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ESTIMABILITY AND REGULABILITY OF LINEAR SYSTEMS 

Yoram Baram* and Thomas Kailath** 

Abstract 

A linear state-space system will be said to be estimable if in estimating 

its state from its output the posterior error covariance matrix is strictly 

smaller than the prior covariance matrix. 

the quadratic cost of state feedback control is strictly smaller than the cost 

when no feedback is used. 

different from the well known observability and controllability properties of 

linear systems. 

regulability are derived for time variant and time invariant systems, in 

discrete and continuous time. 

It will be said to be regulable if 

These properties, which are shown to be dual, are 

Necessary and sufficient conditions for estimability and 
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1. Introduction 

The benefit of using observation or feedback signals in state estimation 

or regulation of dynamical systems is normally manifested by the reduction of 

certain cost functions with respect to their values when no such signals are 

used. 

yield mean-square error reduction in state estimation and quadratic cost 

reduction in state feedback control. These properties, which we call estirna- 

bility and regulability, are different from the properties of observability 

and controllability, which were introduced by Kalman [ l ]  and are widely recog- 

nized as key structural properties in linear estimation and control. 

In this paper we introduce those properties of linear systems that 

We shall say that a stochastic linear system is estimable if, in estimat- 

ing its state from its output, the posterior error covariance matrix is 

strictly smaller than the prior state covariance matrix. 

equivalent to the condition that no direction in the state space at any time 

is orthogonal to all the past observations. 

to the nonsingularity of a certain Gramian matrix. 

is independent of that of observability in the sense that one does not imply 

the other. 

can be reduced to a lower-order estimator of the state process. 

state-space system driven by white noise is shown to be a minimal order 

realization of its output process if and only if it is observable and esti- 

mable. 

in discrete and continuous time. 

condition leads directly to conditions derived by Baram and Shaked [2], 131, 

for  minimality of the Kalman filter. 

This condition is 

It is also shown to be equivalent 

The notion of estimability 

When a system is not estimable, the corresponding Kalman filter 

A linear 

These results apply to time-variant and time-invariant linear systems 

In the stationary case, the estimability 
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We shall say that a linear system is regulable if, for any nonzero ini- 

tial condition, the quadratic cost in applying optimal control is strictly 

smaller than the cost when no control is applied. 

system is not regulable, the feedback signal may be eliminated for some non- 

zero initial condition without increasing the cost. 

conditions for regulability are obtained for time-variant and time-invariant 

systems in discrete and continuous time. As might be expected, regulability 

and estimability are shown to be dual properties. 

This means that when a 

Necessary and sufficient 

2. Estimability 

Consider the system 

= F x + Gkwk k+ 1 k k  X n xk E R 

= H x  + v  k = 0,1,2, ... 'k k k  k 

where 

E{x0wE} = 0, E{w v*} = 0, E{w w*} = Qk6k,J, E{v v*} = R 6 

denotes expectation, * denotes Hermitian transpose, and 6 

Kronecker delta. Let Xk denote the linear least-squares estimate of Xk 

E{xo} = 0, E{x x*} = no, {wk) and {vk) are zero-mean sequences with 0 0  

Also, E{*} 
k J  k.l k J  k k,J' 

denotes the k, .I 
n 

given (yk-19yk-2, 1 and let 
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Definition 2.1. The system (2.1) is estimable if 

P < lIk for all k - > n . k 

i.e., if and only if for any g E Rn, g f 0 

g*Pkg < g*lIkg for all k - > n (2.2) 

or, in words, the posterior mean-square error in estimating any linear combi- 

nation of the state variables is strictly smaller than the prior mean-square 

since for 

sequence. 

error. As will be shown later, the requirement k > n is needed, 

will immediately fail for, say, a scalar {yk) 
- 

k < n the condition 

The orthogonali y property of the least-squares estimate imp1 es that 

is orthogonal to (uncorrelated with) the (2.2) will fail if and only if g*xk 

sequence cy , j 5 k) for 
condition 

k - > n. Conversely, (2.2) is equivalent to the 
j 

g*E{x y*) f 0 for some j - < k - 1 and all k - > n. (2.3) k j  

Estimability means, by (2.2), that in estimating any linear combination of the 

state variables, the posterior mean-square error is strictly smaller than the 

prior mean-square error. Equivalently, by (2.3), it means that no direction 

in the state space for k > n is orthogonal to all the past observations. - 
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Noting that 

k-j 

i =O x -  k - *k,jxj + *k,j+i G j+i-1 W j+i-1 

= I denotes the system's state transition where @ k,j = Fk-lFk-2 Fj' @k,k 
matrix, the estimability condition (2.3) can be written as 

k > n  g*@k,jNj * - (2.4) 

for some j < k - 1, where - 

Condition (2.4) holds if and only if the matrix sequence {Q k,jNj? j - 
has column rank n for all k - > n, or, equivalently, the estimability Gramian 

0 

j=k-1 
N N*@* "k = @k,j j j k,j 

has a full rank for all k > n. It can now be seen that we require k > n in 

the definition of estimability since for a scalar {Yk} sequence the matrix 

sequence {Q 

the condition will immediately fail. 

j < k - 1) defines the covariance function of {yk} 

- - 

j 5 k - 1) cannot have column rank n for any k < n and 

k,j' Nj' 

k,JNY 
We note that the triple {Hk, Q 

- 
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where l(k - j) = 1 for j < k, 0 otherwise, and nk satisfies the Lyapunov 

equation 

(2.5) 

We have, then, the following result. 

Theorem 2.1. 

condition holds 

The system (2.1) is estimable if and only if the following 

rank W = n for all k > n k - (2.6) 

We note that when the system is not estimable, the state estimate can be 

reduced, without loss of information, to a lower dimensional vector, which, in 

turn, results in the reduction of the Kalman filter to a lower dimensional 

linear estimator of the state. 

Remarks 

1. The concept of estirnability, which means that no direction in the 

state space is orthogonal to all the past observations, is an extension to the 

stochastic case of the concept of observability, which, in the deterministic 

case, means that the state can be deduced from the past observations. 

that this notion of "stochastic observability" is different from the one 

defined by Chen [4] as convergence of the error covariance matrix in estimat- 

We note 

ing the initial state from a finite number of observations, when the prior 

covariance matrix is a1 and a tends to infinity. While Chen's definition 

reduces to that of observability when the system is deterministic, the 
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estimability notion is independent of that of observability, in the sense 

that, as can be readily verified by example, one does not imply the other. 

2. Motivated by (2.31, let us examine the condition that no direction in 

the state space is orthogonal to all the past inputs (rather than outputs, as 

in (2.3)), i.e., that for any g E Rn, g f 0 

g*E{x w*} * 0 for some j 5 k - 1 for all k > n k j  - 

which, noting that 

k- 1 
'k = *k,OXO + Eo @k,j+lGjwj 

becomes 

g**k,j+l C Q  j j + O  for some j < k - 1 ,  - for all k > n  - (2.7) 

for any g E Rn, g f 0. But the latter condition holds if and only if the 

j 5 k - 1) has full column rank, which is the 
k, JGJQj ' matrix sequence { @  

condition for reachability of the pair (F G Q ) .  This condition, which has 

been termed by Bryson [5] "disturbability," is identical to the deterministic 
j' j j 

reachability condition when the input noise covariance Qj is nonsingular. 

This stands in contrast to the fact that estimability and observability are 

unrelated concepts. We also note that disturbability is not dual to estima- 

bility in the cornon system-theoretic sense. Such dual property will be pre- 

sented in section 3. 
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The Stationary Case 

Some useful equivalent forms of Theorem 2.1  can be obtained in the spe- 

cial case where the parameters {F, C, H, Q, R} of the system (2 .1 )  are time 

invariant. When the eigenvalues of F are strictly inside the unit circle, 

the matrix 

nonnegative solution of the equation (see, e.g., [6, p. 701) 

nk = E{x x*l has a steady-state value It, which is the unique k k  

n = FIIF* + GQG* 

if no = II, then flk has a constant value n for all k > 0 and the 

processes Xk and yk are stationary. The matrix Nk = IIkHZ then has a 

constant value N = nH* . The stationary system is estimable if the condition 

- 

Pk < n for all k > n - 

is satisfied. The following result is a direct consequence of Theorem 2.1. 

Corollary 2.1. 

estimable if and only if the pair (F, FN) is reachable, i.e., 

. FnN] = n rank[FN : F N : - - a  

The stationary system (F, G, H, Q, R, Ito = It) is 

2 

The Popov-Belevitch-Hautus test (see, e.@;., [7], p.  135) can be used to 

Let us denote by fy obtain an equivalent characterization of estimability. 

a left eigenvector of F, corresponding to an eigenvalue 

fyA = X.f*. 

Xi, then 

Multiplying (2.8) on the right by fi, we obtain 
1 1  

nfi = (I - liF)-'CQC*fi 
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yielding 

N*fi = H(1 - XiF)-lCQC*fi ( 2 . 9 )  

By the PBH test, the pair (F, N) is reachable if and only if 

any fi corresponding to each Ai. Noting that x i  f 0 ,  we obtain, by (2.9) 

and Corollary 2.1, the following result, which relates the estimability prop- 

erty to the system's eigenstructure. 

N*fi f 0 for 

Corollary 2.2. 

and only if for any left eigenvector 

xi of F, 

The stationary system (F, G, H, Q, R, no = n) is estimable if 

fr corresponding to each eigenvalue 

H(XilI - F)-'GQG*fi f 0 (2.10) 

We note that condition (2.10) is the same as the condition presented by Bararn 

and Shaked [2] for minimality of the stationary Kalman filter associated with 

the system, in the sense that there is no linear estimator of its state, 

having order smaller than n. The above derivation is simpler than the one in 

[2], which would also be hard to generalize to the time-varying case. 
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Continuous-Time Systems 

Now consider the system 

(2.11) 

where 

cesses with E{x(O)w*(t)} = 0 ,  E{w(t)v*(s)) = 0 ,  E{w(t)w*(s)) = Q(t)&(t - s )  

and e{v(t)v*(s)} = R(t)&(t - s ) .  Let x(t) denote the linear least-squares 

estimate of 

E{x(O)) = 0, E(x(O)x*(O)) = n(o ) ,  {w(t)) and {v(t)) are zero-mean pro- 

- 
x(t) given {y(s), s - < t) and let 

The system (2.11) is said to be estimable if the condition 

is satisfied. 

Let us denote by @(t,s) the system's transition matrix and let 

N(t) = n(t)H*(t) 

Defining the continuous time estimability Cramian by 

W ( t ) = Io @ ( t , s )N( s IN*( s ) O* ( t , s Ids 
t 

(2.12) 



and following the analysis of the discrete time case, we obtain the following 

result. 

Theorem 2.2. 

condition holds 

The system (2.11) is estimable if and only if the following 

rank W(t) = n for any t > 0 

In the time-invariant case, when the matrix F has all its eigenvalues 

strictly in the left half plane, n(t) reaches a steady-state value, which is 

the unique nonnegative solution of the equation 

Fn + IF* + CQG* = 0 (2 .13)  

When n(0) = n, the matrix N(t) has a constant value N = nH* and the pro- 

cesses {x(t)) and {y(t)) are stationary. The stationary system is estimable 

if the condition 

P(t) ( n t > O  

holds. The following result is a direct consequence of Theorem 2.2.  

Corollary 2.3. The stationary system (F, C, H, Q, R, n(0) = n) is estimable 

if and only if the pair (F, N) is controllable. 

Let us denote by fi a left eigenvector of F corresponding to an 

eigenvalue Xi. Multiplying (2.13) on the right by fi, we obtain 

1 1  



nf. = (-AiI - F)-'CQG*fi 
1 

~ (2.15) H(-XiI - F)- 1 GQG*fi * 0 

yielding 

I As in the discrete-time case, this is also the condition for minimality of the 
I 

continuous-time stationary Kalman filter [ 3 ] .  The above derivation is simpler 

than the one in [ 3 ]  and the condition is shown to be a restriction to the 

stationary case of the more general estimability property. 

N*fi = H*(-AiI - F)-'GQG*fi (2.14) 

Since, by the PBH test, the pair (F, N) is controllable if and only if 

N*fi f 0, Corollary 2.3 and equation (2.14) yield the following result. 

Corollary 2.4. The stationary system (F, G ,  H, Q, R, n(0)  = Il) is estimable 

if and only if for any left eigenvector 

value Xi of F, 

fy corresponding to each eigen- 

Minimal Realization of the Observation Process 

System estimability implies, by definition, that the observations contain 

information on all the state variables. It might be expected, then, that the 

minimality of any realization of the observation process would be strongly 

linked to the estimability property. The fact that estimability depends on 

the sequence INk], which defines the covariance function of the output pro- 

cess, is a further indication of such a linkage. We first note that if we 
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define the order of a state-space realization of a possibly nonstationary 

process as the dimension of its state process, then the order will be gener- 

ally time-dependent. 

minimal if its order is not greater than that of any other realization of the 

process at any time. 

We shall say that a realization of such a process is 

It is known (see, e.g., [8]) that the minimal order of any realization 

of a stationary process {Yk), possessing a finite dimensional linear rep- 

resentation is the dimension of the Hilbert space Yk generated by 
A A 

{yk+j,  j 2 01, where y k + j  denotes the least-squares estimate of y k + j  given 

Iyk-l, yk-2, ..., yo) . To see that this is also true when (yk) is nonsta- 

tionary, let Zk denote a base of Yk, i.e., a vector of minimal dimension 

from which any element of Yk can be obtained by a linear transformation. 

c Y 8 vk, where vk = yk - yk and 8 denotes the k+ 1 E 'k+l k Since z 

Cartesian product and since 

= A z + Bkvk and y = C z + vk. By definition, such that zk+, 

dim zk = dim Yk. Suppose that there exists a realization of {Yk), 

given by q 

noise process, uncorrelated with qo 

uncorrelated with {rk), such that dim qk < dim Yk' 

vk 1 Y k ,  there exist matrices Ak, B k ,  and c k ,  

k k  k k k  

= akqk + Bkrk, yk = ykqk + tk, where {rk} is a white k+ 1 

and (tk) is a white noise process, 

Then we have 
A A  A 

[Yk, Yk+l?  . * * I  = [yk ,  yk+l @k+l,k' -**]qk where Ok+j,k is the transition 

matrix corresponding to ak and qk is the least squares estimate of qk, 

given yk-2, . . . I .  But since the dimension of Yk is equal to the 

covariance rank of [yk ^T . . yk+l ^T : . * . I ,  we have dim Y 

contradiction. 

at time k is equal to the dimension of Yk' 

A 

< dim qk < dim Y k ,  a k -  
It follows that the minimal order of any realization of {yk} 
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it follows that 

rank E{xkxk) = n. 

dim Yk = n if and only if (2.1) is observable and - A *  Since the latter, for k > n, is the condition for esti- - 
mability we have the following result. 

Theorem 2.3. 

{y,} for k > n 

The system (2.1) is a minimal order realization of the process 

if and only if it is observable and estimable. - 

Restricting Theorem 2.3 to the stationary case and employing corol- 

lary 2.1, we obtain the following result. 

Corollary 2.5. 

a stationary output process {yk} if and only if the triplet (H, F, N) is 

observable and reachable. 

The system (F, C ,  H, Q, R, no = n) is a minimal realization of 

Theorem 2.3 and corollary 2.2 further imply that in the stationary case 

the system is a minimal realization of its output process if and only if the 

pair (H, F) is observable and condition (2.10) holds. 

first presented in [9] is now extended by Theorem 2.3 to nonstationary pro- 

cesses. We also note that for the stationary case, the above analysis implies 

that an observable system of order n is estimable if and only if the denomi- 

nator degree of its spectral density function is 

extended to the continuous time case. 

This result, which was 

2n. These results can be 
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3 .  Regulabili ty 

Consider a system 

= F x  + C u  
X k+l k k k k ( 3 . 1 )  

where the input sequence {uk] is to be selected so as to minimize the 

quadratic cost function 

K- 1 

(3.2) 

where Lk is a nonnegative matrix and Mk is a positive definite matrix. 

Definition 3.1. The system (3.1) is regulable if for any initial condition 

xo f 0 

min J[xo, {uk}, K l  < J[xo, {u, = 01, K] 
{Ukl 

for all K - > n ( 3 . 3 )  

Regulability means that for any initial condition the optimal cost is strictly 

smaller than the cost when no input is used. 

We next derive a Cramian rank test for regulability. Substituting 

k- 1 
'k = @k,OXO + *k,j+lCjuj 

j =o 

in (3.21, we obtain 



J[wo, {uk1, Kl = k+1,0 L Q  k+l k+l,OxO k=O 

k 

+ 2x*@* 0 k+1,0 k+l 'k+1,j+lCjuj j =o 

k+l,J+l C.u J J ) + u;Mkuk} 

Let 

1 /2, 
G ,  bk = Lk+l k+l,OxO *k,j = Lk+l k+l,j+l j 

1 /2, 

A0,o 

A1,o A1,l 0 

A2 (0 A2,l A2,2 

AK-1 ,O AK-l, 1 . . .  AK-i ,K-I 

u =  

b0 

bl 

bK- 

uO 

u 1  

UK- 
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then it can be readily verified that 

= ii*[i*ii + R I G  + 2i;”Aii ( 3 . 3 )  

We would like to find a necessary and sufficient condition for regulability, 

i.e., a condition under which min AJ < 0. Obviously, we have min AJ - < 0 

so, we w ~ u l d  like to find a condikion under which 
{uk} {Uk 1 

( 3 . 4 )  

Differentiating ( 3 . 3 )  and equating to zero, we obtain 

- -  a A J  - & * ( A * A  + R) + 2E*A = 0 
au 

Since w has full rank, so does ( A * A  + A). Hence, the optimal input is 

u = -(ii*& + R)”At6 

yielding 

It follows that ( 3 . 4 )  holds if and only if 5 is not in the null space of 

A * ,  i.e., if and only if 

17 



ij*AA*6 f: 0 

The regulability condition is then 

(3.5) 

K-1 ' (' K-1 A* J t k  j 
k=O j=k b r ( y A *  j=k j,k b ) * O  j 

or, for  any xo f: 0 

)G '*(gl @y+l,k+l L c p  j+l j+l,k+l k k j=k 

cp the condition becomes Noting that 'j+1,0 = @j+l,k+l k+1,0 

K-l k=O (y j=k ';+l,k+l L e  j+l j+l,k+l )'*'E 

K- 1 
' (Fk 'J+l,k+lLj+l@j+l ,k+l)@k+l ,OXO * 

for any xo f: 0. The matrix 

K- 1 
'k = @f;+l,k+l L c p  j+l j+l,k+l j=k 

can be seen to satisfy the (time-reversed) Lyapunov equation 

'k = F!+lSk+l F k+l + Lk 9 6~ = LK 

The regulability condition can now be written as 

18 
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x:WKxO t 0 for any xo * 0 

where WK is the regulability Cramian 

K- 1 
s S*Q ';+1,0 k k k+1,0 'K = k=O 

with 

We have proved the following result. 

Theorem 3.1. The system (3.1) is regulable if and only if 

rank WK = n for all K - > n (3.7) 

Suppose that the regulability condition is not satisfied. Then for some 

the cost will not be reduced by applying any input initial condition 

signal {uk}. 

xo f 0 

This initial condition can be found by solving the equation 

r2' @:+1,0 s k s*o k k+l,O) '0 = 
k=O 

When the system is initialized at this initial condition, any state feedback 

control signal may be eliminated without increasing the cost. 

the latter condition is analogous to the orthogonality condition 

g*E{x y*) = 0, j < k in the estimation problem. 

We note that 

- k 3  
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Time-Invariant Systems 

Now consider the time invariant system 

= F x  + G u k ,  k > O  - (3.8) k+ 1 k X 

where F is assumed to have all its eigenvalues strictly inside the unit 

circle and the input {uk) is selected so as to minimize the cost function 

K- 1 

For K + m ,  the matrix 

J, = 6 ,  k > 0 ,  which is the unique non-negative solution of the equation 

$k, defined by (3.6), has a steady state value 

k - 

JI = F*$F + L (3.9) 

Taking E = J,, we also have J, - JI, k > 0. This situation is the analog of 

stationarity of the stochastic system studied in section 2. 

we obtain the following result as a direct consequence of Theorem 3.1. 

k -  
Denoting S = J,G, 

Corollary 3.1. 

pair (F*, S)  is reachable. 

The system (3.8) with f: = J, is regulable if and only if the 

Let fi denote an eigenvector of F, corresponding to an eigenvalue 

Xi. Multiplying (3.9) on the right by fi we obtain 

$fi = (I - AiF*)-lLfi 

20 



yielding 

S*fi = G*(XTII 1 - F*)Lfi 
\ 

(3.10) 

By the Popov-Belevitch-Hautus test the pair (F*, S) is reachable if and only 

if S*fi f 0 for any fi corresponding to each Xi. Noting that Xi t 0, we 

obtain the following result from corollary 3.1 and equation (3.10). 

Corollary 3.2. 

any eigenvector fi ,corresponding to each eigenvalue Xi of F, 

The system (3.8) with E = J1 is regulable if and only if for 

G*(AYII - F*)Lfi f 0 (3.11) 

It follows from (3.11) that a necessary condition for regulability is 

that Lfi f 0 for any fi corresponding to each Xi, which is equivalent to 

reachability of the pair (F*, L*). Given that the latter condition is satis- 

fied, a sufficient condition for regulability is that none of the zeroes of 

the system (G, F*, L) is a reciprocal of any of its poles. 

Continuous-Time Systems 

Consider that the system 

i ( t )  = F(t)x(t) + G(t)u(t) , t - > 0 

where {u(t)) is selected so as to  minimize the cost function 

(3.12) 
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where L(t) is a non-negative definite matrix and M(t) is a positive definite 

matrix. The system is said to be regulable if we have,, for any initial 

condition x(O), 

min J [ x ( O ) ,  {u(t)>, TI < J[x(O), {u(t) = 01, TI for any t - > 0 
{u(t)> 

Let us define the continuous-time regulability Cramian 

T 
W(t) = @*(t,O)S(t)S*(t)@(t,O)dt 

0 

where 

S(t) = $(t)G(t) 

and $(t) satisfies the equation 

-6(t) = $(t)F(t) + F*(t)$(t) + L(t) , $(TI = L(T) 

Then, by applying limiting arguments to the analysis of the discrete time case 

or by similar direct calculations (see also some relevant calculations in [ l o ,  

App. B]), we obtain the following result. 

Theorem 3.2. The system (3.12) is regulable if and only if 

rank W(t) = n for any t > 0 
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For the time invariant system 

i(t) = F x ( t )  + Cu(t) , t > O  - ( 3 . 1 3 )  

where F is assumed to have all its eigenvalues strictly in the left half 

plane and 

J[x(O), {u(t)l] = x*(T)~x(T) + lT [x*( t)Lx( t) + u*( t)Mu( t) Jdt 

where L is a non-negative definite matrix and M is a positive definite 

matrix, we define 

s = JIG 

where (I satisfies the equation 

JIF + F*d, + L = 0 

and, following the analysis of the discrete-time case, we obtain the following 

result . 

Corollary 3 .3  

The system (3.13) with = I, is regulable if and only if the pair 

(F*, S) is controllable, or, equivalently, for any eigenvector 

sponding to each eigenvalue Xi of F ,  the condition 

fi corre- 
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G*(-x~I - F*)-'Lfi * 0 

is satisfied. 

4. Duality 

It can be seen that the estimability condition (2.6) and the regulability 

condition (3.7), which involve the Lyapunov equations (2.5) and (3.61, respec- 

tively, are similar, modulo time reversal. Such similarity, which has also 

been shown to exist between the Riccati equations associated with the estima- 

tion and the regulation problems, has been termed "duality" in the literature 

[ l ] .  We now show that the duality between the estimability and the regulabil- 

ity properties is consistent with the one between the Lyapunov and the Riccati 

equations corresponding to the estimation and the regulation problems and, 

employing this duality, obtain the regulability condition from the estimabil- 

ity condition. 

Estimability in the discrete-time case was defined in section 2 by the 

condition 

P < nk k 

where Pk is known to satisfy the Riccati equation 

(4 .1 )  

'k+ 1 = F ~ P ~ F ;  + G k k k  Q G* - F k k k  P H*(H k k k  P H* + R~)-'H~P~F; (4.2) 

initialized at Po = no,  while nk is known to satisfy the Lyapunov equation 

= F n F* + G Q G* 'k+ 1 k k k  k k k  
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In the discrete time regulation problem the minimal cost is known t o  be 

[ 1 1 ,  P .  4941 

where ro satisfies the (time-reversed) Riccati equation 

with the terminal condition 

from (3 .1)  and (3.2) as 

rK = LK. The cost for zero input is obtained 

where JIo satisfies the (time-reversed) Lyapunov equation 

*k = FE+lbk+lFk+l + Lk+l (4.7) 

with the terminal condition 

the regulability condition ( 3 . 3 )  is equivalent to the condition 

$K = LK. It follows from (4.4) and (4.6) that 

It can be seen that the regulability condition (4.8) and equations (4.5) 

and (4.7) are dual, modulo time reversal, to the estimability condition (4.1) 
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and equations ( 4 . 2 )  and ( 4 . 3 ) .  

dual to the estimability condition 

It follows that the regulability condition, 

n 
for all K > n - n H H*n Q* rank 'K,k k k k k K,k k=K- 1 

is given by 

K- 1 
rank eo 6 G G*JI 8 = n for  all K > n ,k k k k k O,k - 

k=O 

where $k is defined by (4.7) and eO,k is the transition matrix of the 

= F*F* ... FE, we have O,k 1 2  (adjoint) system qk = FE+,qk+l. Since 8 

= Q" yielding the regulability condition O,k k+l,O' 8 

K- 1 
= n for all K > n rank ':+I ,ObkGkGEQkQk+l ,O - 

k=O 

which is the same as the condition obtained in section 3 .  The continuous-time 

case can be treated in a similar manner. 

5. Conclusion 

The estimability and the regulability properties of linear systems deter- 

mine the ability to reduce the mean square error in state estimation and the 

quadratic cost in state feedback regulation strictly below their values when 

no observations or feedback are used. These properties, which are different 

from the well known observability and controllability properties, have been 

shown to be dual. Necessary and sufficient conditions for estimability and 

for regulability have been derived for time variant and for time invariant 

systems in continuous and discrete time. 
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