104 research outputs found

    TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents

    Full text link
    Recent work has identified that classification models implemented as neural networks are vulnerable to data-poisoning and Trojan attacks at training time. In this work, we show that these training-time vulnerabilities extend to deep reinforcement learning (DRL) agents and can be exploited by an adversary with access to the training process. In particular, we focus on Trojan attacks that augment the function of reinforcement learning policies with hidden behaviors. We demonstrate that such attacks can be implemented through minuscule data poisoning (as little as 0.025% of the training data) and in-band reward modification that does not affect the reward on normal inputs. The policies learned with our proposed attack approach perform imperceptibly similar to benign policies but deteriorate drastically when the Trojan is triggered in both targeted and untargeted settings. Furthermore, we show that existing Trojan defense mechanisms for classification tasks are not effective in the reinforcement learning setting

    Real impossible worlds : the bounds of possibility

    Get PDF
    Lewisian Genuine Realism (GR) about possible worlds is often deemed unable to accommodate impossible worlds and reap the benefits that these bestow to rival theories. This thesis explores two alternative extensions of GR into the terrain of impossible worlds. It is divided in six chapters. Chapter I outlines Lewis’ theory, the motivations for impossible worlds, and the central problem that such worlds present for GR: How can GR even understand the notion of an impossible world, given Lewis’ reductive theoretical framework? Since the desideratum is to incorporate impossible worlds into GR without compromising Lewis’ reductive analysis of modality, Chapter II defends that analysis against (old and new) objections. The rest of the thesis is devoted to incorporating impossible worlds into GR. Chapter III explores GR-friendly impossible worlds in the form of set-theoretic constructions out of genuine possibilia. Then, Chapters IV-VI venture into concrete impossible worlds. Chapter IV addresses Lewis’ objection against such worlds, to the effect that contradictions true at impossible worlds amount to true contradictions tout court. I argue that even if so, the relevant contradictions are only ever about the non-actual, and that Lewis’ argument relies on a premise that cannot be nonquestion- beggingly upheld in the face of genuine impossible worlds in any case. Chapter V proposes that Lewis’ reductive analysis can be preserved, even in the face of genuine impossibilia, if we differentiate the impossible from the possible by means of accessibility relations, understood non-modally in terms of similarity. Finally, Chapter VI counters objections to the effect that there are certain impossibilities, formulated in Lewis’ theoretical language, which genuine impossibilia should, but cannot, represent. I conclude that Genuine Realism is still very much in the running when the discussion turns to impossible worlds

    Colorful textile antennas integrated into embroidered logos

    Get PDF
    We present a new methodology to create colorful textile antennas that can be embroidered within logos or other aesthetic shapes. Conductive threads (e-Threads) have already been used in former embroidery unicolor approaches as attributed to the corresponding conductive material, viz. silver or copper. But so far, they have not been adapted to \u27print\u27 colorful textile antennas. For the first time, we propose an approach to create colorful electronic textile shapes. In brief, the embroidery process uses an e-Thread in the bobbin case of the sewing machine to embroider the antenna on the back side of the garment. Concurrently, a colorful assistant yarn is threaded through the embroidery needle of the embroidery machine and used to secure or \u27couch\u27 the e-Threads onto the fabric. In doing so, a colorful shape is generated on the front side of the garment. The proposed antennas can be unobtrusively integrated into clothing or other accessories for a wide range of applications (e.g., wireless communications, Radio Frequency IDentification, sensing)

    Real impossible worlds : the bounds of possibility

    Get PDF
    Lewisian Genuine Realism (GR) about possible worlds is often deemed unable to accommodate impossible worlds and reap the benefits that these bestow to rival theories. This thesis explores two alternative extensions of GR into the terrain of impossible worlds. It is divided in six chapters. Chapter I outlines Lewis’ theory, the motivations for impossible worlds, and the central problem that such worlds present for GR: How can GR even understand the notion of an impossible world, given Lewis’ reductive theoretical framework? Since the desideratum is to incorporate impossible worlds into GR without compromising Lewis’ reductive analysis of modality, Chapter II defends that analysis against (old and new) objections. The rest of the thesis is devoted to incorporating impossible worlds into GR. Chapter III explores GR-friendly impossible worlds in the form of set-theoretic constructions out of genuine possibilia. Then, Chapters IV-VI venture into concrete impossible worlds. Chapter IV addresses Lewis’ objection against such worlds, to the effect that contradictions true at impossible worlds amount to true contradictions tout court. I argue that even if so, the relevant contradictions are only ever about the non-actual, and that Lewis’ argument relies on a premise that cannot be nonquestion- beggingly upheld in the face of genuine impossible worlds in any case. Chapter V proposes that Lewis’ reductive analysis can be preserved, even in the face of genuine impossibilia, if we differentiate the impossible from the possible by means of accessibility relations, understood non-modally in terms of similarity. Finally, Chapter VI counters objections to the effect that there are certain impossibilities, formulated in Lewis’ theoretical language, which genuine impossibilia should, but cannot, represent. I conclude that Genuine Realism is still very much in the running when the discussion turns to impossible worlds

    TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents

    Full text link
    Recent work has identified that classification models implemented as neural networks are vulnerable to data-poisoning and Trojan attacks at training time. In this work, we show that these training-time vulnerabilities extend to deep reinforcement learning (DRL) agents and can be exploited by an adversary with access to the training process. In particular, we focus on Trojan attacks that augment the function of reinforcement learning policies with hidden behaviors. We demonstrate that such attacks can be implemented through minuscule data poisoning (as little as 0.025% of the training data) and in-band reward modification that does not affect the reward on normal inputs. The policies learned with our proposed attack approach perform imperceptibly similar to benign policies but deteriorate drastically when the Trojan is triggered in both targeted and untargeted settings. Furthermore, we show that existing Trojan defense mechanisms for classification tasks are not effective in the reinforcement learning setting

    IEEE Access Special Section Editorial: Wearable and Implantable Devices and Systems

    Get PDF
    © 2013 IEEE. Circuit techniques, sensors, antennas and communications systems are envisioned to help build new technologies over the next several years. Advances in the development and implementation of such technologies have already shown us their unique potential in realizing next-generation sensing systems. Applications include wearable consumer electronics, healthcare monitoring systems, and soft robotics, as well as wireless implants. There have been some interesting developments in the areas of circuits and systems, involving studies related to low-power electronics, wireless sensor networks, wearable circuit behaviour, security, real-time monitoring, connectivity of sensors, and Internet of Things (IoT). The direction for the current technology is electronics systems on large area electronics, integrated implantable systems and wearable sensors. So far, the research in the field has focused on materials, new processing techniques and one-off devices, such as diodes and transistors. However, current technology is not sufficient for future electronics to be useful in new applications; a great demand exists to scale up the research towards circuits and systems. Recent developments indicate that, in addition to fabrication technology, special attention should also be given to design, simulation and modeling of electronics, while keeping sensing system integration, power management, and sensors network under consideration

    Miniature implantable antennas for biomedical telemetry: from simulation to realization

    Get PDF
    WOS:000310154700019 (Nº de Acesso Web of Science)“Prémio Científico ISCTE-IUL 2013”We address numerical versus experimental design and testing of miniature implantable antennas for biomedical telemetry in the medical implant communications service band (402-405 MHz). A model of a novel miniature antenna is initially proposed for skin implantation, which includes varying parameters to deal with fabrication-specific details. An iterative design-and-testing methodology is further suggested to determine the parameter values that minimize deviations between numerical and experimental results. To assist in vitro testing, a low-cost technique is proposed for reliably measuring the electric properties of liquids without requiring commercial equipment. Validation is performed within a specific prototype fabrication/testing approach for miniature antennas. To speed up design while providing an antenna for generic skin implantation, investigations are performed inside a canonical skin-tissue model. Resonance, radiation, and safety performance of the proposed antenna is finally evaluated inside an anatomical head model. This study provides valuable insight into the design of implantable antennas, assessing the significance of fabrication-specific details in numerical simulations and uncertainties in experimental testing for miniature structures. The proposed methodology can be applied to optimize antennas for several fabrication/testing approaches and biotelemetry applications

    Dual-band implantable antennas for medical telemetry: a fast design methodology and validation for intra-cranial pressure monitoring

    Get PDF
    WOS:000323538100010 (Nº de Acesso Web of Science)In this study, we suggest and experimentally validate a methodology for fast and optimized design of dual-band implantable antennas for medical telemetry (MICS, 402-405 MHz, and ISM, 2400-2480 MHz). The methodology aims to adjust the design of a parametric dual-band antenna model towards optimally satisfying the requirements imposed by the antenna-fabrication procedure and medical application in hand. Design is performed in a systematic, fast, and accurate way. To demonstrate its effectiveness, the proposed methodology is applied to optimize the parametric antenna model for intra-cranial pressure (ICP) monitoring given a specific antenna-fabrication procedure. For validation purposes, a prototype of the optimized antenna is fabricated and experimentally tested. The proposed antenna is further evaluated within a 13-tissue anatomical head model in terms of resonance, radiation, and safety performance for ICP monitoring. Extensive parametric studies of the optimized antenna are, finally, performed. Feasibility of the proposed parametric antenna model to be optimally re-adjusted for various scenarios is demonstrated, and generic guidelines are provided for implantable antenna design. Dual-band operation is targeted to ensure energy autonomy for the implant. Finite Element (FE) and Finite Difference Time Domain (FDTD) simulations are carried out in homogeneous rectangular and anatomical head tissue models, respectively
    corecore