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Abstract: Building machines that learn and think like humans is essential not only 
for cognitive science, but also for computational neuroscience, whose ultimate 
goal is to understand how cognition is implemented in biological brains. A new 
cognitive computational neuroscience should build cognitive-level and neural-
level models, understand their relationships, and test both types of models with 
both brain and behavioral data. 
 

Lake et al.’s timely commentary puts the recent exciting advances with neural network 

models in perspective, and usefully highlights the aspects of human learning and 

thinking that these models do not yet capture. Deep convolutional neural networks have 

conquered pattern recognition. They can rapidly recognize objects as humans can, and 

their internal representations are remarkably similar to those of the human ventral 

stream (Eickenberg, Gramfort, Varoquaux, & Thirion, 2016; Güçlü & van Gerven, 2015; 

Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014). However, even at a glance, 

we understand visual scenes much more deeply than current models. We bring complex 

knowledge and dynamic models of the world to bear on the sensory data. This enables 

us to infer past causes and future implications, with a focus on what matters to our 

behavioral success. How can we understand these processes mechanistically? 
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 The top-down approach of cognitive science is one required ingredient. Human 

behavioral researchers have an important role in defining the key challenges for model 

engineering by introducing tasks where humans still outperform the best models. These 

tasks serve as benchmarks, enabling model builders to measure progress and compare 

competing approaches. Cognitive science introduced task-performing computational 

models of cognition. Task-performing models are also essential for neuroscience, whose 

theories cannot deliver explicit accounts of intelligence without them (Eliasmith & Trujillo, 

2014). The current constructive competition between modeling at the cognitive and 

neural levels, is inspiring and refreshing. We need both levels of description to 

understand, and to be able to invent, intelligent machines and computational theories of 

human intelligence. 

 

 Pattern recognition was a natural first step toward understanding human 

intelligence. This essential component mechanism has been conquered by taking 

inspiration from the brain. Machines could not do core object recognition (DiCarlo, 

Zoccolan, & Rust, 2012) until a few years ago (Krizhevsky, Sutskever, & Hinton, 2012). 

Brain-inspired neural networks gave us machines that can recognize objects robustly 

under natural viewing conditions. As we move toward higher cognitive functions, we 

might expect that it will continue to prove fruitful to think about cognition in the context of 

its implementation in the brain. To understand how humans learn and think, we need to 

understand how brains adapt and compute. 

 

 A neural network model may require more time to train than humans. This reflects 

the fact that current models learn from scratch. Cognitive models, like Bayesian program 

learning (Lake, Salakhutdinov, & Tenenbaum, 2015), rely more strongly on built-in 

knowledge. Their inferences require realistically small amounts of data, but 

unrealistically large amounts of computation, and, as a result, their high-level feats of 

cognition don’t always scale to complex real-world challenges. To explain human 

cognition, we must care about efficient implementation and scaleability, in addition to the 

goals of computation. Studying the brain can help us understand the representations 
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and dynamics that support the efficient implementation of cognition (e.g. Aitchison & 

Lengyel, 2016). 

 

 The brain seamlessly merges bottom-up discriminative, and top-down generative 

processes into a rapidly converging process of inference that combines the advantages 

of both: the rapidity of discriminative inference and the flexibility and precision of 

generative inference (Yildirim, Kulkarni, Freiwald, & Tenenbaum, 2015). The brain’s 

inference process appears to involve recurrent cycles of message passing at multiple 

scales, from local interactions within an area to long-range interactions between higher- 

and lower-level representations. 

 

 As long as major components of human intelligence are out of reach of machines, 

we are obviously far from understanding the human brain and cognition. As more and 

more component tasks are conquered by machines, the question of whether they do it 

“like humans” will come to the fore. How should we define “human-like” learning and 

thinking? In cognitive science, the empirical support for models comes from behavioral 

data. A model must not only reach human levels of task performance, but also predict 

detailed patterns of behavioral responses (e.g. errors and reaction times on particular 

instances of a task). However, humans are biological organisms, and so “human-like” 

cognition should also involve the same brain representations and algorithms that the 

human brain employs. A good model should somehow match the brain’s dynamics of 

information processing.  

 

 Measuring the similarity of processing dynamics between a model and a brain, 

has to rely on summary statistics of the activity, and may be equally possible for neural 

and cognitive models. For neural network models, a direct comparison may seem more 

tractable. We might map the units of the model onto neurons in the brain. However, 

even two biological brains of the same species will have different number neurons, and 

any given neuron may be idiosyncratically specialized, and may not have an exact 

match in the other brain. For either a neural or a cognitive model, we may find ways to 

compare the internal model representations to representations in brains (e.g. 
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Kriegeskorte & Diedrichsen, 2016; Kriegeskorte, Mur, & Bandettini, 2008). For example, 

one could test whether the visual representation of characters in high-level visual 

regions reflects the similarity predicted by the generative model of character perception 

proposed by Lake et al. (2015). 

 

 The current advances in AI reinvigorate the interaction between cognitive science 

and computational neuroscience. We hope that the two can come together and combine 

their empirical and theoretical constraints, testing cognitive and neural models with brain 

and behavioral data. An integrated cognitive computational neuroscience might have a 

shot at the task that seemed impossible a few years ago: understanding how the brain 

works.  
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