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Systems/Circuits

Posterior Inferotemporal Cortex Cells Use Multiple Input
Pathways for Shape Encoding

X Carlos R. Ponce,1 X Stephen G. Lomber,2 and X Margaret S. Livingstone1

1Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, and 2Department of Psychology, University of Western Ontario,
London, Ontario N6A 5C2, Canada

In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive con-
current inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by
deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2�3 did not lead to consistent
changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than
V2�3-based pathways. We did not find any image features that predicted decoding accuracy differences between both interventions. Using
the HMAX hierarchical model of visual recognition, we found that different groups of simulated “PIT” units with different input histories
(lacking “V2�3” or “V4” input) allowed for comparable levels of object-decoding performance and that removing a large fraction of “PIT”
activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay
similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding
than cells in V2 projecting directly to PIT.

Key words: convolutional networks; cooling; electrophysiology; inferotemporal cortex; V2; V4

Introduction
In the macaque brain, posterior IT (PIT) neurons are the penul-
timate stage of the ventral visual processing stream, comprising
cortical areas V1 ¡ V2 ¡ V4 ¡ PIT ¡ anterior IT (AIT). This
main pathway represents a serial sequence of visual areas, but PIT
also receives direct feedforward projections from V3 and V2
(Distler et al., 1993) whereas V4 receives direct inputs from V1
(Kuypers et al., 1965; Yukie and Iwai, 1985; Nakamura et al.,
1993; Ungerleider et al., 2008). These shorter routes to PIT (V1¡

V4 ¡ PIT and V1 ¡ V2 ¡ PIT) have been called bypass path-
ways (Serre et al., 2005) and represent a significant fraction of the
inputs to PIT: 14% of all neurons in the brain projecting to PIT
are located in areas V2�3 (for context, 26% of inputs to PIT arrive
from V4; only 1% of inputs to V1 come from the LGN) (Markov
et al., 2011, 2014). The remaining projections arise from AIT
and the dorsal pathway. The goal of this study is to define the roles
of these different input pathways in PIT function by lesioning
different input areas while recording from PIT units.

Despite a wealth of studies describing the behavioral effects of
lesioning V2, V4, and PIT (Wilson and Mishkin, 1959; Cowey
and Gross, 1970; Dean, 1976; Heywood and Cowey, 1987; Desi-
mone et al., 1990; Merigan et al., 1993; Merigan, 1996; Merigan
and Pham, 1998), there are surprisingly few studies reporting the
electrophysiological effects of early extrastriate input lesions on
IT neurons. In one study, it was shown that AIT neurons contin-
ued to respond selectively to complex images after aspiration of
ipsilateral dorsal V4 and PIT, showing the same firing rate if
stimuli were presented either in the intact or deafferented visual
quadrants, although the same AIT units were also impaired in the
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Significance Statement

Convolutional neural networks are the best models of the visual system, but most emphasize input transformations across a serial
hierarchy akin to the primary “ventral stream” (V1 ¡ V2 ¡ V4 ¡ IT). However, the ventral stream also comprises parallel
“bypass” pathways: V1 also connects to V4, and V2 to IT. To explore the advantages of mixing long and short pathways in the
macaque brain, we used cortical cooling to silence inputs to posterior IT and compared the findings with an HMAX model with
parallel pathways.
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filtering of distractor stimuli (Buffalo et al., 2005). Although it
may be practically impossible to deactivate all inputs to AIT, it
was surprising to learn that firing rate and shape selectivity were
intact in AIT despite such gross input lesions. One potential ex-
planation for this finding is that the lesions were chronic and thus
might have engaged plasticity mechanisms that compensated for
the effects of input lesions on AIT shape selectivity, for example,
by increasing the input weights from bypass projections. To avoid
the issue of long-term plasticity, we used reversible cortical cool-
ing to deactivate inputs to PIT. We have previously used this
technique to show transient impairments in MT neuronal tuning
for binocular disparity and speed tuning during V2�3 cooling
(Ponce et al., 2008, 2011). In this study, we recorded from unbi-
ased samples of PIT neurons while deactivating areas V2-V3 (to-
gether) or V4 (see Fig. 1a). We measured PIT firing rates before
and during cooling of V4 or V2�3, and quantified changes in the
representational capacity of PIT. Our goal was to define the loss
in excitatory drive in PIT neurons and to characterize how this
loss in spike rate would affect the representational capabilities of
PIT neurons. By deactivating V4 or V2�3, we affected the main
input pathway (V1 ¡ V2 ¡ V4 ¡ PIT) and allowed for the
possibility to highlight any specific functions relayed through
different bypass pathways (V1 ¡ V2 ¡ PIT during V4 cooling
and V1 ¡ V4 ¡ PIT during V2 cooling). We found a significant
impairment on firing rate and shape representations on PIT dur-
ing partial deactivation of these extrastriate input areas, and fur-
ther characterized a quantitative advantage of V4-based inputs
relative to V2�3 inputs. Finally, we used a hierarchical feedfor-
ward model (HMAX) with multiple bypass pathways to test the
representational capabilities of simulated “PIT” units receiving
inputs from different pathways, and found that different input
pathways can sustain object decoding with limited loss in perfor-
mance, similar to the loss found during our cooling experiments.

Materials and Methods
All procedures were approved by the Harvard Medical School Institu-
tional Animal Care and Use Committee, following the Guide for the care
and use of laboratory animals (Ed 8). This paper conforms to the ARRIVE
Guidelines checklist.

Behavior. Two adult male macaques (10 –17 kg) were trained to per-
form a fixation task. The task required them to stare at a 0.5° wide red
square in the middle of the screen, keeping their gaze within �1.3° from
the fixation spot. We used an ISCAN eye monitoring system to keep track
of eye movements (www.iscaninc.com). The trial timeline was as follows:
at the start of each trial, the fixation target appeared and the animal had
up to 8 s to direct its gaze to the fixation target. Once fixation was ac-
quired, a small reward could be delivered to encourage the animal.
Within a random period between 17 and 117 ms after fixation onset, an
image appeared perifoveally for 200 ms, then disappeared for 200 ms
until a new image appeared. This on-off cycle could be repeated with 3–5
different images per trial. If the animal held fixation until the end of the
final on-off cycle, a reward was dispensed. The reward size increased by
25% of the initial reward size every 100 trials.

Visual stimuli. We used MonkeyLogic to control experimental work-
flow (http://www.brown.edu/Research/monkeylogic/). As stimuli, we
used 293 different images ranging from simple to complex. The simple
images were line shapes, such as straight contours (four examples), an-
gles (8), crosses (2), curves (8), tristars (8), radial and linear gabors (8),
and combinations of lines and curves (joint angles, 16). These line shapes
were generated using the Cogent MATLAB toolbox (developed by John
Romaya at the LON at the Wellcome Department of Imaging Neurosci-
ence; http://www.vislab.ucl.ac.uk/cogent_graphics.php). Our choice of
complex images was guided by categories used in previous IT studies
(Kiani et al., 2007; Kriegeskorte et al., 2008) and included animals (20
examples), artificial gadgets (20), body parts (20), faces (21 total, 10

monkeys, 11 humans), places (20), and plants/foodstuffs (20). Most of
these images were used to create scrambled counterparts (118 examples)
via the Portilla and Simoncelli (2000) visual texture model, which trans-
forms white noise images into textures that share pairwise joint statistical
constraints as the original intact images. These textures convincingly
replicate small shape primitives present in the original images and scat-
ters them throughout the image (118 textures). Images measured 1.4°
(for Monkey G) or 2.0° (for Monkey R) at their longest axis. The images
were not normalized for luminance.

Implanted devices. We used cryoloops (Lomber et al., 1999) composed
of 23-gauge hypodermic stainless steel tubing, shaped to fit the individual
curvature of each animal’s occipitotemporal gyri/sulci as determined by
structural magnetic resonance images. The cryoloops were 3.5 mm wide
and between 4 and 11 mm long. A microthermocouple sensor was at-
tached to the stem of the cryoloop to monitor its temperature. The bodies
of the cryoloops were wrapped in Teflon tubing, except at the loop. The
loops contained protected inlet/outlet ports that permitted the daily con-
nection of Teflon tubes carrying chilled methanol, as driven by FMI “Q”
Pumps (model QG150; www.fluidmetering.com). The methanol was
contained within the tubing system and could not cause any chemical
harm to the tissue. The custom-floating microelectrode arrays were man-
ufactured by MicroProbes for Life Sciences; each had 32 platinum/irid-
ium electrodes per ceramic base, electrode lengths of 4 –16 mm,
impedances between 0.7 and 1.0 M�, all connected to a 36-channel Om-
netics connector (allowing for two additional grounds and two reference
electrodes).

Surgical procedures. Both animals were implanted with custom-made
titanium headposts before fixation training. After several weeks of post-
surgical recovery and fixation training, the animals underwent a second
surgery for the implantation of cryoloops and floating microelectrode
arrays. In each animal, we performed a craniotomy centered at the lunate
sulcus and extending anterolaterally. Monkey R received three cryoloops:
two placed within the left lunate sulcus and one over the prelunate gyrus.
The medial lunate sulcus loop was located 20 mm from the midline,
traveled 7 mm deep into the sulcus, and was 3 mm wide; the lateral lunate
sulcus loop traveled 4.5 mm into the sulcus and was 3.5 mm wide; the
prelunate gyrus loop was placed anteriorly to the lunate sulcus loops, was
11 mm long, and 3 mm wide. Monkey G was implanted with two cry-
oloops: one over the prelunate gyrus and one within the lunate sulcus.
The lunate sulcus loop was placed 2.1 cm from the midline, was 11 mm
long with this axis running in the mediolateral axis within the lunate
sulcus, 3 mm wide, and its most dorsal edge was 1.5 mm deep. The
prelunate gyrus loop was also placed 2.1 cm from the midline, anteriorly
to the lunate sulcus loop, ran 10.5 mm long, and was 3 mm wide. We
collected thermal images to map the spread of cooling from the tubing,
and confirmed that it was limited to 1–3 mm radially, as first shown in
previous publications (Carrasco et al., 2013). Two or three floating mi-
croelectrode arrays were implanted within the same intraoperative ses-
sion, after placement of the cryoloops. Their insertion sites were
determined using three guidelines: they had to be anterior to the inferior
occipital sulcus, many millimeters away from the prelunate gyrus cry-
oloop, and their location had to avoid large vasculature. All arrays were
implanted caudal to the posterior middle temporal sulcus. We implanted
two 32-channel arrays in Monkey R, and one 32-channel plus two 16-
channel arrays in Monkey G.

Experimental session workflow. We describe results from data collected
in 6 – 8 d from each animal. Each day, the animal would be head-fixed
and its implants connected to the experimental rig: first, the cryoloops
were connected to the chilled-methanol-bath tubing and temperature
sensors; then the microelectrode arrays were attached to their headstages.
The first step each day was to calibrate our measurements of the animal’s
gaze using the built-in MonkeyLogic routine. We used the Plexon
Multichannel Acquisition Processor Data Acquisition System to collect
electrophysiological information, including high-frequency (“spike”)
events, local field potentials, and other experimental variables, such as eye
position, reward rate, and photodiode outputs tracking monitor frame dis-
play timing. Each channel was auto-configured daily for the optimal gain
and threshold; we collected all electrical events that crossed a threshold of 2.5
SDs from the mean peak height of the distribution of electrical signal ampli-
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tudes per channel. These signals included typical single-unit waveforms,
multiunit waveform bursts, and visually active hash.

The animal began its fixation task while we collected responses from
the arrays with the cryoloops at body temperature (36°C–37°C; “control”
or “warm” condition). After �20 min of data collection to permit �5
repetitions of each image, we activated either the V2�3 or V4 cryoloops,
bringing the temperature of the cryoloops to 9°C–11°C, which lowered
the temperature of the adjacent cortex to 16°C–18°C. We waited for
another 5 repetitions of each image to pass, and then turned off the
cryoloop pumps and collected 1–2 more repetitions under this first re-
warming session. We then paused the fixation task for 10 min to allow the
tissue temperature to increase and to preserve the animal’s motivation
for a second round of cooling. After 10 min, the temperature reported by
the cryoloops was �34°C, and we restarted our experiment. We repeated
each image presentation 3 or 4 times and then activated the second set of
cryoloop(s) (�8°C), waited for 5 repetitions, and turned off the cry-
oloops. We then collected data until the animal was satiated. We bal-
anced the order of the V2�3 vs V4 cryoloop activations: if on the first day
we activated the V4 cryoloop first and V2�3 cryoloops second, the next
day we activated the V2�3 cryoloops first and V4 cryoloop second. There
was an even number of days for each cooling order.

Spike data preparation. The raw data files comprised event (“spike”)
times per channel for the entire experimental session (the number of
channels available per day were 64, but not all provided reliable signal-
to-noise values). We divided each daily dataset into thousands of raster
plots defined by the onset of each image presentation and labeled each
raster plot with its corresponding channel, image name, and temperature
condition. We defined three windows of analysis: the baseline period
lasted from 0 to 50 ms after image onset, the early period from 51 to 150
ms after image onset, the late period from 151 to 250 ms after image
onset; a full image presentation window was 51– 400 ms after image
onset. We found that multiunit responses could last almost 400 ms,
although their peak responses always occurred within the early window.
Here we report responses within the early window minus the activity
within the baseline window (we call these evoked responses). For all
multivariate analyses, we normalized the activity of each site by trans-
forming its evoked spike rate responses to z scores: all evoked responses
emitted by a single site during an experimental daily session were aver-
aged, this mean response was subtracted from all individual evoked rates,
and each value was then divided by the SD of all evoked responses.

Although our full dataset contained 293 images, we did not have
enough time to present all images every day and still get the minimum of
�15 presentations across the control and cooling conditions. Thus, we
presented more than half of the total image set each day (10 images from
each complex category, such as faces and places, along with half of the
scrambled textures per day, with most of the simple line shapes, rounding
to �148 –177 unique images per day). The responses of each individual
channel were correlated from day to day but were also statistically differ-
ent by multivariate descriptors, such as multidimensional scaling. Be-
cause of these differences, we did not combine channel information
across days and instead created a multiday pseudopopulation, where sets
of concurrently recorded channels (N � 50 – 64) from different days
were “stacked” on top of each other. Thus, the final activity space is
defined by “site-days,” where some dimensions represent responses from
the same channel to the same image collected on different days. Because
the whole image set was presented on different days, we had two pseu-
dopopulations per animal, each containing different site-day responses
to each half of the image set. Each of our pseudopopulations had between
100 and 300 multiunits.

Scotoma mapping experiments. The goal of these experiments was to
identify the parts of the retinotopic field that were captured by our arrays,
and the relative location of the response impairment caused by cooling.
The animals fixated while we presented a single image (black-and-gray
diagram face, 2.0° wide) across positions in a radial grid (angular cover-
age of 0°–315°, 45° steps; radial coverage of 0°– 8° from the center of the
screen, in 0.5° steps). Three to five positions were randomly chosen per
trial. After data collection, we defined evoked responses per position as
follows: first, we quantified the firing rate per site during the early win-
dow of activity (51–151 ms after stimulus onset) and then subtracted the

firing rate per site during the baseline window of activity (0 –50 ms after
stimulus onset). We averaged these evoked responses per position within
each site and used the griddata.m MATLAB function to interpolate the
scattered data into a continuous map. This map was smoothed using a 1°
diameter disk filter. This map represented the aggregate receptive field
(RF) of each multiunit site in our arrays. To identify the overall scotoma,
we averaged the receptive fields of all sites during the control condition
and subtracted the average receptive fields of all sites during V2�3 or V4
deactivation. We measured the size of each scotoma by hand, using the
calcArea.m function (http://www.mathworks.com/matlabcentral).

Firing rate and latency analyses. The goal of these analyses was to mea-
sure changes in the overall firing rate (excitatory drive) of PIT multiunits
during input deactivation. These changes included the amplitude of peri-
stimulus rate histograms (PSTHs) and the latency of response. To quan-
tify the changes in evoked response magnitude, we computed the evoked
responses per site as described in Spike data preparation and averaged
these responses across all channels within each temperature condition.
We did the same operation using z scores. We calculated the probability
that the median responses emitted during each temperature condition
(control, V4, and V2�3 cooling) were sampled from the same distribution
using a Kruskal–Wallis one-way ANOVA. To determine whether there
was a statistical difference between the V4 and V2�3 cooling condition
responses, we used the Wilcoxon signed rank test for zero median. For
the latency analyses, we obtained the mean PSTH in response to each
image, per site and temperature, and then stacked all image-specific
PSTHs in a matrix measuring Nimages � 400 (ms after stimulus onset).
We identified the time when each PSTH exceeded 2 SDs over baseline
and called this response latency, with the only acceptance criteria that a
plausible response latency would only occur between 30 and 200 ms after
image onset. We also computed the earliest time point when all PSTHs
demonstrated the greatest variance in amplitude, as an indicator of the
tuning latency.

Identification of channels with reliable visually driven activity. Many
electrodes in the arrays reported electrical activity that was not visually
driven, possibly because the electrodes were on the pial surface. We re-
peated some analyses only using channels that showed a statistical differ-
ence in mean activity between the baseline and evoked time periods.
Using a cross-validation approach, we used 5% of all trials to perform a
Wilcoxon signed rank test for the median rate difference during each
interval. This told us which channels showed a statistical difference in
rate during visual stimulation. We then used the remaining 95% of trials
to compute the firing rates during baseline and evoked windows for the
selected channels. Monkey R’s arrays showed 38 of 64 visually responsive
sites; Monkey G’s arrays showed 30 of 64 visually responsive sites ( p �
0.05, Wilcoxon signed ranked test for zero median).

Encoding accuracy analyses. We trained support vector machines
(SVMs) with a linear kernel using the MATLAB function fitcecoc.m. We
used a modified one-versus-one approach, with one classifier cik trained
to discriminate between every image pair i and k, where i is the positive
class and k the negative class. In the image identification task, each cik was
trained/tested using leave-one-out cross-validation, and in the category
task, with fivefold cross-validation. After testing, instead of choosing the
best classifier via arg max(cik) as the final vote, we averaged the accuracy
scores of all cik for each given image i. We interpreted this as postulating
that there exists a downstream neuron for each possible image pair clas-
sification, and the performance for a given pair classification is the aver-
age over this population of neurons. To estimate the chance accuracy for
each paired comparison, we concurrently trained SVMs using the same
set of data vectors but with shuffled labels. To estimate the reliability of
the classification accuracy values for each individual image, we used
binomial tests because the leave-one-out cross-validation resulted in di-
chotomous scores of 0, 1. First, we used binofit.m to estimate a 95% CI
for the accuracy value of the shuffled-label classifiers (using all classifiers
where a given image was the positive class). We then asked how likely it
was that the correct-label classifiers would show their observed accuracy
value if the underlying probability is the same as the upper CI value of the
shuffled classifiers (via binocdf.m).

There were 4 or 5 response vectors per class within each comparison
(the data used for classification were z score vectors; see Spike data prep-
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aration). The number of vectors for each two-class comparison was
small, and thus we found that chance accuracy values could vary between
0 and 1 across all image versus image comparisons; the median shuffled-
label misclassification rates were 0.60 – 0.63 for Monkeys R and G. We
subtracted the chance, shuffled-label accuracy classification rate from the
correct-label accuracy classification rates to account for this bias. As an
insight to explain this deviation from the expected chance accuracy of
0.5, we trained SVMs to distinguish between stimulus categories (listed in
Visual stimuli). Each category pair comparison involved 10 –20 times as
many response vectors as the individual image-versus-image SVM anal-
yses, and the dataset was otherwise identical. Here we found a reassuring
shuffled-label statistical baseline of 0.50 in both animals. Both the cate-
gory and image-per-image SVM accuracy analyses led subsequently to
the same conclusions.

Projection analysis. The goal of this analysis was to reconcile the find-
ings that cooling V2�3 and V4 led to different reductions in PIT popula-
tion firing rates, but the same relative reductions in classification
accuracy. To do this, we defined a neural activity coordinate system
where each unit’s activity forms one dimension (given at least N � 100
dimensions per pseudopopulation) and each image Ii (i � 1–293) is
represented by a vector of coordinates v�i with N elements. We defined the
cooling trajectory traveled by each image during deactivation as the dif-
ference vector t�i

	V4 � v�i
warm � v�i

	V4 and t�i
	V2/3 � v�i

warm � v�i
	V2/3, where

v�i
warm wasthepopulationresponsevector for image Ii beforecooling,v�i

	V4 is the
response vector during V4 cooling, and v�i

	V2/3 during V2�3 cooling. Each
cooling trajectory vector t�i

	V4 or t�i
	V2/3 was projected against a minimum

response vector v�i
proj � v�i

warm � v�min
warm, where v�min

warm comprised N elements,
which were the lowest response values per unit in a given pseudopopu-
lation and represented a nonspecific reduction in firing rate across all sites.
Thus, each cooling trajectory t�i

	VX (where 	VX could be 	V4 or 	V2�3)
was separated into a projected (parallel) component and a rotational (per-
pendicular) component t�i

	VX � t�i,�
	VX � t�i,�

	VX, representing a simple pop-
ulation gain change versus a population representational change.

Selectivity analyses (F statistics). In this analysis, we used the F statistic
as a measure of selectivity for each cortical site. The F statistic is a ratio of
mean squares, specifically the mean square error estimate for the vari-
ance of responses among images, divided by the mean square error esti-
mate for the variance within each image. We computed each F statistic in
a channel-by-channel basis using the responses to all images within each
temperature condition. For each channel, one F statistic was computed
using the warm data (Fcontrol), another using the V4 cooling data (F-V4),
and another using the V2�3 cooling data (F-V2�3). We plotted each Fcontrol

against its paired F-V4 and F-V2�3 values. To determine whether the slope
in each given scatterplot was different from unity, we used a bootstrap
approach, where we computed 1000 different slopes by sampling each
channel with replacement (we kept each F ratio trio together; we did not
mix warm and cooling F statistics from different channels). We then
asked whether the slope distribution from this bootstrap included 1.

We used randomization to determine whether there was a differ-
ence between the mean slopes computed during the V4 and V2�3
cooling conditions (i.e., whether there was a difference between the
mean F-V4/Fcontrol slope vs the mean F-V2�3/Fcontrol slope). The null hy-
pothesis is that the mean V4 and V2�3 slopes came from the same distri-
bution. We created this distribution by randomly mixing the labels of the
V4 and V2�3 F statistics 999 times. At each pass, we sampled two subsets
of Fcontrol and Fcooling pairs, computed their regression slopes, and took
the slope difference. We then compared the observed slope difference
against this distribution.

Simulation of loss of decoding accuracy by perturbing control vectors. To
simulate the potential effects of cooling on the control-condition popu-
lation response vectors, we manipulated the norm and/or angle of each
response vector. First, we defined the matrix Rwarm

m,p for monkey m and
pseudopopulation p, measuring c � t, where c is the number of units and
t is the number of image presentations under the warm condition. To
simulate gain changes, we changed the mean vector norm of each vector
r�i warm

m,p in Rwarm
m,p by sampling t values from a Gaussian distribution with

mean of either 0.1, 0.2, 0.3, . . . , 1 (SD of 0.025) and multiplying each
vector by one of the t values. To simulate representational changes, we
changed the mean vector angle of r�i warm

m,p relative to its original position;

this was more difficult because there is a large number of ways to change
the angle of a vector in c-dimensional space depending on the chosen
plane (there are c-choose-2 possibilities, given that c can be �100; i.e., at
least 4950 planes of rotation), and further, some of these artificial rota-
tions could occur outside of the natural tuning shown by the PIT popu-
lation. Thus, to pick the rotation angles to transform all vectors in Rwarm

m,p ,
we used the following approach. We defined the range of rotations of the
warm population by first computing the mean population response vector
r��warm

m,p (measuring c � 1) and subtracting all vectors in Rwarm
m,p from r��warm

m,p ,
resulting in a matrix of trajectory vectors Tm,p � r��warm

m,p � Rwarm
m,p . These trajec-

tory vectors contained the planes of rotation that occurred naturally in the
PIT population along within the warm condition. To isolate the pure rota-
tional components of these trajectory vectors, we separated each vector in
T m,p into parallel and perpendicular components T m,p � T�

m,p � T�
m,p

relative to the vector r��warm
m,p � min
Rwarm

m,p �, where min
Rwarm
m,p � is the min-

imum response vector (baseline-subtracted, so it is not the zero vector).
The parallel vectors T�

m,p isolated the change in gain, and the perpendic-
ular vectors T�

m,p pointed to the rotational directions in the natural
planes. To simulate the mean angular rotation during cooling, we ex-
tended the length of each perpendicular trajectory vector t�i,�

m,p by a factor
f (for each “cooling” simulation, the value could be f � 0.1, 0.2, 0.4, 0.8,
1.6, 3.2, 6.4, 12.8, and 25.6, which corresponded to mean angular changes
of 3°, 8°, 18°, 29°, 38°, 45°, 50°, 53°, 56° across all monkeys and pseudo-
populations). We then sampled these modified trajectory vectors ran-
domly and added them to Rwarm

m,p vectors to change their direction in
c-dimensional space, making sure that each rotated vector was matched
in norm as the original vector. We combined different mean values of
angular and gain changes in our various simulations to give rise to a
number of R“cooled”

m,p populations used for linear classification analyses.
Linear regression model. The goal of this analysis was to determine

whether the change in classification accuracy during V4 cooling or dur-
ing V2�3 cooling could be predicted using different image features. The
regression matrix had dimensions of 293 � 87 (images � visual features).
The features were luminance (defined as the mean pixel value trans-
formed by the monitor’s gamma function), contrast (variance of the
pixel values transformed by the monitor’s gamma function), horizontal
versus vertical power (obtained via a wavelet decomposition analysis
using the MATLAB function wavedec2.m), curvature (defined by the
variance of each image’s discrete Fourier transform spectral power
around all orientations), 50-pixel-based principal components as de-
fined by the pca.m function), 30 spatial frequency principal components
(pca.m applied to the discrete Fourier transformed images), categorical
membership (i.e., angles, animal, artificial, bodies, cross, curve, face,
gabors, radial gabors, joint angles, line, places, plants, scrambled, tristar),
the mean population control firing rate per image, and control classifi-
cation accuracy per image. Values within each feature group were z
scored before fitting. The dependent variables were as follows: (1) accu-
racy loss during V4 cooling (control accuracy per image minus 	V4
accuracy); (2) accuracy loss during V2�3 cooling (control accuracy per
image minus 	V2�3 accuracy); or (3) the difference in accuracy loss
during V4 minus V2�3 cooling ([control accuracy per image minus 	V4
accuracy] 	 [control accuracy per image minus 	V2�3 accuracy]). The
probability that the linear model differed from the constant model was
obtained two ways: first, we used the t statistic provided by the “fitglm.m”
function; second, we used a randomization test where the dependent
variable was fit with a regression vectors made up of random numbers,
sampled from a flat distribution. The table had the same dimensions as
the true data matrix table. The R 2 values of 1000 randomization tests
were compared with the R 2 from the regular regression table. To identify
the most interesting predictors, we used the regression weights with the
highest t statistics.

Standard model of visual recognition. Our computational model was
based on an implementation by Serre et al. (2007b), available at http://
cbcl.mit.edu/software-datasets/standardmodel/index.html. This model
belongs to the HMAX family, inaugurated by Riesenhuber and Poggio
(1999) and developed over subsequent publications (Serre et al., 2005,
2007a, c). The model represents the visual object recognition system as a
series of convolutional and pooling operations, which transform an im-
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age from pixels into neuronal responses. These responses can be used in
a statistical classifier to decode their abstracted representational content.

The architecture of our network was four layers deep and contained
three pathways: one main pathway and two bypass pathways. The main
pathway had four layers: layer 1 (representing V1), layer 2 (V2�3), layer 3
(V4), and layer 4 (PIT units receiving inputs from the main pathway).
The second pathway had three layers: layer V1, layer V4b (representing
units in V4 receiving direct input from V1), and layer PITb (PIT units
receiving input solely from the V1 ¡ V4 inputs). The third pathway also
had three layers: layer V1, layer V2�3, and layer PITc (units in PIT receiv-
ing input directly from V2�3). These three types of “PIT” neurons showed
different kinds of activation patterns, which we could decode using SVMs.
Each layer represented a stereotypical set of operations: a convolution/tun-
ing operation and a pair of max operations. The tuning operation is equiv-
alent to a simple cell, which convolves the input with a filter bank via the

tuning function r � exp��
1

2�2�j�1
Ncomb
wj � xj�

2�, where � � sharpness

parameter, Ncomb is the number of filters to combine, w � filter weight,
and x � input image or activity. This simple cell operation describes the
Euclidean distance between the RF shape and the incoming input. Dif-
ferent simple cells are characterized by different shapes and sizes of their
RF patches. There is more than one RF sizes at each layer, and each
filter-size convolution is performed in parallel. Several outputs of this
tuning operation are then combined in a complex-cell-like operation.
Complex cells perform a pooling operation: they receive inputs from Ns

simple cells with different RF sizes and compute the maximum response
emitted by the set. Thus, the output of a complex cell layer is sparser than the
output of a simple cell layer because maximum values are repeated across
limited areas of response space. These complex layer responses are finally
subsampled, imitating the decreasing number of cells that can cover visual
space as one moves down the visual pathway.

Building the model required two major implementation stages: (1) we
had to create RF patches for each layer; and (2) we had to use these RF
patches to compute responses to our experimental images. As in the 2007
publication, the patches were imprinted using experience-dependent ac-
tivity. Each layer contained a set of up to 200 unique filters: V1 layer filters
were Gabors at four orientations and eight sizes (3–10 pixels wide, or
0.12°-0.39° wide given our monitor distance). Subsequent layer filters
were imprinted using random samples of activity from the preceding
layer. For example, after randomly selecting an image from the Caltech
database, we processed it through the V1 layer, and the 2-D response
image was randomly sampled to create a smaller patch that represented
weights for V2�3. After repeating this process hundreds of times, we
selected new images from the database, processed them through V1 and
V2�3, and used the resulting activity to shape the V4 filters. This was
repeated up to the second-to-last layer. To make sure that the RF shapes
would match the statistics of natural images presented close to and far
from the fovea, we also imprinted using differently sized variants of the
same images (1°, 2°, and 4° wide versions of the same image). In the first
layer, filter sizes were 0.1°– 0.4° in width (in our experimental setup, 1° �
26 pixels) and doubled at every hierarchical step, with the exception of
the bypass pathways, where filter sizes quadrupled in width at the skip
level (e.g., “V4” filters in the “V1 ¡ V4” pathway were 4 times the size of
“V1” filters; PIT filters in the “V1 ¡ V2�3” pathway were 4 times the size
of “V2�3” filters). To obtain the responses for the decoders, we trans-
formed our 293 experimental images into PIT responses using the fully
assembled network and tested each PIT population using SVMs, as in the
experiments above. To introduce variability into the model’s response
vectors during presentations of the same image, we created six variations
of each image by adding random changes in position to simulate fixa-
tional eye movements. These fixational eye movements were simulated
by measuring the distribution of each monkey’s eye position during
image presentation across trials, fitting with Gaussian models, then ran-
domly sampling this distribution to change the center of each object
within the image frame. The Gaussian models had mean 0° and 0.15°–
0.18° SDs (corresponding to Monkeys G and R).

The key contrast involved the relative performance between all simu-
lated PIT units and the subsets of simulated PIT units receiving inputs
from each bypass pathway only: we considered the full output population

to represent our control temperature condition, and the smaller popula-
tions to represent the cooling conditions. Each population was used to
train SVMs that tested the linear classifiability of each image against each
other image. As we did with the biological units, we defined accuracy as
the percentage of correct choices over the shuffled-label accuracy.

Results
Cooling affected portions of PIT receptive fields
We implanted floating microelectrode arrays in PIT of two adult
male monkeys (2 arrays in Monkey R and 3 arrays in Monkey G)
along with cryoloops in retinotopically corresponding dorsal V2,
V3, and V4 (Gattass et al., 1981, 1988). The arrays were placed
anteriorly to the inferior occipital sulcus, the cryoloops were
placed within the lunate sulcus and over the predorsal gyrus
(Fig. 1b). We activated the cryoloops intraoperatively, using ther-
mal imaging to plot the extent of cooling and found that the lower
thermal region was limited to 1–1.5 mm around and within
the cryoloop (Fig. 1c). The electrode arrays were at least 5 mm
anterior to the prelunate cryoloop, and anterior to the inferior
occipital sulcus. After postsurgical recovery of the animals, we
visualized the population RF of the arrays by measuring the mean
spike rate of all electrodes while flashing a 2° diameter image
randomly within a 16 � 16° radial grid. We found that the mean
PIT population receptive fields covered by the arrays were biased
toward the upper contralateral hemifield but also included the
lower perifoveal hemifield (Fig. 1d). We then collected spike data
using the same stimulus positions during deactivation of V2/V3
and V4. By subtracting the population receptive fields collected
during cooling from the receptive fields collected during the con-
trol condition, we were able to estimate the retinotopic extent of
the impaired inputs. If cooling was solely affecting PIT, we would
have expected that all PIT responses would decrease uniformly.
Alternatively, if cooling indeed affected V2�3 and V4, we would
expect that the core region of impairment would be biased to the
lower perifoveal hemifield, as predicted by the retinotopy of V2
and V4 in the dorsal brain, and this is what we found (Fig. 1e).
Deactivation of V4 resulted in scotomas with an estimated size
of 6.7° 2 and 7.5° 2 (Monkeys R and G), while deactivation of V2�3
resulted in scotomas with an estimated size of 9.1° 2 and 5.7° 2

(Monkeys R and G), all centered in the same location. In subse-
quent experiments, stimuli were sized to fit within the overlap-
ping region of both scotomas (1.4° wide images for Monkey G,
2.0° wide images for Monkey R).

Cooling reduced firing rates in PIT units
For all following experiments, we showed the fixating animals
293 images belonging to 15 different categories (angles, animals,
artificial objects, curves, faces, radial and linear gabors, joint an-
gles, plants, places, noise textures, and tristars). When we cooled
either set of cryoloops, PIT multiunits showed reduced visually
evoked responses (Fig. 2a). We defined visual responses as the
rate of spikes within 50 –150 ms after image onset 	 the rate of
spikes within the first 50 ms after image onset. Over all electrodes
in our arrays, PIT multiunits showed a mean visual response of
18 � 1 (Monkey R) and 22 � 2 (Monkey G) spikes/s (range of 	3
to 120 spikes per seconds for Monkey R; 	12 to 106 spikes per
seconds for Monkey G). When the V2/V3 loops were cooled, the
overall average rate was reduced to 13 � 1 and 14 � 1 spikes/s
(Monkeys R and G). When the V4 cryoloops were cooled, the
overall rate was reduced to 12 � 1 and 15 � 1 spikes/s (Monkeys
R and G; for all values, see Table 1). The probability that the
cooled mean responses arose from the same distribution as the
precooling responses was 1 � 10	3 per randomization one-way
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ANOVA (comparing the mean firing rates before cooling, during
V2�3, and during V4 cooling, N � 300 values per temperature
condition; mean F value distribution from shuffled-label test was
0.98 � 1.0 [�SE], 999 iterations, whereas the F value from the
experimental distributions was 282.94). We repeated the analysis
using only channels showing statistically reliable visual activity,
and this showed similar results (see Materials and Methods; Table
1, bottom half): during V4 cooling, mean response amplitude was
reduced by 33% and 34% (Monkeys R and G); during V2�3 cool-
ing, mean response amplitude was reduced by 26% and 35%.

In one animal, we cooled both V4 and V2�3 loops concurrently,
measuring a similar reduction in firing rate (38%); cooling both sets

of loops did not silence PIT. Another measure of input strength is
response latency, and here we similarly observed little difference be-
tween V2/V3 cooling and V4 cooling. We considered two metrics for
latency for each site: (1) response latency, defined as the earliest time
after stimulus onset when activity rose 2 SDs above baseline; and (2)
tuning latency, defined as the time after stimulus onset when the
tuning curve variance was highest. PIT multiunits showed a 	3 ms
difference in response latency between V4 and V2�3 cooling in
Monkey R (latencyV4 	 latencyV2�3 � 55–58 ms) and a 2 ms differ-
ence in Monkey G (60–58 ms); tuning latency was delayed by 10 ms
in Monkey R for both V4 and V2�3 cooling; and by 6 ms for Monkey
G during V2�3 deactivation (Table 2).
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Figure 1. Cooling affected portions of the aggregate PIT receptive fields. a, Partial input network to PIT. b, Schematic showing location of cryoloops (purple) and microelectrode arrays (green)
relative to the prelunate gyrus (yellow) and lunate sulcus (pink). Monkey R had two short loops inside the lunate sulcus. Monkey G had one long loop. c, Composite image showing the superimposed
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In summary, PIT multiunits lost approximately one-third of vi-
sually driven activity during deactivation of either subset of their inputs,
with no reliable difference between cooling V2-V3 or V4 across mon-
keys. PIT multiunits also showed increased response latency during
input deactivation but showed no consistent differences between the
effects of V2/V3 or V4 cooling across monkeys either.

Cooling reduced decoding accuracy by linear classifiers
Next, we used pattern analysis to quantify the encoding capacity
of PIT during V4 or V2�3 cooling. We trained statistical classifiers
(SVMs with a linear kernel) using data from each experimental

condition (before cooling, during V4 or V2�3 cooling). SVMs
were used in a one-versus-one approach: for a given image A, we
trained SVMs to perform a simple classification against a second
image B, then against a third image C, until all other images had
been compared. Then we took image B and repeated the process.
We had few trials per image (4 – 6 repetitions per temperature
condition); thus, we used leave-one-out cross-validation for each
paired comparison. To control for statistical bias in chance per-
formance due to small sample number, we also trained SVMs
using the same data but shuffling the image labels. Thus, ac-
curacy was defined as the mean of all cross-validation cycles
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Figure 2. Effects of cooling on firing rate and classification accuracy. a, Top, Data from one cooling session (Monkey R, day 1). The evoked spike rates from 41 visually responsive PIT sites (rows)
recorded concurrently before, during, and after cooling of V4 and V2�3. Each column represents one image presentation. Solid lines indicate the onset of each cooling condition. Broken lines indicate
the onset of the rewarming periods. Bottom, Mean firing rate across each temperature condition. b, Top, Average firing rate activity (z scored) for all channels during each temperature condition.
Bottom, Median classification accuracy for all images during each temperature condition. c, Mean accuracy for each image before and during cooling (baseline-corrected; magenta represents control,
green represents V4 cooling, blue represents V2�3 cooling). The x-axis indicates all 293 images listed within their category.

Table 1. Firing rate changes during cooling of areas V2, V3, and/or V4a

All channels

Warm (spikes/s) 	V4 	V2�3 	V2�3�4

Baseline Evoked Baseline Evoked Baseline Evoked Baseline Evoked

All channels
Monkey R 79 � 4 97 � 5 76 � 4 89 � 4 78 � 4 91 � 4 — —
Monkey G 118 � 2 140 � 3 104 � 2 119 � 2 106 � 2 120 � 3 107 � 2 121 � 2

Visually driven channels
Monkey R 81 � 5 110 � 6 78 � 5 98 � 6 80 � 5 101 � 6 — —
Monkey G 121 � 4 168 � 5 103 � 3 136 � 4 105 � 4 137 � 5 109 � 3 144 � 3

aBaseline period � 0 –50 ms after image onset; evoked period � 51–151 ms.
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using the correct labels minus the mean of cross-validation
cycles using the shuffled labels, so a baseline-subtracted accu-
racy score of 0.5 should be close to perfect accuracy.

The decoding analysis showed that faces elicited the highest
classification accuracy in both animals, which was noteworthy
because we did not preselect the array implantation sites by func-
tional response (i.e., proximity to fMRI face patches; of note,
SVMs did not show that this subset of faces was more easily
classified at the pixel level relative to other categories). Before
cooling, SVMs showed a median accuracy value of 0.24 � 0.01
and 0.27 � 0.01 above baseline (Monkeys R and G, SE of the
median). During V4 deactivation, median accuracy dropped to
0.16 � 0.01 in both animals; during V2�3 deactivation, median
accuracy dropped to 0.19 � 0.01 and 0.20 � 0.01. These median
accuracy values were statistically different at the group level (p �
10	11, one-way Kruskal–Wallis ANOVA comparing median ac-
curacy values obtained during control, V4 and V2�3 cooling, one
test applied to each monkey). The differences in median values
between V4 and V2�3 cooling were also statistically reliable in
both animals (p � 2 � 10	4, Wilcoxon sign rank test, comparing
median accuracy values during V4 and V2�3 cooling, one test
applied per monkey; Fig. 2b, bottom, c). We also estimated how
many individual images led to classification values that were not
statistically likely to occur (p � 0.05) given the shuffled accuracy
values (i.e., null probability values), using binomial tests (see
Materials and Methods). During the control condition, classifiers
led to statistically reliable classification scores for 280 of 293 im-
ages (96%, Monkey R) and 293 of 293 (100%, Monkey G). Dur-
ing V4 cooling, the number of images with reliable scores were
246 of 293 (84%) and 248 of 293 (85%), and during V2�3 cooling,
273 of 293 (94%) and 279 of 293 (95%). In summary, while
populations of PIT multiunits showed inconsistent overall mean
firing rate reductions during V2�3 or V4 deactivation (see previ-
ous section), in both monkeys, SVM-based encoding accuracy
was reduced more by V4 deactivation. We repeated the previous
section’s firing rate comparisons using their z scored transforma-
tions because SVMs were trained and tested using z scores and we
wanted to make sure that this transformation did not cause any
discrepancies. We found that the z scored firing rates had the
same pattern as the raw firing rates (reductions in mean z score:
warm 	V4: Monkey R, 0.13, Monkey G, 0.15, warm 	V2�3:
Monkey R, 0.11; Monkey G, 0.16, probability that all median z
score values arose from the same distribution p � 10	3, Kruskal–
Wallis ANOVA, temperature conditions as groups). Thus, we
conclude that V4-based inputs are more important for image
identification and categorization compared with the V2�3 inputs;
further, this difference is best detected using pattern analysis.

Categorization of images in PIT activity space during
input cooling
To estimate the image-by-image similarity of our visual images in
neural activity space before and during cooling, we computed the

pairwise distance of the PIT population response vectors at each
temperature condition. This approach has previously revealed
intriguing structure in AIT activity space, with clusters of image-
response vectors belonging to different categories (e.g., faces or
body parts) occupying different parts of activity space (Kiani et
al., 2007; Baldassi et al., 2013). We wanted to define the structure
of PIT activity space given our image set, and then to determine
how input deactivation changed this structure. First, we visual-
ized this neural activity space by projecting the multidimensional
population vectors (warm condition) into two dimensions via
nonmetric multidimensional scaling. We found that this map-
ping did not reveal segregated clusters as previously observed in
AIT, but instead showed a spectrum with faces and line drawings
at maximum separation (Fig. 3a). During cooling of either V4
and V2�3, the perimeter of this spectrum shrank, but the inter-
ventions did not change its gross organization (line shapes re-
mained in one side, faces in the other). To quantify this
observation, we asked how individual images changed position
during cooling of V4 or V2�3 using K-means (in the original
multidimensional space). In this K-means analysis, we first chose
a number of multiple centroids to divide the spectrum into ter-
ritories during control conditions (leaving the algorithm to locate
the most efficient locations of these centroids; Fig. 3b). Then we
kept track of images as they migrated from territory to territory
during cooling (Fig. 3c) in the following manner: for each pass,
we ran K-means on the control data first and saved the centroids.
We then ran K-means on the cooling data, inputting the warm-
condition centroids, and counted how many images changed la-
bels during cooling. Because K-means is stochastic, we ran each
analysis 100 times, postulating 2–15 different centroids per pass
(thus we ran 100 iterations per centroid number, or 1400 total
passes). We found that the fraction of individual images that
changed territory varied with the number of centroids: not sur-
prisingly, the more centroids used, the smaller the territory
claimed by that centroid, and thus the more likely that an image
would change label. For example, considering Monkey R, when
its PIT activity space was divided into four clusters, 31 � 4% of
images changed membership during V4 cooling and 24 � 6%
during V2�3 cooling (mean � SEM). With eight clusters, 60 � 6%
of images changed cluster membership during V4 cooling and
52 � 5% during V2�3 cooling. In both monkeys, we found that V4
cooling consistently induced more images to change territories
compared with V2�3 cooling (Fig. 3d). To determine whether the
percentage difference between the 	V4 and 	V2�3 conditions
was likely to arise from the same underlying distribution, we used
a randomization test; for each of the 100 K-means passes, we
shuffled all 	V4 and 	V2�3 cooling response vectors twice, ran
the K-means analysis above, and subtracted the percentage value
of one shuffled vector distribution from the percentage value of
the second shuffled vector distribution. We considered the dif-
ference between the observed 	V4 minus 	V2�3 percentages to
be statistically reliable if this experimentally observed difference
was �95% than the values from the shuffled distribution. We
found that the great majority of V4 percentage values were statis-
tically larger than the 	V2�3 values in both animals, confirming
our observation that V4 cooling was more likely than V2�3
cooling to change the positions of individual images in activity
space, and thus their potential category membership.

To probe the efficiency of category encoding by PIT neurons
during V4 and V2�3 deactivation, we also trained SVMs to classify
between pairs of categories. Each category was defined a priori
and comprised between 2 and 118 unique images of faces and
other complex objects, line shapes, or scrambled textures (me-

Table 2. Latency valuesa

Warm 	V4 	V2/V3

Response latency (ms)
Monkey R 55.1 � 0.9 55.0 � 1.0 57.6 � 1.1
Monkey G 56.7 � 1.1 60.4 � 1.8 57.8 � 1.7

Tuning latency (ms)
Monkey R 119.1 � 2.4 129.0 � 2.4 129.3 � 2.3
Monkey G 111.5 � 2.6 110.7 � 2.6 118.0 � 2.7

aResponse and tuning latency values measure before cooling, during V4 cooling, and during V2�3 cooling.
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dian � 16; see Materials and Methods).
SVMs were trained and tested using five-
fold cross-validation, and chance perfor-
mance was defined using label shuffling.
We found that, before cooling, SVMs
showed a median (baseline-corrected) ac-
curacy of 0.18 � 0.02 and 0.20 � 0.01
(�SE, Monkeys R and G); during V4
cooling, 0.15 � 0.01 and 0.14 � 0.02, and
during V2�3 cooling, 0.16 � 0.01 and
0.18 � 0.01; Fig. 3e). We tested the hy-
pothesis that V4 deactivation led to a
deeper reduction in category classification
accuracy compared with V2�3 cooling,
and found that this reduction was statisti-
cally reliable in both animals (p � 1.9 �
10	3 and 2.7 � 10	2, Wilcoxon signed
rank test, N � 30 scores per temperature
condition). We conclude that PIT neu-
rons are less efficient at categorization
during V4 cooling compared with V2�3
cooling.

Cooling effects as trajectories in neural
state space
Cooling V4 reduced decoding accuracy in
PIT more than cooling V2�3 even though
overall firing rate reductions were not
consistently lower during V4 versus V2/3
cooling across monkeys. We therefore ex-
plored neural state trajectories in multi-
variate activity space to clarify the larger
effect of V4 cooling on decoding accuracy.
The activity space comprised the concur-
rent activity of all N PIT sites (where N �
100 –300 sites depending on the monkey
pseudopopulation; see Materials and
Methods). We can visualize the neuronal
representation of an image as a coordinate
point in this multidimensional coordinate
space (DiCarlo and Cox, 2007; Rust and DiCarlo, 2010). Differ-
ent mean vectors in the space represent different images. Excit-
atory drive was decreased during input cooling, which should
reduce the length of all vectors, moving them toward a minimum
response vector v�min. This v�min would be the zero vector if each
unit’s output was defined as raw spike counts, but because we are
using z scored, baseline-subtracted spike rates, the actual v�min

must be defined using each unit’s lowest z score value. The dif-
ference in the control versus cooling coordinates for a given im-
age i describes a cooling trajectory t�i

cooling � v�i
warm � v�i

cooling. If the
main effect of cooling was to randomly remove spikes from the
population, this cooling trajectory should be parallel to the min-
imum response vector v�min. If the main effect of cooling was to
alter the representational identity of each image, then the cooling
vector should be more perpendicular (or at least nonparallel) to
v�min. We therefore measured the parallel and perpendicular
components of each image’s V4 and V2�3 cooling trajectory
vectors as t�i

	V4 � t�i,�
	V4 � t�i,�

	V4 and t�i
	V2/3 � t�i,�

	V2/3 � t�i,�
	V2/3 for

each image i (Fig. 4a). We found that the perpendicular com-
ponent of trajectory vector was usually larger than the parallel
component. The mean parallel component of the cooling vec-
tor behaved like the population firing rate changes: for Mon-

key R, the mean parallel component was larger during V4
deactivation compared with V2�3 deactivation; for Monkey G,
the parallel components of both deactivations were approxi-
mately the same (Monkey R, norm of parallel component:
	V4: 2.2 � 0.05, 	V2�3: 1.9 � 0.05 � p � 4.9 � 10 	8 per
Wilcoxon sign rank test; Monkey G, 	V4: 2.3 � 0.05, 	V2�3:
2.2 � 0.04, p � 0.01; Fig. 4b). In contrast, for both monkeys,
the mean perpendicular component of the V4 deactivation
was consistently larger than that of the V2�3 deactivation
(Monkey R, norm of perpendicular vector component: 	V4:
9.4 � 0.07, 	V2�3: 9.2 � 0.08, p � 3.9 � 10 	8 per Wilcoxon
sign rank; Monkey G, 	V4: 9.5 � 0.03, 	V2�3: 9.2 � 0.05, p �
1.5 � 10 	14). This showed that V4 deactivation redirected
image representations to further locations in the activity space
than V2�3 deactivation. Like multivariate linear classifiers, this
projection technique was more reliable in highlighting differ-
ences between V4 and V2�3 cooling than simply comparing
mean population responses across individuals.

Cooling reduced selectivity of individual PIT sites
Cooling inputs to PIT reduced classification accuracy at the pop-
ulation level. To examine accuracy at the level of individual sites,
we measured selectivity using an F test. Let us say that PIT sites
were selective to specific images if the mean variance of their spike
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noted by v�i
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minimum response vector v�min. Blue line indicates the trajectory vector t�i
cool between v�i

warm and the mean cooling response
v�i

cool. Orange and purple lines indicate the parallel (t�i,�
cool) and perpendicular (t�i,�

cool) components, respectively, of the cooling
trajectory vector. b, Mean parallel and perpendicular components of the cooling trajectory vectors for each deactivation condition
and monkey. Solid lines indicate Monkey R, dashed lines, Monkey G. c, Scatterplots of F statistics (green represents warm vs 	V4;
blue represents warm vs	V2�3). Each point indicates the paired F ratios for a given site, measured before and during cooling. Solid
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difference.
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counts to different images was greater than the mean variance of
their spike counts to each image; this can be estimated using the F
statistic. The F statistic is the ratio of between-group variance
divided by within-group variance, where the value 1 suggests no
selectivity; the greater the value, the more selectivity. We called
the F test statistic per channel before cooling Fcontrol, during V4
cooling F-V4 and during V2�3 cooling, F-V2�3. If the distributions
of F-V4 and F-V2�3 are closer to the nonselectivity value of 1 com-
pared with the Fcontrol distribution, this would suggest that PIT
sites become less selective during cooling.

Each PIT site led to one Fcontrol, one F-V4, and one F-V2�3 value.
We plotted each control F value against its counterparts and
found that cooling F statistics were lower than the warm distri-
bution (Fig. 4c; Monkey R, median F � SE, Warm: 1.13 � 0.03,
	V4: 1.10 � 0.01, 	V2�3: 1.14 � 0.02; Monkey G, Warm: 1.21 �
0.05, 	V4: 1.13 � 0.02, 	V2�3: 1.14 � 0.02), although there was
no statistical difference between the medians of the warm, 	V4
and 	V2�3 temperature groups (p � 0.20 for both monkeys,
one-way Kruskal–Wallis test, comparing all temperature condi-
tions). However, many of the PIT sites were not that selective to
start with, having precooling F statistics already bottomed out at
1. We noticed that units with higher precooling F values showed
greater changes during cooling (Fig. 4c). To quantify this obser-
vation, we asked whether the slope describing the relationship
between the precooling and cooling F values was statistically dif-
ferent from unity. We used a bootstrap approach. For 1000 iter-
ations, we resampled sites with replacement and used their
Fcontrol, F-V4, and F-V2�3 values to fit linear regression lines be-
tween control and 	V4 values, and then between control and
	V2�3 values. This analysis resulted in 1000 slopes describing the
Fcontrol and F-V4 relationship, and another 1000 slopes describing
the Fcontrol and F-V2�3 relationship. None of these slope values
overlapped the line of unity (Monkey R, mean slope � SEM,
control vs 	V4: 0.64 � 0.03, control vs 	V2�3: 0.82 � 0.04;
Monkey G, control vs 	V4: 0.53 � 0.04, control vs 	V2�3:
0.59 � 0.03). We also noticed that the mean Fcontrol/Fcooling slope
was shallower during V4 cooling than V2�3 cooling in both ani-
mals. This suggested that PIT multiunits become less selective
during V4 cooling than during V2�3 cooling. To determine
whether the slope between the warm 	V4 conditions was lower
than that of the warm 	V2�3 condition, we used a randomization
test where we shuffled the V4 and V2�3 F values. The null hypoth-
esis is that the mean V4 and V2�3 slopes came from the same
distribution, so we created this null distribution as follows: in
each of 999 passes, we randomly mixed the labels between the V4
and V2�3 F statistics for each channel and computed an Fcooling/
Fcontrol slope. We did that twice per pass, and then subtracted the
two slopes. After all passes, we had 999 slope differences (not
including the experimentally observed difference) that we then
compared with the experimental slope difference. We found that
these null difference distributions were defined by 5th and 95th
percentile values of 	0.07 to 0.07 (Monkey R) and 	0.05 to 0.05
(Monkey G). The observed differences in mean cooling slopes
were 	0.18 and 	0.06 (Monkeys R and G). The probability that
the experimental differences in V4 and V2�3 slopes came from
such mixed distributions was 0.001 and 0.02, respectively.

We further asked whether there was any relationship between
the retinotopic location of a PIT receptive field relative to the
cooling scotomas, and its subsequent change in selectivity (F sta-
tistic). The images were presented at the intersection of the
population-wide V4 and V2�3 scotomas. Therefore, some indi-
vidual multiunit PIT receptive fields (RFs) would by chance “see”
more of the stimulus than other PIT RFs. For each PIT site, we

measured the fraction of its RF that overlapped the stimulus lo-
cation/scotoma, and correlated this value against the subsequent
change in selectivity (change in F statistic). The RF overlap mea-
sure was computed using data from different recording days (see
first section of Results). For each site its RF overlap was defined as
the average number of spikes emitted in response to stimuli pre-
sented in the stimulus/scotoma overlap region, divided by the
total number of spikes emitted in the central 8 � 8°. The mean RF
overlap value was 0.12 � 0.01 and 0.15 � 0.01 (Monkeys R and
G). There was a small but statistically reliable correlation of RF
overlap with selectivity change (selectivity change was defined as
Fcontrol 	 Fcooling): during V4 cooling, the Pearson correlation co-
efficient was 0.19 and 0.32 (p � 1.2 � 10	3 and 1.3 � 10	7,
Monkeys R and G). During V2�3 cooling, the correlation coeffi-
cient was 0.11 and 0.26 (p � 0.06 and 2.3 � 10	5). The stimuli
were placed in the same overlapping region between both 	V4
and 	V2�3 scotomas, so the lower correlation values for V2�3
were not due to differences in scotoma overlap; rather, it was
because the selectivity change is less pronounced for V2�3 cooling
(if there was no selectivity change, the correlation would be zero).
We conclude that PIT multiunits lost selectivity across images as
a function of RF location.

In summary, individual PIT multiunits became less selective
during V4 and V2�3 cooling, as determined by a variance test.
This loss of tuning was more pronounced during V4 cooling than
V2�3 cooling and was a function of distance from the scotoma.
Both the population decoding accuracy change and the projec-
tion analysis results similarly indicate that V4-based inputs are
more important for overall image coding than V2�3-based inputs.

Loss of decoding accuracy simulated by perturbing
control vectors
We wanted to explore how losses in decoding accuracy could
result from random reductions in the magnitude and direction of
population firing rate vectors. This would illustrate the range of
potential decoding accuracy losses that could be incurred by
(1) reducing each unit’s excitatory drive without changing their
tuning, (2) changing their tuning without reducing response
magnitude, and (3) both mechanisms acting at once. To do this
simulation, we transformed the experimentally measured warm-
condition population rate vectors into “cooling” vectors by mul-
tiplying their norms by decreasing fractions (simulating lower
firing rates) and/or by adding increasingly larger angular rota-
tions in activity space (to simulate representational changes). Af-
ter these transformations, these simulation-cooling response
vectors were put through the same linear decoding algorithms as
above (SVMs), creating a decoding accuracy map as a function of
gain and angular change. To simulate changes in excitatory drive,
for each simulation, we created nine normal distributions of gain
changes with means of 0.1 to 1 (in steps of 0.1) and a SD of 0.025,
then multiplied each warm population response vector by ran-
domly sampled gain values from a given normal distribution.
Within that same simulation, we simulated representational
changes by rotating each vector in along different planes through
angles between 3° and 56° in the original multidimensional activ-
ity space. Because most multidimensional neuronal activity really
stays within lower-dimensional hyperplanes, we wanted to make
sure that our artificial rotations stayed close to those hyperplanes.
Thus, we rotated each vector along directions observed during
normal fluctuations within the warm condition: first, we com-
puted the vector trajectories shown by individual population vec-
tors relative to the grand mean (Fig. 5ai); we then computed the
parallel components of those trajectories to the minimum re-
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sponse vector, which is in the direction of simple gain changes.
We used the perpendicular components of trajectories as direc-
tions for rotation (Fig. 5aii,aiii), multiplying each perpendicular
components by scalar values to control the magnitude of rota-
tion. These modified trajectory vectors were randomly added to
the warm-condition population vectors, and matched in vector
norm, resulting in “cooling-condition” vectors that stayed closely
to the hyperplanes. After performing 81 simulations (9 mean gain
values � 9 rotation values), we found that this approach could
successfully reduce SVM decoding accuracy from warm-condition val-
ues (0.24 � 0.01 and 0.27 � 0.01, Monkeys R and G) down to
shuffled-label baseline (difference in decoding accuracy relative
to shuffled baseline of 	0.0015). We noticed that decoding accu-
racy was resilient to changes in gain: reducing the norm of all
spike rate vectors to values as low as 10% of the original norm
only lowered decoding accuracy from 23% and 26% to 18% and
21% (Monkeys R and G). This is in contrast to angular changes,
which lowered accuracy down to 0% with 56° rotations. For this
reason, when we mapped the experimental-cooling decoding ac-
curacy values onto this simulation-cooling map, we found that
V4 cooling values consistently required larger rotation values
than V2�3 values but were not drastically different along the gain
gradient: to achieve V4 cooling decoding accuracy, the model

gain values required were 0.9 and 0.8 (Monkeys R and G) and the
angular change was 25.6° (Monkeys R and G). In contrast,
achieving the observed V2�3 cooling decoding accuracy required
0.8 gain changes (Monkeys R and G) and only 0.4° and 12.8° of
angular changes (Monkeys R and G). Thus, this simulation sug-
gested that affecting decoding accuracy in PIT was primarily a
function of perturbing tuning representational mechanisms, not
simple reductions in excitatory drive, and that V4 deactivation
induced more representational changes than V2�3 deactivation.

Cooling did not reveal shape-specific deficits
PIT input deactivation led to a reduction in image classification
accuracy both at the population level and also at the individual
multiunit level. We wanted to determine whether there were any
features of the images that predicted the consequent loss in
decoding accuracy during cooling, and we used a series of
regression analyses to explore this issue. We came up with a
comprehensive list of 87 different quantitative and categorical
descriptions for each of our 293 images, such that each image was
described by values corresponding to their luminance, contrast,
horizontal and vertical orientation content, curvature, and cate-
gorical membership (e.g., “faces,” “body parts,” “tristars”). To
include implicit features within our image set, so we also applied
principal component analysis to the image set and to their dis-
crete Fourier transforms, deriving 50 spatial principal compo-
nents derived from the raw images (amounting to 90% of image
variance) and 30 principal components from the images’ Fourier
transforms (amounting to 80% of discrete Fourier transform
variance). In addition to those 85 descriptors, we added two ad-
ditional predictors: the mean population rate evoked per image
(before cooling), and the mean decoding accuracy achieved per
image (also before cooling). These 87 descriptors were used as
regression variables in a general linear model where the dependent
variable was the change in decoding accuracy per image: we fit three
linear models of the form �accuracyi

condA�condB � w0 � xi
lum 

w1 � xi
contrast � … � w6 � xi

prin.comp.1 � … � w86 � xi
firing rate,warm 

w87 � xi
accuracy,warm, where i � index of image ranging from 1 to

293, and the dependent variable �accuracyi
condA�condB could represent

�accuracyi
warm�V4 � accuracyi

warm � accuracyi
	V4, �accuracyi

warm�V2�3 �
accuracyi

warm � accuracyi
	V2�3 or �accuracyi

(warm�V4)�(warm�V2�3) �
�accuracyi

warm�V4 � �accuracyi
warm�V2�3. We found that the only

consistent predictor of V4- or V2�3-cooling accuracy loss was the
magnitude of classification accuracy before deactivation: the
larger the classification accuracy for each image before deactiva-
tion, the larger the subsequent reduction in accuracy. We identi-
fied this predictor using two methods: (1) in the main linear
regression analysis of each monkey, we saw that this variable had
the highest t statistic (8.6 – 8.7); and (2) we also used regularized
linear regression (see Materials and Methods). To ensure that this
was not simple regression to the mean, we also divided our con-
trol trials such that the control classification tuning curve used for
regression was not the same as the control classification tuning
curve used to calculate the cooling difference in classification
accuracy (the estimated correlation between these cross-
validated datasets were 0.33– 0.45 for Monkeys R and G, p �
10	8, Student’s t test). During V4 cooling, the percentage of vari-
ation explained by each model was 45%–55% (R 2 � 0.45 and
0.55, Monkeys R and G, p � 4 � 10	6 and p � 1.74 � 10	7);
during V2 cooling, the R 2 values were 0.48 and 0.56 (p � 1 �
10	7 and 3 � 10	8). In contrast, when trying to account for
differences in decoding accuracy between V4 and V2�3 cooling
(�accuracyi

(warm�V4)�(warm�V2�3)), the model was a poor fit, as no
linear combination of the image features above could account for
�29% of the variation (p � 0.91).
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In summary, we found that before-cooling decoding accuracy
was the strongest predictor of the loss of decoding accuracy. None
of our 87 features showed a statistical dependence with the dif-
ference in 	V4 and 	V2�3 accuracy loss, suggesting that a yet-
undiscovered image property is differentially represented among
the pathways, or that image feature encoding does not differ be-
tween them. This latter interpretation is consistent with the usual
implementations of the standard model of visual recognition,
which do not handcraft any special shape selectivity roles among
bypass pathways (Serre et al., 2005). To explore the theoretical
implications of encoding impairment in PIT during input de-
activation, we then turned to this standard model of visual
recognition.

Cooling parallels in the standard model of visual recognition
The most decisive way to define the advantages of concurrent,
parallel pathways would be to trace the input history to every PIT
neuron from V1 through V2, V3, or V4. This is not yet technically
feasible. Thus, we pursued this option in a computational model,
specifically the standard model of visual recognition (Serre et al.,
2007b). Our goal was to isolate subpopulations of simulated
“PIT” units in a network with concurrent pathways and to com-
pare the subpopulations’ ability to encode for individual objects.
We hoped that, by comparing model PIT units that skipped input
from different layers (the analogs of V2 or V4), we would com-
plement our experimental observations during cooling of differ-
ent input regions to PIT. We designed the model so that its top
layer would have a similar number of units as our microelectrode
arrays (58 units). As a brief summary of our results, when tested
with our experimental image set, the models showed that parallel
pathways to simulated “PIT” units delivered comparably useful
information for image classification, and that eliminating up to
45% (32 of 58) of active units in “PIT” resulted in 5%– 6% reduc-
tions in decoding accuracy, compared with 5%– 8% reductions in
the PIT data. We conclude that parallel pathways transmit
equally useful information for object decoding both in convolu-
tional network models and in the brain.

The standard model is a hierarchical, feedforward-only model
inspired by the visual system (Hubel and Wiesel, 1962; Fuku-
shima, 1975). This model comprised multiple layers (areas), each
with many filters (RFs) of different sizes. Each layer performed
three serial operations: a convolutional tuning operation, a pool-
ing (invariance) operation, and normalization of output re-
sponses. At the highest layer of the model, there emerged a sparse
population of units, whose activations encoded an abstract rep-
resentation of the original pixel-space image. This vector was
used in a final classification step (via SVM) to measure the accu-
racy of representation of the original image versus every other
image. As in the published 2007 model, our first layer consisted of
gabors and subsequent layer filter weights were trained on images
from a separate custom set (Serre et al., 2007b). Our version of
this model included three alternative pathways that could pro-
vide input to each PIT unit: one long four-layer pathway and two
short three-layer pathways. The long pathway represented V1 ¡
V2 ¡ V4 ¡ PIT; the first bypass pathway skipped V2 (V1 ¡
V4¡PIT), and a second bypass pathway skipped V4 (V1¡V2�3
¡ PIT; Fig. 6a). We asked how PIT units at the endpoint of each
parallel pathway differed in their representation of the same vi-
sual image. Each layer had 200 filters of different sizes. In the first
layer, filter sizes were 0.1°– 0.4° in width (in our experimental
setup, 1° � 26 pixels) and doubled at each layer, but for the
bypass pathways, RF size quadrupled at the bypass layer. This
ensured that V4 filters were the same size, regardless of their

inputs arising from V1 or V2. In the electrophysiology experi-
ments, we presented each image multiple times and obtained a
distribution of correlated but nonidentical response vectors. In
contrast, the model is not stochastic; and so to induce variability
across presentations of the same image, we created six variations
of each of the 293 images by simulating fixational eye movements
(see Materials and Methods). We processed all 293 � 6 images
through the model and used SVMs to measure the classification
accuracy in the model PIT units for each image in a one-versus-
one approach, with leave-one-out cross-validation and shuffled-
label control. Similar to the number of sites sampled by our
microelectrode arrays, there were 58 units total at the final layer:
4 long-pathway units, 25 V1 ¡ V4 ¡ PIT units, 25 V2 ¡ PIT
units, and 4 units that received mixed inputs from long and short
pathways.

We found that SVMs performed best at classifying each image
when using all long- and short-pathway units (N � 58); SVMs
achieved 46 � 1% accuracy after baseline subtraction (mean of
six models � SEM). SVMs performed worse when relying only
on short-pathway units: PIT units without input from the third
layer (“V4”) led to an SVM performance of 41 � 1%, and PIT
units without input from the second layer (“V2”) led to 40 � 1%.
Thus, reducing the activity of the output layer by 43% (32 of 58)
of all units worsened SVM performance by 5%– 6%. As compar-
ison, SVMs trained on monkey PIT data showed an average ac-
curacy of 26 � 2% (over baseline) before cooling, 18 � 1%
during V4 cooling, and 21 � 1% during V2�3 cooling, thus re-
ducing the performance of SVMs by 5%– 8% (Fig. 6b,c). In sum-
mary, we found two common effects across the brain and the
models: first, removing activity in PIT (achieved via input cool-
ing) reduced SVM accuracy by an amount comparable with re-
moving activity in the output layer of a HMAX model (achieved
by querying smaller populations). Second, simulated PIT sub-
populations that lacked second-layer (“V2”) input versus third-
layer (“V4”) input performed comparably, allowing SVMs to
achieve similar classification accuracy. This is consistent with our
observation that there were no shape-specific deficits to V2�3
versus V4 cooling. We had also found that cooling V4 led to
deeper reductions in classification accuracy in PIT, and the mod-
els did not show this reliably. This is consistent with our interpre-
tation that the biological relevance of V4 to shape-encoding in
PIT depends on its numerous anatomical projections, which we
did not model here.

Discussion
There have been almost no studies describing the effects of early
extrastriate area deactivation on shape encoding on IT neurons.
We investigated how posterior inferotemporal cortex cells com-
bine information from areas V2, V3, and V4 by implanting mi-
croelectrode arrays in PIT while cooling areas V2 and V3
(together) or area V4. We used linear classifiers to decode the
information contained in PIT before and during cooling of each
input area and found that cooling any of these areas resulted in a
similar reduction in firing rate activity across PIT, but that cool-
ing V4 led to a deeper reduction in SVM classification accuracy in
both animals. This suggests that the strength of the connections
predicted by anatomical projection maps was best reflected in the
pattern of responses, not in the magnitude of the population
firing rate. We also modified an HMAX model by adding differ-
ent bypass projections and a similar number of units at the top
layer as our arrays, and found that this model architecture was
very robust to “lesions,” in a range comparable with that ob-
served during cooling of PIT inputs. We also found that simu-
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lated “PIT” cells with different input histories (skipping either V2
or V4) were very similar at encoding image identity.

Validity of cooling manipulations
We used sulcal landmarks to position the cryoloops: one loop was
placed over the lateral prelunate gyrus and others within the lu-
nate sulcus. We have treated these landmarks as being equivalent
to areas V4, V2, and V3. This assumption is strong because there
is no variation in the location of these visual areas relative to these
anatomical landmarks, as documented through decades of elec-
trophysiology and imaging articles (Essen and Zeki, 1978; Gattass
et al., 1981, 1988; Kennedy and Bullier, 1985; Boussaoud et al.,
1991; Distler et al., 1993; Nakamura et al., 1993; Levitt et al., 1994;
Gegenfurtner et al., 1997; Brewer et al., 2002; Fize et al., 2003;
Ungerleider et al., 2008). We have also defined the spatiotempo-
ral cooling properties of our cryoloops. These devices can reliably
cool cortical tissue up to �3 mm away from the metal tubing
within minutes, and our intraoperative imaging is consistent
with previous descriptions of more detailed thermocline infor-
mation (Lomber et al., 1999, 2010; Lomber, 1999). Finally, our
placement of the microelectrode arrays led to results consistent
with previous descriptions of the retinotopic organization of PIT:
Boussaoud et al. (1991) showed that the posterior border of PIT

lies at the anterior lip of the inferior temporal sulcus and its
anterior border at the posterior middle temporal sulcus. PIT runs
as a band of cortex anterior to V4, sharing posterior-anterior
isoeccentricity bands with V2, V3, and V4. In contrast to eccen-
tricity, polar angle is poorly organized in PIT, such that the most
reliable distinction in PIT is between superior and inferior visual
fields (neurons with superior field RFs are located adjacent to V4,
neurons with inferior RFs closer to AIT). Nearly all fields at the
foveal and perifoveal representations of PIT are large enough to
cross the horizontal meridian (Boussaoud et al., 1991; Yasuda et
al., 2010). Our results confirm these observations. We placed our
arrays at the convexity of the inferior temporal gyrus, anterior to
the inferior temporal sulcus, and we observed that the aggregate
RFs were located superiorly, biased toward the fovea, and extend-
ing into the lower hemifield. The effects of V2�3 and V4 deactiva-
tion manifested in the lower hemifield portion of the recorded
RFs, as predicted by the retinotopy of V2, V3, and V4 (Gattass et
al., 1981, 1988).

Why did input cooling not silence PIT activity entirely?
One might expect that disrupting the V1-V2�3-V4 input pathway
would extinguish nearly all activity within the PIT scotoma. In-
deed, the mean population firing rate fell by 38% when deacti-
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vating V2, V3, and V4. First, we did not cool all of V2, V3, or V4,
the scotomas covered only a few degrees of central vision. Second,
PIT receives inputs from at least 60 cortical regions, including
V3A, V4t, 7A, 7B, LIP, DP, MT, MST, FST, anterior IT, insula,
and prefrontal areas 9/46 (Distler et al., 1993; Markov et al.,
2014), as well as subcortical structures, such as the pulvinar
(Chow, 1950; Gross et al., 1974; Baizer et al., 1993). Markov et al.
(2014) injected a retrograde marker in PIT and estimated the
weight of each input source to PIT as the number of cell bodies
stained in that input area, and they found that these numbers
could be as few as a handful of neurons (e.g., seven cells in the
insular pathway, or 0.004% of all PIT-projecting neurons) and as
many as tens of thousands (39,000 in V4, or 26% of all projecting
neurons). Per these results, the projection weight of area V2 is 2%
(3782 cells), the weight of V3 is 12% (19,116 cells), and the weight
of V4 is 26% (39,911 cells), for a total of 40% of all inputs to PIT.
This is similar to the overall reduction in firing rate we observed
(38% during V2/V3/V4 cooling). In the context of these many
alternative inputs, we thus believe it may be practically impossi-
ble to silence PIT without radical interventions, such as bilateral
V1 resection, silencing of lateral connections, and feedback. This
is one possible reason why, in a different study, anterior IT cells
showed no significant changes in overall firing rate after surgical
resection of areas V4 and PIT (Buffalo et al., 2005).

Did we miss any classes of shape features that might be
differentially represented between the V1-V4-PIT and V2-PIT
input paths?
Although possible, there are no strong theoretical candidates for
such features. Hegde and Van Essen (2007) compared the relative
shape selectivities in neurons from V1, V2, and V4 and showed
that these cells responded similarly to the same set of simplex and
complex images, offering little qualitative diversity (Hegdé and
Van Essen, 2007). Of course, one important difference between
these visual areas is RF size, which suggests that these concurrent
pathways may convey the same types of geometric primitives but
at different scales: individual V4 cell inputs could carry informa-
tion about spatially larger fragments than V2 cell inputs. We tried
to measure changes in size tuning during each cooling condition
in one monkey, but the relatively small size of our scotoma did
not allow a sufficient experimental variation in stimulus size and
position. Investigators have proposed other theoretical roles for
these shortened pathways: the coarse, low-pass, fast transmission
of color (Yukie and Iwai, 1985; Nakamura et al., 1993) and form
(Nakamura et al., 1993; Serre et al., 2005); insurance against brain
damage (Distler et al., 1993; Nakamura et al., 1993); and utility in
fine recognition tasks (Serre et al., 2005). We found no evidence
that lower spatial frequency information was differentially im-
paired during input deactivation, nor did we find that response
latencies were reduced, as might be expected if information ar-
riving from the shorter pathways got to PIT faster.

Another question raised by the cooling deactivations is that
areas V2, V3, and V4 are themselves tightly interconnected, and
thus removing either of these nodes nulled the primary input
stream (V1 ¡ V2 ¡ V4 ¡ PIT) and could have consequently
induced the same effect. Of course, this is part of the logic of the
experiment, which was to expose differences in the contributions
of the smaller bypass pathways by removing the main pathway as
a constant: cooling V2 would expose the known V1 ¡ V4 ¡ PIT
anatomical inputs (Kuypers et al., 1965; Yukie and Iwai, 1985;
Nakamura et al., 1993; Ungerleider et al., 2008) while cooling V4,
the anatomical V1 ¡ V2 ¡ PIT inputs (Distler et al., 1993). Our
results do show a significant effect overlap between both V2�3 and

V4 cooling interventions, best exemplified by the reductions in
overall firing rate in PIT. However, other analyses exposed partial
differences in the input pathways, such as the fact that the V4-
based inputs were more helpful in classification accuracy than
V2�3-based inputs. Our multivariate analyses suggested that the
effects of overall input magnitude are separable from the effects
of shape-encoding mechanisms in PIT. It is important to make
this distinction in future lesion studies and to use multivariate
pattern analyses.

Finally, we found it interesting that the loss in decoding per-
formance of the HMAX model under “impaired” versus “intact”
conditions compared well with our data. Deep convolutional
networks are becoming the best explanatory framework for stud-
ies of visual recognition, a framework that grows more diverse
with the addition of residual networks (“ResNets”), which use
shortcut connections that skip one or more layers (He et al.,
2015). ResNets are intriguing because their shortcut connections
are biologically relevant, allow the networks to be very deep yet
trainable, and provide resilience to “lesions,” a feature consistent
with results in this study (He et al., 2016; Veit et al., 2016). How-
ever, it is difficult to say that current ResNets are the best models
for the visual system, as the best performing versions are very
deep (100–1000 layers) compared with the visual system (�7–8),
AlexNet (8), and HMO models (3) (Krizhevsky et al., 2012;
Yamins et al., 2014), and it is not yet clear whether ResNets can
better account for IT response variance than other models. This is
worthy of further study.

References
Baizer JS, Desimone R, Ungerleider LG (1993) Comparison of subcortical

connections of inferior temporal and posterior parietal cortex in mon-
keys. Vis Neurosci 10:59 –72. CrossRef Medline

Baldassi C, Alemi-Neissi A, Pagan M, Dicarlo JJ, Zecchina R, Zoccolan D
(2013) Shape similarity, better than semantic membership, accounts for
the structure of visual object representations in a population of monkey
inferotemporal neurons. PLoS Comput Biol 9:e1003167. CrossRef
Medline

Boussaoud D, Desimone R, Ungerleider LG (1991) Visual topography of area
TEO in the macaque. J Comp Neurol 306:554–575. CrossRef Medline

Brewer AA, Press WA, Logothetis NK, Wandell BA (2002) Visual areas in
macaque cortex measured using functional magnetic resonance imaging.
J Neurosci 22:10416 –10426. Medline

Buffalo EA, Bertini G, Ungerleider LG, Desimone R (2005) Impaired filter-
ing of distracter stimuli by TE neurons following V4 and TEO lesions in
macaques. Cereb Cortex 15:141–151. CrossRef Medline

Carrasco A, Brown TA, Kok MA, Chabot N, Kral A, Lomber SG (2013)
Influence of core auditory cortical areas on acoustically evoked activity in
contralateral primary auditory cortex. J Neurosci 33:776 –789. CrossRef
Medline

Chow KL (1950) A retrograde cell degeneration study of the cortical projec-
tion field of the pulvinar in the monkey. J Comp Neurol 93:313–340.
CrossRef Medline

Cowey A, Gross CG (1970) Effects of foveal prestriate and inferotemporal
lesions on visual discrimination by rhesus monkeys. Exp Brain Res 11:
128 –144. Medline

Dean P (1976) Effects of inferotemporal lesions on the behavior of mon-
keys. Psychol Bull 83:41–71. CrossRef Medline

Desimone R, Lehky S, Ungerleider L, Mishkin M (1990) Effects of V4 lesions
on visual discrimination performance and on responses of neurons in
inferior temporal cortex. Soc Neurosci Abstr 16:Abstract 260.7.

DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. Trends
Cogn Sci 11:333–341. CrossRef Medline

Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical con-
nections of inferior temporal area TEO in macaque monkeys. J Comp
Neurol 334:125–150. CrossRef Medline

Essen DC, Zeki SM (1978) The topographic organization of rhesus monkey
prestriate cortex. J Physiol 277:193–226. CrossRef Medline

Fize D, Vanduffel W, Nelissen K, Denys K, Chef d’Hotel C, Faugeras O, Orban

Ponce et al. • Multiple Input Pathways to PIT J. Neurosci., May 10, 2017 • 37(19):5019 –5034 • 5033

http://dx.doi.org/10.1017/S0952523800003229
http://www.ncbi.nlm.nih.gov/pubmed/8424928
http://dx.doi.org/10.1371/journal.pcbi.1003167
http://www.ncbi.nlm.nih.gov/pubmed/23950700
http://dx.doi.org/10.1002/cne.903060403
http://www.ncbi.nlm.nih.gov/pubmed/1712794
http://www.ncbi.nlm.nih.gov/pubmed/12451141
http://dx.doi.org/10.1093/cercor/bhh117
http://www.ncbi.nlm.nih.gov/pubmed/15269106
http://dx.doi.org/10.1523/JNEUROSCI.1784-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23303954
http://dx.doi.org/10.1002/cne.900930302
http://www.ncbi.nlm.nih.gov/pubmed/14803566
http://www.ncbi.nlm.nih.gov/pubmed/4990604
http://dx.doi.org/10.1037/0033-2909.83.1.41
http://www.ncbi.nlm.nih.gov/pubmed/828276
http://dx.doi.org/10.1016/j.tics.2007.06.010
http://www.ncbi.nlm.nih.gov/pubmed/17631409
http://dx.doi.org/10.1002/cne.903340111
http://www.ncbi.nlm.nih.gov/pubmed/8408755
http://dx.doi.org/10.1113/jphysiol.1978.sp012269
http://www.ncbi.nlm.nih.gov/pubmed/418173


GA (2003) The retinotopic organization of primate dorsal V4 and sur-
rounding areas: a functional magnetic resonance imaging study in awake
monkeys. J Neurosci 23:7395–7406. Medline

Fukushima K (1975) Cognitron: a self-organizing multilayered neural net-
work. Biol Cybern 20:121–136. CrossRef Medline

Gattass R, Gross CG, Sandell JH (1981) Visual topography of V2 in the
macaque. J Comp Neurol 201:519 –539. CrossRef Medline

Gattass R, Sousa AP, Gross CG (1988) Visuotopic organization and extent
of V3 and V4 of the macaque. J Neurosci 8:1831–1845. Medline

Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neu-
rons in macaque area V3. J Neurophysiol 77:1906 –1923. Medline

Gross C, Bender DB, Rocha-Miranda CE (1974) Inferotemporal cortex:
a single unit analysis. In: The neurosciences: a third study program
(Schmitt F, Worden F, eds). Cambridge, MA: Massachusetts Institute of
Technology.

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recog-
nition. arXiv:1512.03385

He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual
networks. arXiv:1603.05027
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