation of the gauge group, in

the quenched approximation, in terms of the corresponding holographic string theory dual

description. This includes the large N limit of supersymmetric and non-supersymmetric

Yang-Mills theories in four dimensions. In particular, we have explicitly investigated the

cases of the D3D7-brane, the D4D8D8-brane, and the D4D6D6-brane systems.

In the large N limit we have found a universal structure of the two-point correlation

functions of generic global symmetry currents at strong coupling. For each holographic

dual model we have found that the two-point correlation functions of non-Abelian (Nf > 1)

global symmetry currents can generically be written as the product of a constant, which

depends on the particular Dp-brane model, times flavor preserving Kronecker deltas multi-
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Figure 8. Forward Compton scattering at strong coupling. The meson is struck by the virtual

photon indicated with a wavy line. This is the quark-model diagram which corresponds to sub-

leading supergravity dual calculations of the type given by the n-flavor loop Witten’s diagram.

These are planar diagrams.

plying the corresponding Abelian (Nf = 1) result for the same Dp-brane model. We have

obtained a universal factorization of the two-point correlation functions for non-Abelian

symmetry currents in a model-dependent factor times a model-independent one. This has

already been seen for the two-point functions of Abelian symmetry currents in our previ-

ous paper [4]. This factorization comes from the structure of the flavored holographic dual

model in the probe approximation, where the probe Dp-brane action is taken to be the

non-Abelian version of the Dirac-Born-Infeld action [5]. Thus, in general we can write the

hadronic tensor Wµν
(a) for a holographic dual model corresponding to a certain gauge field

theory in the large-N limit as

Wµν
(a) = A(a,b)W

µν
(b) , (6.1)

for models (a) and (b), where A(a,b)(x) is a conversion factor which depends on the pair

of Dp-brane models considered. This allows one to write the corresponding structure

functions F
(a)
i (x, t), where subindex i indicates the i-th structure function for every meson

in each particular model, as F
(a)
i (x, t) = A(a,b) F

(b)
i (x, t) as we explained in the Introduction.

Besides, we have found that a modified version of the Callan-Gross relation is satisfied for

a large class of flavored holographic dual models, F2 = 2F1 without multiplying by the

Bjorken parameter, when the parameter t→ 0, which is an indication that the coupling is

strong and therefore there are no partons. In fact, we have found a number of additional

relations among the structure functions which hold in every Dp-brane model studied in the

present context. They are

b2 = 2 b1 , (6.2)

b1 = 3F1 , (6.3)

g2 =
9

4x
F1 (6.4)

b4 = −2 b3 . (6.5)
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The last three relations are predictions as in our previous work [4]. In addition, we have

shown that all the moments of the structure functions satisfy the corresponding inequalities

derived from unitarity, as expected [7].

These results, which hold for a number Dp-brane models, seem to suggest that there

is a universal structure of the two-point current correlation functions, and therefore for the

hadronic tensor. Moreover, this might be an indication that the structure of actual QCD

polarized vector mesons at strong coupling should have the above relations among their

structure functions. QCD lattice calculations could confirm these predictions, it would be

very interesting to know it. In the affirmative case, it would imply that any candidate for

a holographic QCD model in the large N limit should lead to two-point current correlation

functions with the properties indicated above.

On the other hand, it would be very interesting to know how the above relations become

modified at strong coupling for the kinematical region where the Bjorken parameter is very

small. Additionally, it would also be extremely interesting to investigate the fate of these

new structure function relations at weak coupling.

A very interesting aspect of the present work is that we have investigated the 1/N

and Nf/N contributions to the leading order calculations of the hadronic tensor, from

the supergravity dual model point of view. Particularly, we have focused on the structure

of the relevant Lagrangians and Witten’s diagrams. Indeed, we have derived all relevant

Lagrangians. On the other hand, although we have not calculated these Witten’s diagrams

explicitly, we have discussed how they arise from supergravity, how their 1/N and Nf/N

powers match those in the corresponding expansions in quantum field theory, and how

these Witten’s diagrams are suppressed by 1/N2 and Nf/N powers, respectively, in the

supergravity dual models.

Other papers where holographic description of DIS has been investigated include [16–

19]. However, we follow a different approach to construct the interactions derived formally

from the DBI action of the probe branes in a way that explicitly manifests the global

symmetry. Also, other regimes of the Bjorken parameter have been considered through

their holographic dual description as for instance in references [20–23]. In addition, DIS

and current correlators in SYM plasmas have also been investigated [24, 25]. Particularly,

α′3 type IIB string theory corrections to current correlators in SYM plasmas have been

investigated in [26–30].
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A Hadronic tensor of spin-one mesons

In the definition of the hadronic tensor of spin-1 mesons in section 2 we have used the

following functions

rµν ≡ 1

(P · q)2
(
q · ζ∗ q · ζ − 1

3
(P · q)2κ

)
ηµν , (A.1)

sµν ≡ 2

(P · q)3
(
q · ζ∗ q · ζ − 1

3
(P · q)2κ

)
PµPν , (A.2)

tµν ≡ 1

2(P · q)2
(
q · ζ∗ Pµζν+q · ζ∗ Pνζµ+q · ζ Pµζ

∗
ν + q · ζ Pνζ

∗
µ − 4

3
(P · q)PµPν

)
, (A.3)

uµν ≡ 1

P · q

(
ζ∗µζν + ζ∗νζµ +

2

3
M2ηµν −

2

3
PµPν

)
, (A.4)

sσ ≡ −i
M2

ǫσαβρζ∗αζβPρ , (A.5)

being κ = 1 − 4x2t and sσ a four-vector analogous to the spin four-vector in the case

of spin-12 particles. Besides, ζµ and ζ∗µ denote the initial and final hadronic polarization

vectors, respectively. The condition P · ζ = 0 is satisfied, and the normalization is given

by ζ2 = −M2.

B Meson structure functions from the D4D6D6-brane model

In this appendix we extend the calculations developed in [4] to the model consisting of

N D4 and Nf D6 branes described in [6]. All the results obtained in this section can be

derived as particular cases of the calculations in section 3.18 This model is similar to that

of [11], whose DIS calculations where done in our previous paper [4]. Therefore, the results

will be similar.

The model in reference [6] consists of branes in the following configuration:

N D4 : 0 1 2 3 4 − −−−−
Nf D6 : 0 1 2 3− 5 6 7 −−. (B.1)

Note that the D4 and the D6 branes may be separated from each other along the directions

x8 and x9. In the decoupling limit for the D4-branes this system provides a non-conformal

version of the AdS/CFT correspondence. This means that on the gauge theory side there

is a supersymmetric five-dimensional SU(N) gauge theory coupled to a four-dimensional

defect. The system is dual to N = 2 supersymmetric Yang-Mills theory in d = 4. The

degrees of freedom localized on the defect are Nf hypermultiplets in the fundamental

representation of SU(N), which arise from the open strings connecting the D4 and the

D6-branes. Each hypermultiplet consists on two Weyl fermions of opposite chiralities, ψL

and ψR, and two complex scalars.

By identifying the direction 4 as x4 ∼ x4+
2π

MKK
, where MKK is the mass scale for the

Kaluza-Klein modes, and by imposing anti-periodic conditions for the D4-brane fermions,

18We have studied the backgrounds D3D7-brane and D4D8D8-brane systems in [4] the case Nf = 1.

– 36 –



J
H
E
P
0
1
(
2
0
1
4
)
1
6
6

all of the supersymmetries are broken and the theory becomes a four-dimensional one for

energies E ≪MKK , while the adjoint fermions and scalars become massive. Generation of

mass for the fundamental fermions is forbidden by a chiral U(1)A symmetry that rotates

ψL and ψR with opposite phases.

In the limit Nf ≪ N , the back-reaction of the D6-branes on the supergravity back-

ground is negligible, therefore, they can be treated as probe branes. In the string descrip-

tion, the U(1)A symmetry corresponds to the rotation symmetry in the 89−plane.

We adopt, as in [6], the solution in which there are Nf D6-branes and Nf anti-D6-

branes.

Background of D4-branes. The background metric of N D4-branes in this configura-

tion is

ds2 =

(
U

R

) 3
2

(ηµνdy
µdyν + f(U)dτ2) +

(R3U)
1
2

ρ(U)2
−→
dz · −→dz, (B.2)

with U(ρ) =
(
ρ3/2 +

U3
KK

4ρ3/2

)
, f(U) = 1− U3

KK
U3 , and −→z = (z5, . . . , z9).

The dynamics of interest for DIS corresponds to the limit q ≫ Λ, where Λ is the

confinement energy scale of the gauge theory. Thus, we shall consider the interaction in

the UV limit, being the interaction region given by Uint ∼ q2R3 ≫ U0 = Λ2R3 ≡ UKK . In

this limit, the induced metric on the D6-branes takes the form

ds2 =

(
U

R

) 3
2

ηµνdy
µdyν +

(
R

U

) 3
2

dU2 +R
3
2U

1
2dΩ2

2 , (B.3)

which is the same as eq. (96) in [4], coming from the same limit (U ≫ UKK) taken in the

context of the D4D8D8-brane system model [11]. The difference is that the coordinates

z8 and z9 do not belong to the probe brane in this case. We can see that this metric is

a particular case of (3.2) with p = 6 ; α = −β = 3
2 . Therefore, all the analysis done in

section 3 applies. We then write the main results, avoiding further details.

The gauge field. By proposing the Ansatz (3.19) we obtain the solution (3.20) which

reads (α = −β = 3
2 ; p = 6)

Aµ =
2

Γ(5/4)
nµ e

iq·y

(
q2R3

U

)5/8

K5/4

([
4q2R3

U

] 1
2
)
, (B.4)

AU = −2i(q · n)
Γ(5/4)q

1

(qR)3
eiq·y

(
q2R3

U

)17/8

K1/4

([
4q2R3

U

] 1
2
)

= − i

q2
ηµνqµ∂UAν , (B.5)

where K5/4 and K1/4 are modified Bessel functions, and q ≡
√
q2.

DIS from scalar mesons. The EOM for scalar mesons arises from the transversal

fluctuation

z8 = 0 + 2πα′χ , z9 = 0 + 2πα′ϕ , (B.6)

where the coordinates z8 and z9 lie on the (8, 9) plane, transversal to the D6-brane. Note

that we are perturbing around the solution z8 = z9 = 0, i.e. , r = 0 which corresponds to
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the D4D6D6-brane system solution. The scalar fluctuations around this background are χ

and ϕ.

The Lagrangian for the scalar fluctuations at leading order is

L = −µ6
√
|detg|

[
1 +

(
R

U

)3/2

gab(πα′)2∂aΦ∂bΦ
∗

]
, (B.7)

where Φ ≡ χ+ iϕ. The solutions are, after imposing an Ansatz like eq. (3.10),

ΦIN/OUT = ci(ΛU)−
7
8
−

γ
2 eiP ·yY (S2) , (B.8)

ΦX = cX(s
1
4Λ−

1
2 )(ΛU)−

7
8Jγ

([
4sR3

U

] 1
2
)
eiPX ·yY (S2) , (B.9)

with γ = (1/4)
√

49 + 64ℓ(ℓ+ 1). After perturbing the metric as in (1.8) we obtain

Lscalar D4D6
interaction = iQµ6(πα′)2

√
|detg|

(
R

U

) 3
2

Am(Φ∂mΦ∗
X−Φ∗

X∂
mΦ) = Q

√
|detg|Amj

m,

(B.10)

with

jm = iµ6(πα
′)2

(
R

U

) 3
2

(Φ∂mΦ∗
X − Φ∗

X∂
mΦ) . (B.11)

By using the current conservation of eq. (3.22) and the Ansatz (3.18), we obtain the

structure functions

F1 = 0, F2 = Ascalar
0 D4D6Q2

(
µ26α

′4

Λ6

)(
Λ2

q2

)γ+1

xγ+7/2(1− x)γ , (B.12)

where Ascalar
0 D4D6 = 4π5|ci|2|cX |2[Γ(9/4 + γ)]2[Γ(5/4)]−2 is a normalization dimensionless

constant. We can see that this solution is a particular case of eq. (3.29).

DIS from vector mesons. From the DBI action we derive the EOM (3.31), then we

propose a quadratic Lagrangian from which we obtain exactly the same EOM. The Ansatz

for the solution is (3.32) and the solutions (3.33) and (3.34) become

Bµ IN/OUT = ζµciΛ
−1(ΛU)−γ/2−7/8eiP ·y Y ℓ(S4) , (B.13)

BXµ = ζXµcXΛ−1(s−1/4Λ−1/2)
( U

Λ2R3

)−7/8
Jγ

[(
4sR3

U

) 1
2
]
eiPX .y Y ℓ(S2) , (B.14)

with γ = (1/4)
√

49 + 64ℓ(ℓ+ 3). The quadratic Lagrangian is exactly that in eq. (3.35),

the interaction Lagrangian that in (3.36), and by repeating the calculations as in section 3,

we finally obtain the solutions (3.47) with

Avect
D4D6(x) = Avect

0 D4D6Q2

(
µ26(α

′)4

Λ6

)(
Λ2

q2

)γ

xγ+11/2(1− x)γ−1 , (B.15)

Avect
0 D4D6 = π5|ci|2|cX |2[Γ(γ + 9/4)]2[Γ(5/4)]−2. (B.16)

We can observe that they have the same form as the ones obtained with the D3D7 and

D4D8D8-brane model studied in our previous work [4], and summarized in section 3.
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