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ABSTRACT
Due to the global spread of multidrug resistant pathogenic bacteria, alternative approaches in
combating infectious diseases are required. One such approach is the use of probiotics.
Lactobacillus fermentum 3872 is a promising probiotic bacterium producing a range of antimicrobial
compounds, such as hydrogen peroxide and lactic acid. In addition, previous studies involving
genome sequencing and analysis of L. fermentum 3872 allowed the identification of a gene
encoding a cell surface protein referred to as collagen binding protein (CBP) (not found in other
strains of the species, according to the GenBank database), consisting of a C-terminal cell wall
anchor domain (LPXT), multiple repeats of ‘B domains’ that form stalks presenting an “A domain”
required for adhesion. In this study, we found that the CBP of L. fermentum 3872 binds to collagen I
present on the surface of the epithelial cells lining the gastrointestinal tract. Moreover, we found
that this host receptor is also used for attachment by the major gastrointestinal pathogen,
Campylobacter jejuni. Furthermore, we identified an adhesin involved in such interaction and
demonstrated that both L. fermentum 3872 and its CBP can inhibit binding of this pathogen to
collagen I. Combined with the observation that C. jejuni growth is affected in the acidic
environment produced by L. fermentum 3872, the finding provides a good basis for further
investigation of this strain as a potential tool for fighting Campylobacter infections.
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Introduction

Campylobacter jejuni is an enteric pathogen and one of
the most common causes of gastroenteritis in humans
with symptoms such as abdominal pains, watery or
bloody diarrhea, and fever.1 In rare cases, C. jejuni infec-
tions can lead to a neurodegenerative disease such as
Guillain-Barre syndrome.2 C. jejuni infections are often
caused by poor hygiene standards, consumption of
undercooked meat, contaminated water and/or milk.3

Fatalities associated with C. jejuni infections are uncom-
mon, although can occur among immunologically na€ıve
patients.4 C. jejuni infections are an economic burden
leading to many hospitalisations/primary care visits.5

There has been a rise in antimicrobial resistant forms
of C. jejuni caused by the misuse of antimicrobials.6 C.
jejuni has also been placed on a list of antibiotic-resistant
priority pathogens by the world health organization
(WHO) to promote research and development in novel
antimicrobials.7 Due to the appearance of multidrug
resistant forms of these bacteria, there is growing interest
in alternative approaches to combat C. jejuni infections,

such as those using probiotics, bacteriocins and bacterio-
phages, with the most recent focus on probiotics.1 Effec-
tive usage of the latter requires a better understanding of
the molecular mechanisms of their action. The antago-
nistic activity of probiotics is associated with the produc-
tion of bacteriocins, lactic acid, hydrogen peroxide,
competition for nutrients and colonisation niches, as
well as modulation of host immune response.1,8

Lactobacillus fermentum 3872 is a Gram-positive, fac-
ultative anaerobe isolated from milk of a healthy
woman.9 L. fermentum 3872 produces lactic acid and
hydrogen peroxide and is capable of binding to human
HeLa and buccal cells.9 Genome sequencing of L. fer-
mentum 3872 revealed genes required for bacterial sur-
vival in the gastrointestinal tract, as well as those
potentially involved in interaction with fibronectin,
mucin and collagen, such as the genes encoding enolase
and 2 collagen binding proteins.10,11 The full and partial
copies of the collagen-binding protein (CBP) encoding
genes were found to be located on a plasmid and chro-
mosome respectively.10,11 Collagen I, which is one of
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several types of collagens ubiquitous in mammals, is
commonly found on the surface of host cells present in
the gastrointestinal tract.12 In this study, we confirmed
the affinity of the putative CBP of L. fermentum 3872 to
collagen I and found that both CBP and L. fermentum
3872 compete with C. jejuni for binding to this host cell
receptor. In addition, a role of C. jejuni flagellum in
binding to collagen I was established.

Results

The purified CBP of L. fermentum 3872 interferes
with Campylobacter binding to collagen I

Expression of the L. fermentum 3872 CPB in E. coli as a
His-tagged fusion protein allowed its purification as a
stable product of an expected size (111 kDa predicted,
115 kDa estimated from a gel, Fig. S1). The slight (3.6%)
difference in the sizes is likely to be due to conforma-
tional properties of the protein, which is typical for large
outer membrane proteins of bacteria.13 It was found that
the CBP binds to collagen I in a concentration-depen-
dent manner with no increase in absorbance above
0.1 mg/well of CBP (Fig. 1). Since C. jejuni strains
11168H and 81–176 were also able to bind to collagen I
in a concentration-dependent manner (Fig. 2), we aimed
to establish if these bacteria compete with the purified
CBP for the binding sites.

Inhibition of C. jejuni attachment to collagen I was
detected when using 2 mg of CBP per well (Fig. 3). We
were then wondering if a similar inhibition of Cam-
pylobacter could be observed when using whole cells

Figure 1. ELISA experiments showing CBP binding to collagen I;
the data represent 2 biologic repeats each with 3 technical
repeats (n D 6).

Figure 2. Detection of adhesion of C. jejuni strains 81–176 (A) and 11168H (B) to collagen I using ELISA; the data represent 2 biologic
repeats each with 3 technical repeats (n D 6) apart from (A), 2 £ 108 cfu/well, where n D 5.

Figure 3. Effect of CBP (2 mg/well) on adhesion of C. jejuni strains 81–176 (A) and 11168H (B) in binding to collagen I, the bars labeled
‘control’ have respective C. jejuni strains (2 £ 107 cfu/well) only, while that labeled CBP has a mixture of 2 mg CBP and 2 £ 107 cfu/well
C. jejuni; the data represent 3 biologic repeats each with 3 technical repeats (n D 9).
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of L. fermentum. As expected, the inhibition was
observed when using high Lactobacillus/Campylobacter
cell ratios (Fig. 4). Surprisingly, some increase in
C. jejuni binding was seen when using smaller
amounts of L. fermentum 3872 (Fig. 4). As described
in the discussion section, this could be a result of
aggregation of Campylobacter bacteria.

Identification of C. jejuni proteins involved
in collagen I adhesion

While genome sequencing reveals genes encoding poten-
tial collagen binding proteins of L. fermentum 3872, one
of which was the subject of this study, no such proteins
could be identified in the genomes of C. jejuni strains
11168H and 81–176. Therefore, attempts to identify
such proteins were undertaken by using affinity binding
followed by mass spectrometry (LC MS/MS). The analy-
sis of the proteins bound to magnetic beads coated with
collagen I revealed 2 major bands (65 kDa and 15 kDa,
Fig. 5) in both strains tested

Analysis of these bands using mass spectrometry
identified the top (65 kDa) bands in both strains as fla-
gellin subunits (FlaA and FlaB). Larger observed sizes of
these proteins, when compared with those predicted
from their amino acid sequences (60 kDa), are likely to
be a result of O-linked glycosylation.14 Indeed, it was
reported that the molecular mass of flagellin of strain
81–176 as determined by gel electrophoresis was about
65 kDa, larger than that was predicted from its amino
acid sequence.15 Slight difference in gel mobilities
between flagellins from these 2 strains, as observed in
Fig. 5 can also be explained by strain to strain variation
in glycosylation pattern.

L. fermentum 3872 inhibits C. jejuni growth
by production of acidic environment

Cell-free supernatants of L. fermentum inhibited the
growth of C. jejuni (Fig. 6). Adjustment of the superna-
tant pH (normally about 4.2) to 6.3 abolished inhibition
zone, suggesting that it was the acid environment that
was causing the inhibitory effect. Acidification of the

Figure 4. Competition between. L. fermentum 3872 and C. jejuni strains 81–176 (A) and 11168H (B) for binding to collagen I detected
using ELISA, the bars labeled ‘control’ have respective C. jejuni strains of amount 2 £ 107 cfu/well added only, the ratios indicated on
the graph are based on cell to cell amounts added to each well; the data represent 2 biologic repeats each with 3 technical repeats
(n D 6). Control (B) and 1:10 (B) represent data with 3 biologic repeats each with 3 technical repeats each (n D 9).

Figure 5. Silver staining of C. jejuni Co-IP eluate; 1, pre-stained
ladder (Page ruler plus); 2, 11168H eluate after 1 hour incubation;
3, 11168H eluate after 3 hour incubation; 4, 81–176 eluate after
1 hour incubation; 5, 81–176 eluate after 3 hour incubation.
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media is commonly attributed to the release of lactic acid
by these bacteria. On the other hand, heat treatment had
no effect on the inhibition zone (Fig. 6) indicating the
absence of heat labile compounds involved in growth
inhibition. The results suggest that the main anti-
Campylobacter activity is associated with acidification of
the environment.

Discussion and conclusion

The results of this study suggest that L. fermentum and
Campylobacter jejuni may exploit the same host cell
receptor for attachment and colonisation. We demon-
strated the molecular mechanism of such interaction and
identified the adhesins required for binding of these bac-
teria to collagen receptor. As adhesion is important for
C. jejuni host colonisation and infection,16 competition
for adhesion to collagen I may be a viable means of
reducing pathogen load in hosts and thus preventing C.
jejuni infection. Interestingly, whole cell ELISA experi-
ments indicated an increase in absorbance of C. jejuni
being detected when using lower amounts of L. fermen-
tum 3872. Potential reasoning for the latter observation
could be explained by possible auto-aggregation of C.
jejuni or co-aggregation between C. jejuni and L.

fermentum 3872. Co-aggregation between C. jejuni and
other species of Lactobacilli has previously been
reported.17 In vitro experiments demonstrated that the
presence of probiotics can lead to co-aggregation with C.
jejuni and inhibition of adhesion of the latter to human
epithelial cells.18

The ability of probiotic bacteria to cause aggregation
of (or co-aggregation with) C. jejuni cells and inhibit
their binding to host cells may work synergistically with
other antibacterial factors. In particular, higher gastric
acidity was found to reduce the likelihood of C. jejuni
infection.19 This is supported by our study demonstrat-
ing that acidification of the environment caused by
Lactobacillus fermentum represents a strong antibacterial
factor. Co-aggregation may further assist in the antago-
nistic action of lactobacilli by reducing the distance
between the probiotic cells and the pathogen.17 Utiliza-
tion of multiple antagonisitic factors would elevate the
effect of probiotics in inhibiting a pathogen, and reduce
the risk of developing of antimicrobial resistance.

According to our data, C. jejuni flagellin binds to
collagen I, supporting other data on the role of flagella in
adhesion.20,21 To our knowledge, this is the first study on
the identification of a host cell molecule specifically
interacting with bacterial flagellum. The latter is known
to be modified by O-linked glycosylation, which is vari-
able in the same strain and is also strain-dependent.22-24

Due to the extreme variability of O-linked flagella
modifications and the difference between the oligosac-
charide structures decorating flagellins in the 2 strains
tested, the involvement of sugar residues in binding to
collagen seems unlikely.

It would be interesting to investigate other putative
L. fermentum 3872 adhesins predicted from its genome
sequence,11 such as enolase, mucus and fibronectin bind-
ing proteins, as well as aggregation substance precursor.
The results of this study warrant further investigation of
antagonistic activity of this strain in poultry. Due to its
anti-campylobacter activity L. fermentum 3872 could
potentially be used for prophylaxis of such C. jejuni
induced diseases as traveler’s diarrhea, inflammatory
bowel disease and irritable bowel syndrome.25,26

Although it was isolated from human milk of a healthy
person9 and is predicted to be generally safe, trial experi-
ments are required to confirm its safety. Adhesion
experiments using epithelial cell lines could be per-
formed to determine competition between CBP or
L. fermentum 3872 and C. jejuni. Furthermore, due to
the presence of other genes encoding putative collagen-
binding proteins such as enolase, cbp gene knockout
experiments could be performed to determine the extent
to which CBP plays a role in collagen adhesion for
L. fermentum 3872. The experiments described in this

Figure 6. Inhibition of growth of C. jejuni strains 81–176 (A) and
11168H (B) in the presence of cell-free L. fermentum 3872 culture
supernatant; 1, M.R.S broth (control); 2–4, L. fermentum 3872 cell-
free supernatant; 2, untreated; 3, heat-treated; 4, pH adjusted.
Three biologic repeats were performed.
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study may also be conducted with other pathogenic bac-
teria, such as e.g. Staphylococci which utilize adhesion to
collagen for host colonisation.27 With an increasing
understanding of the mechanisms of interaction and
competition between bacteria, a wide variety of tools
may be developed for anti-microbial purposes, reducing
our dependence on antibiotics and widening our means
in combatting pathogenic bacteria such as C. jejuni.

Materials and methods

Bacterial strains and growth conditions

L. fermentum 3872 was grown overnight at 37�C under
anaerobic conditions on de Man, Rogosa and Sharpe (M.
R.S.) agar (Oxoid), and in M.R.S broth (Oxoid). C. jejuni
11168H is a hypermotile derivative of C. jejuni NCTC
11168 originally isolated from human faeces.22 C. jejuni
81–176 is a highly virulent strain isolated from raw
milk.28 C. jejuni was grown for 24 hours at 37�C in a
microaerobic incubator (Don Whitley Scientific) in an
atmosphere of 10% CO2, 5% O2, N2 85% on CBA
(Columbia Blood Agar Base, Oxoid) supplemented with
5% defibrinated horse blood (Oxoid) and Campylobacter
selective supplement Skirrow (Oxoid). E. coli was grown
at 37�C overnight on LB (Luria Bertani) agar (Fisher Sci-
entific) or in LB broth (Fisher Scientific) supplemented
with chloramphenicol at 25 mg/ml where appropriate,
e.g., for expression of CBP (see below).

Cloning and purification of CBP

The cbp gene lacking the region corresponding to the
leader peptide was PCR-amplified using the following
primers: CBP_Forward, ATATGCTTCTAGAAGAAG-
GAGGCAACAGTATGCACCATCACCATCACCATGA
TAGCAAGACAAATATTACTCAGAACGGTACG and
CBP_Reverse, ATGAGCATGCTCAAATAGTAAATC-
TACTTATAACTACTAAACC. The CBP_Forward
primer contained a Shine-Dalgarno (SD) sequence, as
well as a region encoding a hexa histidine tag. Polymerase
chain reaction (PCR) was conducted by using a Q5 High-
Fidelity DNA Polymerase kit (NEB) with the following
conditions: 98�C for 30 seconds for initial denaturation,
25 cycles of denaturation for 10 seconds at 98�C, anneal-
ing for 30 seconds at 55�C and extension for 4 minutes at
55�C, and a final extension at 72�C for 2 minutes.

The PCR product was purified using the QIAquick
PCR purification kit (Qiagen), digested with enzymes
XbaI and SphI (NEB) and cloned into expression vector
pBAD3329 using Quick Ligation kit (NEB) and E. coli
Express competent cells (NEB).

Sanger sequencing, conducted by GENEWIZ revealed
no errors in the cloned fragment.

For protein expression, 10 ml of the overnight culture
of bacteria containing the recombinant plasmid were
inoculated into 250 ml of media, incubated at 37�C on a
shaker at 120 rpm to OD600 of 0.6 and induced with
L-arabinose (ACROS organics) at a final concentration
of 0.1% for 3 hours. The protein was purified using a
Clonetech His60 protein purification column. The con-
centration of protein was determined using a Pierce BCA
protein assay kit.

Samples were analyzed on NuPAGE Novex 4–12%
Bis-tris gel (ThermoFisher Scientific) after mixing
with1X NuPAGE LDS sample buffer (ThermoFisher Sci-
entific) and incubation at 70�C for 10 minutes, as recom-
mended by the manufacturer. Electrophoresis was
conducted using 1X NuPAGE MOPS SDS running
buffer (ThermoFisher Scientific) for 1 hour at 150 V.
The samples were stained using Invitrogen Coomassie
Simply Blue Safe stain (ThermoFisher Scientific). Equiv-
alent amounts of samples in relation to the number of
cells were loaded onto each well. Silver staining was con-
ducted using the Pierce silver stain kit for mass spec-
trometry (ThermoFisher Scientific) according to the
standard manufacturer’s protocol. The molecular marker
used for Coomassie staining was PageRuler Plus Pre-
stained protein ladder (ThermoFisher Scientific) diluted
to 1:10 in 1X NuPAGE LDS buffer (ThermoFisher Scien-
tific). For Silver staining the PageRuler Plus Prestained
protein ladder (ThermoFisher Scientific) was diluted
to 1:100 in 1X NuPAGE LDS buffer (ThermoFisher
Scientific).

Enzyme-linked immunosorbent assay

Calf skin collagen I (Sigma) was dissolved in 0.1M acetic
acid (Fisher Scientific) to a stock concentration of 1 mg/
ml. Transparent Corning Costar 96 well flat bottom
non-treated polystyrene plates were coated with 0.36 mg/
well calf skin collagen I (Sigma) or BSA (Sigma) in
ELISA coating buffer (0.19 g Na2CO3, 0.37 g NaHCO3 in
125 ml dH2O; pH 9.6). The plates were incubated at
4�C overnight. For washing steps, 200 ml/well PBS with
0.1%Tween 20 (PBST) was used. After coating, the plates
were washed twice with PBST and blocked for 1 hour at
room temperature with 2% BSA (Sigma) in PBS
(200 ml/well). Wells were washed 3 times with PBST and
100 ml/well of samples were added to each well. The
plates were incubated at 37�C for 1 hour. If bacteria were
used, the samples were incubated under anaerobic condi-
tions. Wells were washed 4 times with PBST. One
hundred microliters of the primary antibody (1:1000
dilution in PBS containing 0.05% Tween20 (Sigma) and
1 mg/ml BSA (Sigma)) were added to each well and the
plates were incubated at 37�C for 1 hour. Wells were
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washed 4 times with PBST and 100 ml of an appropriate
secondary antibody (1:1000 dilution in PBS containing
0.05% tween 20 (Sigma) and 3% BSA (Sigma)) was
added, followed by incubation for 1 hour at 37�C. Wells
were washed 4 times with PBST and incubated with
a 100 ml of 3,30,5,50-Tetramethylbenzidine substrate
(Sigma) for 15 minutes. Fifty ml/well of 1M H2SO4 were
added to stop the reaction. Absorbance was measured at
450 nm using a Tecan Infinite M200 Pro microplate
reader.

For C. jejuni binding and CBP/C.jejuni competition
assays, Campylobacter jejuni monoclonal primary anti-
body (Bio-Rad) and goat anti-mouse polyclonal second-
ary antibody (Bio-Rad) were used. For CBP binding
assay, Pierce 6x-His Epitope Tag monoclonal primary
antibody (ThermoFisher Scientific), and anti-mouse IgG,
HRP-linked Polyclonal secondary antibody (Cell Signal-
ing Technology) were used.For whole cell competition
assay anti-Campylobacter jejuni (PEB1), polyclonal
primary antibody (Antibodies-Online) and Goat-anti-
rabbit IgG polyclonal secondary antibody HRP conjugate
(SAB) were used.

Binding and competition assay

For binding assay, CBP stock was diluted in PBS.
The samples were added to collagen I coated wells. BSA-
coated wells were used as negative controls. For C. jejuni
attachment studies the wells coated with collagen I were
incubated with a 100 ml of bacterial suspensions made to
an OD600 of 1, 0.1 and 0.01 in PBS. The final amounts of
C. jejuni cells added to each well were 2 £ 108 cfu/well,
2 £ 107 cfu/well and 2 £ 106 cfu/well respectively. BSA-
coated wells were used as negative controls. For whole
cell competition assay, L. fermentum 3872 bacterial sus-
pension was made to an OD600 of 0.5 (1 £ 108 cfu/ml),
1 (2 £ 108 cfu/ml), 5 (1 £ 109 cfu/ml), and 9 (2 £ 109

cfu/ml) by mixing with C. jejuni to have a final bacterial
suspension of OD600 0.1 (2 £ 108 cfu/ml) in PBS. A hun-
dred microliters of the mixture was added to each well.
This resulted in a final ratio of L. fermentum 3872 to
C. jejuni of 1:2, 1:1, 5:1 and 10:1 respectively. For compe-
tition assays involving CBP and C. jejuni, collagen I or
BSA coated wells were incubated with a mixture of
2 mg/well CBP and 2 £ 107 cfu/well C. jejuni in PBS.

Agar well diffusion assay

Agar well diffusion assay was used to determine anti-C.
jejuni activity.18 C. jejuni suspensions were adjusted to
an OD600 of 1 in PBS, of which 300 ml were added to
15 ml of soft (0.75%) Mueller-Hinton (MH) agar at
41�C. Soft agar was prepared by mixing MH broth

(Fluka) to 0.75% agar (Fluka). The inoculated molten
agar was overlaid over 20 ml MH agar. L. fermentum
3872 was cultured overnight in M.R.S broth at 37�C
under anaerobic condition and filter sterilised using a
0.22 mm filter (Fisher Scientific). The cell-free culture
supernatant was either boiled at 100�C for 5 minutes, or
the pH was adjusted to that of the M.R.S broth (6.3)
using NaOH (Sigma). Four 10 mm wells were cut in the
MH agar after inoculating with C. jejuni. The wells were
filled with 300 ml of one of the following 1) MH broth,
2) cell-free 3872 culture supernatant 3) boiled cell-free
3872 culture supernatant, or 4) cell-free 3872 culture
supernatant with adjusted pH.

Co-Immunoprecipitation and mass spectrometry

Co-Immunoprecipitation (Co-IP) was conducted using
Dynabeads Co-Immunoprecipitation kit (ThermoFisher
Scientific) to determine collagen I binding proteins
expressed by C. jejuni 11168H and 81–176. Dynabeads
were coated with 15 mg of collagen I (15 mg of collagen
per 1 mg of Dynabeads). Standard manufacturer’s proto-
col was followed. C. jejuni suspension was made to an
OD600 of 1 in 20 ml of PBS. The cell suspension was
spun down at 3200 g for 10 minutes at 4�C, the superna-
tant was removed and the bacteria pellet was weighed.
Lysis buffer was prepared using 1X IP buffer provided by
the Dynabeads Co-Immunoprecipitation kit (Thermo-
Fisher Scientific), 100mM NaCl (Sigma) and 5 ml DNase
I (Promega) in dH2O. The bacterial pellet was lysed in a
1:9 ratio of cell weight to volume and incubated on ice
for 10 minutes. To ensure complete lysis, bacterial lysates
were sonicated (Soniprep 159) for 10 cycles with 10 sec-
onds sonication and 30 seconds rest, to complete lysis.
After sonication, the samples were spun at 3200 g for
5 minutes. The clarified lysates were incubated at room
temperature with 2 mg of collagen I coupled Dynabeads
on a rotator (30 rpm) for 1 and 3 hours. Standard manu-
facturer’s protocol was followed for protein elution.
Prior to mass spectrometry, Pierce silver stain kit
(ThermoFisher Scientific) was used to detect protein
bands (see above). Bands were cut out using a scalpel
and placed into an Eppendorf tube with 50 ml of dH2O.
Mass spectrometry was conducted by the Cambridge
Center for Proteomics (United Kingdom). Mascot server
was used for the identification of proteins using Genbank
data of the respective C. jejuni strains.

Statistical analysis

ELISA readings were adjusted by subtracting values of rele-
vant controls. Statistical analysis was conducted using one-
way analysis of variance (ANOVA). A P value of < 0.05
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was considered as statistically significant. On ELISA graphs
the P variances are labeled by stars according to the follow-
ing scheme: � for 0.005<p� 0.05, �� for 0.001<p�
0.005 and ��� for p� 0.001. The vertical bars on the dia-
grams represent SEMs (standard errors of the mean).

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

Special thanks to the Cambridge center of proteomics for con-
ducting mass spectrometry, Dr Ali Ryan for providing access
to the Tecan Infinite M200 Pro microplate reader and the
Sonicprep 159 sonicator, Ana Vieira and Amritha Ramesh for
providing C. jejuni stocks used for this study.

References

[1] Saint-Cyr M, Guyard- Nicodeme M, Messaoudi S,
Chemaly M, Cappelier J, Dousset X, Haddad N. Recent
advances in screening of anti-campylobacter activity in
probiotics for use in poultry. Front Microbiol. 2016;7:553.
doi:10.3389/fmicb.2016.00553. PMID:27303366

[2] Acheson D, Allos BM. Campylobacter jejuni infections:
Update on emerging issues and trends. Clin Infect Dis.
2001;32(8):1201-6. doi:10.1086/319760

[3] Hussain I, Shahid Mahmood M, Akhtar M, Khan A. Prev-
alence of Campylobacter species in meat, milk and other
food commodities in pakistan. Food Microbiol. 2007;24
(3):219-22. doi:10.1016/j.fm.2006.06.001. PMID:17188200

[4] Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C,
Basham D, Chillingworth T, Davies RM, Feltwell T, Hol-
royd S, et al. The genome sequence of the food-borne
pathogen Campylobacter jejuni reveals hypervariable
sequences. Nature. 2000;403(6770):665-8. doi:10.1038/
35001088

[5] Adak GK, Meakins SM, Yip H, Lopman BA, O’Brien S, J.
Disease risks from foods, England and wales, 1996–2000.
Emerg Infect Dis. 2005;11(3):365-72. doi:10.3201/
eid1103.040191. PMID:15757549

[6] Economou V, Gousia P. Agriculture and food animals
as a source of antimicrobial-resistant bacteria. Infect
Drug Resist. 2015;8:49-61. doi:10.2147/IDR.S55778.
PMID:25878509

[7] World Health Organisation (WHO). Global priority list
of antibiotic-resistant bacteria to guide research, discov-
ery, and development of new antibiotics. 2017. http://
www.who.int/medicines/publications/WHO-PPL-Short_
Summary_25Feb-ET_NM_WHO.pdf?ua=1.

[8] Oelschlaeger TA. Mechanisms of probiotic actions – A
review. Int J Med Microbiol. 2010;300(1):57-62.
doi:10.1016/j.ijmm.2009.08.005. PMID:19783474

[9] Abramov VM, Khlebnikov VS, Pchelintsev SJ, Kosarev
IV, Karlyshev AV, Vasilenko RN, Melnikov VG. Strain
of Lactobacillus fermentum having broad spectrum of
antagonistic activity and probiotic lactobacterium con-
sortium for manufacturing bacterial preparations. Patent

RU2528862C1, C12N-1/20, A61K-35/74, A23C-9/123,
C12R-1/225, Application 2013118084/10, priority
19.04.2013, publication 20.09.2014, Russian Federation,
https://patents.google.com/patent/RU2528862C1/en.

[10] Lehri B, Seddon AM, Karlyshev AV. Lactobacillus fer-
mentum 3872 genome sequencing reveals plasmid and
chromosomal genes potentially involved in a probiotic
activity. FEMS Microbiol Lett. 2015;362(11):fnv068.
doi:10.1093/femsle/fnv068

[11] Lehri B, Seddon AM, Karlyshev AV. Potential probiotic-
associated traits revealed from completed high quality
genome sequence of Lactobacillus fermentum 3872. Stand
Genomic Sci. 2017;12(1):19. doi:10.1186/s40793-017-
0228-4. PMID:28163828

[12] Mello MFVd, Pissinatti A, Ferreira AMR. Distribution of
collagen types I, III, and IV in gastric tissue of marmosets
(Callithrix spp., Callitrichidae: Primates). Pesquisa Veter-
inaria Brasileira 2010;30:317-20. doi:10.1590/S0100-
736X2010000400006

[13] Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM.
Detergent binding explains anomalous SDS-PAGE
migration of membrane proteins. Proc Natl Acad Sci U S
A. 2009;106(6):1760-5. doi:10.1073/pnas.0813167106

[14] Hitchen P, Brzostek J, Panico M, Butler JA, Morris HR,
Dell A, Linton D. Modification of the Campylobacter jejuni
flagellin glycan by the product of the Cj1295 homopoly-
meric-tract-containing gene. Microbiology. 2010;156:1953-
62. doi:10.1099/mic.0.038091-0. PMID:20338909

[15] Thibault P, Logan SM, Kelly JF, Brisson J, Ewing CP,
Trust TJ, Guerry P. Identification of the carbohydrate
moieties and glycosylation motifs in Campylobacter
jejuni flagellin. J Biol Chem. 2001;276(37):34862-70.
doi:10.1074/jbc.M104529200. PMID:11461915

[16] Lee S, Lee J, Ha J, Choi Y, Kim S, Lee H, Yoon Y, Choi K.
Clinical relevance of infections with zoonotic and human
oral species of Campylobacter. J Microbiol. 2016;54
(7):459-67. doi:10.1007/s12275-016-6254-x

[17] Tareb R, Bernardeau M, Gueguen M, Vernoux J. In vitro
characterization of aggregation and adhesion properties
of viable and heat-killed forms of two probiotic Lactoba-
cillus strains and interaction with foodborne zoonotic
bacteria, especially Campylobacter jejuni. J Med Micro-
biol. 2013;62(4):637-49. doi:10.1099/jmm.0.049965-0.
PMID:23329323

[18] Nishiyama K, Seto Y, Yoshioka K, Kakuda T, Takai S,
Yamamoto Y, Mukai T. Lactobacillus gasseri SBT2055
reduces infection by and colonization of Campylobacter
jejuni. Plos One. 2014;9(9):e108827. doi:10.1371/journal.
pone.0108827. PMID:25264604

[19] Moore JE, Corcoran D, James S.G. Dooley, Seamus Fan-
ning, Lucey B, Matsuda M, McDowell DA, Francis
Megraud, Cherie Millar B, Rebecca O’Mahony, et al.
Campylobacter. Vet Res. 2005;36(3):351-82. doi:10.1051/
vetres:2005012

[20] Haiko J, Westerlund-Wikstrom B. The role of the bacterial
flagellum in adhesion and virulence. Biology. 2013;2
(4):1242-67. doi:10.3390/biology2041242. PMID:24833223

[21] Newell DG, McBride H, Dolby JM. Investigations on the
role of flagella in the colonization of infant mice with
Campylobacter jejuni and attachment of Campylobacter
jejuni to human epithelial cell lines. J Hyg. 1985;95
(2):217-27. doi:10.1017/S0022172400062653

VIRULENCE 1759

https://doi.org/27303366
https://doi.org/10.1086/319760
https://doi.org/17188200
https://doi.org/10.1038/35001088
https://doi.org/10.1038/35001088
https://doi.org/10.3201/eid1103.040191
https://doi.org/15757549
https://doi.org/10.2147/IDR.S55778
https://doi.org/25878509
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1
https://doi.org/19783474
https://patents.google.com/patent/RU2528862C1/en
https://doi.org/10.1093/femsle/fnv068
https://doi.org/10.1186/s40793-017-0228-4
https://doi.org/28163828
https://doi.org/10.1590/S0100-736X2010000400006
https://doi.org/10.1590/S0100-736X2010000400006
https://doi.org/10.1073/pnas.0813167106
https://doi.org/20338909
https://doi.org/11461915
https://doi.org/10.1007/s12275-016-6254-x
https://doi.org/10.1099/jmm.0.049965-0
https://doi.org/23329323
https://doi.org/10.1371/journal.pone.0108827
https://doi.org/25264604
https://doi.org/10.1051/vetres:2005012
https://doi.org/10.1051/vetres:2005012
https://doi.org/24833223
https://doi.org/10.1017/S0022172400062653


[22] Karlyshev AV, Linton D, Gregson NA, Wren BW. A novel
paralogous gene family involved in phase-variable
flagella-mediated motility in Campylobacter jejuni. Micro-
biology. 2002;148(2):473-80. doi:10.1099/00221287-148-2-
473. PMID:11832511

[23] Ewing CP, Andreishcheva E, Guerry P. Functional char-
acterization of flagellin glycosylation in Campylobacter
jejuni 81–176. J Bacteriol. 2009;191(22):7086-93.
doi:10.1128/JB.00378-09. PMID:19749047

[24] Zebian N, Merkx-Jacques A, Pittock PP, Houle S, Dozois
CM, Lajoie GA, Creuzenet C. Comprehensive analysis of
flagellin glycosylation in Campylobacter jejuni NCTC
11168 reveals incorporation of legionaminic acid and its
importance for host colonization. Glycobiology. 2016;26
(4):386-97. doi:10.1093/glycob/cwv104

[25] Kaakoush NO, Castano-Rodriguez N, Mitchell HM, Man
SM. Global epidemiology of Campylobacter infection.
Clin Microbiol Rev. 2015;28(3):687-720. doi:10.1128/
CMR.00006-15. PMID:26062576

[26] Zenner D, Gillespie I. Travel-associated Salmonella and
Campylobacter gastroenteritis in England: Estimation of
under-ascertainment through national laboratory surveil-
lance. J Travel Med. 2011;18(6):414-7. doi:10.1111/
j.1708-8305.2011.00553.x. PMID:22017719

[27] Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore
D, Choe D, Xu Y, Hook M, Narayana SVL. A “dock,
lock, and latch” structural model for a Staphylococcal
adhesin binding to fibrinogen. Cell. 2003;115(2):217-28.
doi:10.1016/S0092-8674(03)00809-2. PMID:14567919

[28] Hu L, Kopecko DJ. Campylobacter jejuni 81–176 associ-
ates with microtubules and dynein during invasion of
human intestinal cells. Infect Immun. 1999;67(8):4171-
82. PMID:10417189

[29] Guzman LM, Belin D, Carson MJ, Beckwith J. Tight reg-
ulation, modulation, and high-level expression by vectors
containing the arabinose PBAD promoter. J Bacteriol.
1995;177(14):4121-30. doi:10.1128/jb.177.14.4121-4130.
1995

1760 B. LEHRI ET AL.

https://doi.org/10.1099/00221287-148-2-473
https://doi.org/11832511
https://doi.org/19749047
https://doi.org/10.1093/glycob/cwv104
https://doi.org/10.1128/CMR.00006-15
https://doi.org/26062576
https://doi.org/10.1111/j.1708-8305.2011.00553.x
https://doi.org/22017719
https://doi.org/14567919
https://doi.org/10417189
https://doi.org/10.1128/jb.177.14.4121-4130.1995
https://doi.org/10.1128/jb.177.14.4121-4130.1995

	Abstract
	Introduction
	Results
	The purified CBP of L. fermentum 3872 interferes with Campylobacter binding to collagen I
	Identification of C. jejuni proteins involved in collagen I adhesion
	L. fermentum 3872 inhibits C. jejuni growth by production of acidic environment

	Discussion and conclusion
	Materials and methods
	Bacterial strains and growth conditions
	Cloning and purification of CBP
	Enzyme-linked immunosorbent assay
	Binding and competition assay
	Agar well diffusion assay
	Co-Immunoprecipitation and mass spectrometry
	Statistical analysis

	Disclosure of potential conflicts of interest
	Acknowledgments
	References



