
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Physics and Computer Science Faculty 
Publications Physics and Computer Science 

2006 

A Note on Quasi-Triangulated Graphs A Note on Quasi-Triangulated Graphs 

Ion Gorgos 
Academy of Economic Studies of Moldova 

Chính T. Hoàng 
Wilfrid Laurier University, choang@wlu.ca 

Vitaly Voloshin 
Troy University 

Follow this and additional works at: https://scholars.wlu.ca/phys_faculty 

Recommended Citation Recommended Citation 
Gorgos, Ion; Hoàng, Chính T.; and Voloshin, Vitaly, "A Note on Quasi-Triangulated Graphs" (2006). Physics 
and Computer Science Faculty Publications. 72. 
https://scholars.wlu.ca/phys_faculty/72 

This Article is brought to you for free and open access by the Physics and Computer Science at Scholars Commons 
@ Laurier. It has been accepted for inclusion in Physics and Computer Science Faculty Publications by an 
authorized administrator of Scholars Commons @ Laurier. For more information, please contact 
scholarscommons@wlu.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wilfrid Laurier University

https://core.ac.uk/display/143689727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.wlu.ca/
https://scholars.wlu.ca/phys_faculty
https://scholars.wlu.ca/phys_faculty
https://scholars.wlu.ca/phys
https://scholars.wlu.ca/phys_faculty?utm_source=scholars.wlu.ca%2Fphys_faculty%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/phys_faculty/72?utm_source=scholars.wlu.ca%2Fphys_faculty%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 597–602

A NOTE ON QUASI-TRIANGULATED GRAPHS∗

ION GORGOS† , CHÍNH T. HOÀNG‡ , AND VITALY VOLOSHIN§

Abstract. A graph is quasi-triangulated if each of its induced subgraphs has a vertex which is
either simplicial (its neighbors form a clique) or cosimplicial (its nonneighbors form an independent
set). We prove that a graph G is quasi-triangulated if and only if each induced subgraph H of G
contains a vertex that does not lie in a hole, or an antihole, where a hole is a chordless cycle with at
least four vertices, and an antihole is the complement of a hole. We also present an algorithm that
recognizes a quasi-triangulated graph in O(nm) time.

Key words. triangulated graphs, chordal graphs, quasi-triangulated graphs

AMS subject classifications. 05C75, 05C85

DOI. 10.1137/S0895480104444399

1. Introduction. In a graph G, a vertex x is simplicial if its neighborhood
N(x) induces a complete subgraph of G. A graph is triangulated (chordal) if it
does not contain a chordless cycle of length at least four (a hole) as an induced
subgraph. A famous theorem of Dirac [3] states that every triangulated graph has
a simplicial vertex. Actually, Dirac proved more: every triangulated graph different
from a clique contains two nonadjacent simplicial vertices. Let us say that a vertex
is cosimplicial if its nonneighbors form an independent subset of vertices and that
a graph is cotriangulated if it does not contain the complement of a chordless cycle
on at least four vertices (an antihole). Dirac’s theorem says equivalently that every
cotriangulated graph has a cosimplicial vertex. Our purpose is to investigate the larger
class of graphs which are called quasi-triangulated graphs (QT for short), defined as
follows: a graph G is in class QT if and only if every induced subgraph H of G has a
vertex which is either simplicial or cosimplicial in H. Quasi-triangulated graphs have
been introduced by the third author in [9, 11] as a generalization of chordal graphs.
The problem of characterizing the class QT was raised in [9] and, independently, in
[7] (where they are called good). The reader is referred to [1] for more information on
the class QT .

Following [7], we say that an order v1 < v2 < · · · < vn on a graph G is good if, for
any induced subgraph H of G, either the largest vertex of (H,<) is simplicial or the
smallest vertex of (H,<) is cosimplicial. Good orders are perfect in the sense of [2].

Simplicial vertices cannot lie in a hole; and cosimplicial vertices cannot lie in an
antihole. A graph with each vertex belonging to some hole and some antihole is called
latticed.

The third author conjectured (unpublished) and the first author proved in [4, 5]
the following.

∗Received by the editors June 10, 2004; accepted for publication (in revised form) November 9,
2005; published electronically August 25, 2006.

http://www.siam.org/journals/sidma/20-3/44439.html
†Academy of Economic Studies of Moldova, 61 Banulescu-Bodoni str. MD-2005, Chisinau,

Moldova.
‡Department of Physics and Computer Science, Wilfrid Laurier University, 75 University Ave. W.,

Waterloo, ON N2L 3C5, Canada (choang@wlu.ca). This author’s research was supported by the
NSERC.

§Department of Mathematics and Physics, Troy University, Troy, AL 36082 (vvoloshin@troy.edu).
This author’s research was partially supported by a Troy University research grant.

597



598 ION GORGOS, CHÍNH T. HOÀNG, AND VITALY VOLOSHIN

Theorem 1. For a graph G, the following three conditions are equivalent:

(i) G is quasi-triangulated.
(ii) G does not contain a latticed subgraph as an induced subgraph.
(iii) G admits a good order.

As usual, n (respectively, m) denote the number of vertices (respectively, edges) of
the input graph. For the quasi-triangulated graph recognition problem, the third au-
thor [10] proposed an O(n4) algorithm, Spinrad [12] proposed an O(n2.77) algorithm,
and the second author [6] independently proposed an O(nm) algorithm.

Theorem 2. There is an O(nm)-time O(n2)-space algorithm to recognize a quasi-
triangulated graph.

Theorems 1 and 2 are known by researchers in the field and have been referred
to in the literature, but their proofs have never been published. The purpose of this
paper is to provide the proofs of these two theorems.

2. Proof of Theorem 1. To prove Theorem 1, we will need the following lemma,
which was included in the original proof in [4] and was rediscovered independently in
[8].

Lemma 1. Let G be a graph and x be a vertex of G that does not lie in a hole.
Then any minimal cutset C of G which is contained in the neighborhood N(x) of x is
a clique.

Proof of Lemma 1. Define G, x,C as in the lemma. Let Y be a component of
G− C that does not contain x. We may assume that there are nonadjacent vertices
u, v in C, for otherwise we are done. Since C is a minimal cutset, each of u and v
has a neighbor in Y . It follows that there is a chordless path of length at least two
joining u to v whose interior vertices lie in Y . This path together with x forms a hole,
a contradiction to our assumption on x.

Proof of Theorem 1. It is easy to see that (i) and (iii) are equivalent, and (i)
implies (ii). So, we need only to prove that (ii) implies (i). We shall prove this by
induction on the number of vertices. Let G be a graph satisfying (ii). We may assume
G contains no simplicial vertex and no cosimplicial vertex, for otherwise we are done
by the induction hypothesis. If G is disconnected, then each component of G contains
a hole (for otherwise, it is triangulated and contains a simplicial vertex that remains
simplicial in G); thus, G contains the union of two disjoint holes, a contradiction to
(ii). So, G must be connected.

By replacing G by its complement G if necessary, we may assume that G contains
a vertex that does not lie in a hole.

Define X = {x | x does not lie in a hole of G}.
Our assumption on G implies that X �= ∅. Let G′ = G−X. G′ is nonempty, for

otherwise G is triangulated and thus contains a simplicial vertex by Dirac’s theorem.
By the induction hypothesis, G′ contains a simplicial or cosimplicial vertex y. Since
every vertex of G′ lies in a hole, y is cosimplicial. We shall prove that y is adjacent
to all vertices of X (this will imply y is cosimplicial in G, a contradiction).

Let x be a vertex in X. Since G is connected and x is not cosimplicial (by
assumption), there is a nonempty set C of vertices in N(x) that is a minimal cutset
of G. By Lemma 1, C is a clique. Let G1, G2 be induced subgraphs of G such that
G = G1 ∪G2, G1 ∩G2 = C, and there is no edge between G1 − C and G2 − C.

Suppose G1 is triangulated. We claim that there is a simplicial vertex s in G1−C.
If G1 is a clique, then the claim obviously holds; otherwise, by Dirac’s theorem, G1

contains two nonadjacent simplicial vertices, one of which must lie in G1 −C since C



A NOTE ON QUASI-TRIANGULATED GRAPHS 599

is a clique. But s remains a simplicial vertex of G, a contradiction to our assumption
on G. Thus G1, and similarly G2, cannot be triangulated.

Therefore, G1 contains a hole. Since C is a clique, one edge, say e1, of this hole
lies completely in G1 − C. Similarly, there is an edge, say e2, that lies completely in
G2 −C and belongs to a hole. Since y is cosimplicial in G′ and all endpoints of e1, e2

are in G′, y must be in C, and therefore adjacent to x, as desired.

3. A recognition algorithm for quasi-triangulated graphs. In this section,
we prove Theorem 2 by describing an algorithm that recognizes a quasi-triangulated
graph in O(nm) time using O(n2) space.

For a vertex x, an S-obstruction is a triple (a, b, x) that induces a P3 with x being
the interior vertex of the path; a C-obstruction is a triple (a, b, x) that induces an
S-obstruction (a, b, x) in the complement.

A straightforward algorithm to recognize quasi-triangulated graphs proceeds as
follows. First, for all vertices x, list all S- and C-obstructions. Then find a vertex y
with no S- or C-obstructions; if no such vertex exists, then the graph is not quasi-
triangulated. Remove y and update the lists of obstructions for the remaining vertices.
Repeat this process to eliminate all vertices. If all vertices can be eliminated in this
way, then the graph is quasi-triangulated; otherwise, it is not.

Since a vertex has O(n2) obstructions, we will need a data structure to store
O(n3) obstructions of the graph. Thus the algorithm runs in O(n3) time using O(n3)
space. We are going to show that the algorithm can be refined to run in time O(nm)
using O(n2) space.

Proof of Theorem 2. We may suppose there is a total order < on the vertices of a
given graph G. We say that (a, b, x) is less than (c, d, x), denoted by (a, b, x) < (c, d, x),
if a < c, or a = c and b < d. To achieve the O(nm) time bound, we will list only the
smallest S-obstruction and C-obstruction for each vertex. When removing a vertex y,
if a vertex x loses an obstruction, then we will find a smallest obstruction for x in the
remaining graph. We shall show that, over the life of the algorithm, the time needed
to list the (currently) smallest obstructions for a vertex x is O(m). The outline of our
algorithm is as follows.

Outline of algorithm. We begin with the input graph G and proceed to elimi-
nate vertices one by one using the following steps.

1. For each vertex x of graph G, list a smallest S-obstruction (a, b, x) and a
smallest C-obstruction (g, d, x).

2. If every remaining vertex has an S-obstruction and a C-obstruction, then G is
not quasi-triangulated.

3. If a vertex z has no S-obstruction or no C-obstruction, eliminate z from G, and
for each remaining vertex x that loses an S-obstruction (respectively, C-obstruction),
generate a new smallest S-obstruction (respectively, C-obstruction). Replace G by
G− z, and repeat step 2.

The graph G is quasi-triangulated if and only if recursive applications of step 3
eliminate all vertices. To anticipate, our algorithm lists the S-obstructions in O(nm)
time using O(n+m) space and the C-obstructions in O(nm) time using O(n2) space.

Let N(x) be the adjacency list of vertex x. Without loss of generality, we may
assume for all x that the lists N(x) are sorted in increasing order.

Listing the smallest S-obstruction for a vertex x. For each vertex x,
we use two pointers, α(x) and β(x). Initially α(x) points to the first vertex α in
N(x) and β(x) points to the immediate successor β of α in N(x) (for simplicity, we
let α (respectively, β) denote the name of the vertex pointed to by the pointer α(x)



600 ION GORGOS, CHÍNH T. HOÀNG, AND VITALY VOLOSHIN

(respectively, β(x)). If α(x) or β(x) cannot be initialized, then x has no S-obstruction.
We simply advance β(x) on N(x) until we find that α and β are nonadjacent. When
β(x) reaches the end of N(x) (i.e., it has value null), we advance α(x) in N(x) and
initialize β(x) (making β(x) point to the immediate successor of α(x) in N(x)). If
α(x) = null, then x has no S-obstruction, and a message “No S-obstruction” is
produced. We can summarize this process as follows. (In the following procedure, the
function IsEdge(a, b) returns true if and only if ab is an edge.)

Procedure ListSmallest-S-Obstruction(x).
while true

{ if α(x) = null
then return “no S-obstruction for x”

if IsEdge(α, β) = true
then advance β(x) in N(x)

else
return (α, β, x)

while ((α(x) �= null) and β(x) = null))
{ advance α(x) in N(x)

initialize β(x)
}

}
Suppose we eliminate a vertex z and x loses its S-obstruction (a, b, x) (because a = z or
b = z). If b (respectively, a) is eliminated, then we advance β(x) (respectively, α(x))
and call Procedure ListSmallest-S-Obstruction(x) to get the smallest S-obstruction
for x. The number of movements of the pointers α(x), β(x) in N(x) is proportional to
O(n+m) since we advance β(x) only in the presence of an edge, and α(x) is reset at
most the degree of x times. If we have the incidence matrix of G at our disposal, then
each call to Procedure IsEdge takes only constant time, but this method needs O(n2)
space. We are going to show that for each vertex x we can implement Procedure
IsEdge in O(n + m) time using only the adjacency lists of G (O(n + m) space).

Now we describe Procedure IsEdge(α, β), which returns true if and only if αβ is
an edge. For a vertex x, there is a pointer p(x) which initially points to the first vertex
in N(α) (recall that α(x) is the pointer associated with vertex x). If p(x) cannot be
initialized, then αβ is not an edge. Pointer p(x) is advanced in N(α) until it points
to either (i) β (αβ is an edge) or (ii) the smallest vertex in N(α) that is greater than
β (αβ is not an edge). The vertex pointed to by p(x) is denoted by p.

Procedure IsEdge(α, β).

while true
{ if p(x) = null

return false
if p < β

advance p(x) in N(α)
else if p = β

return true
else if p > β

return false
}

For each vertex x and each α(x), p(x) scans N(α) only once. Thus, for each x, the
cost of testing for all edges αβ is O(n + m).



A NOTE ON QUASI-TRIANGULATED GRAPHS 601

Listing the smallest C-obstruction for a vertex x. Assume that the vertices
are numbered 1, 2, . . . , n. For each vertex x, we maintain an integer variable counter
γ(x) that refers to the smallest nonneighbor of x. We need to generate the smallest
C-obstruction of the form (γ, δ, x) for some vertex δ (that must be adjacent to γ and
nonadjacent to x). This can be done as follows.

For each vertex x, we maintain a 0-1 characteristic vector I(x) of size n to rep-
resent the neighborhood of x (the jth entry of I(x) is 1 if and only if vertex j is a
neighbor of x; in other words, I(x) is the xth row of the incidence matrix of G). This
is necessary so that testing of an edge of the form xy can be done in constant time.
Given γ(x), we find the smallest neighbor δ of γ (the vertex referred to by γ(x)) such
that γ < δ and δ is nonadjacent to x by scanning the list N(γ) and, for each vertex
y in this list, testing whether yx is an edge. We use a pointer δ(x) to point to the
location of δ in N(γ). If δ(x) cannot be initialized, then there is no C-obstruction of
the form (γ, δ, x); in this case, we increase γ(x) by one and repeat the process (the
initial value of γ(x) is one). This is summarized in the following procedure (we leave
the pointer initialization problem to the reader).

Procedure ListSmallest-C-Obstruction(x).

while true
{ if δ(x) = null

repeat
increase γ(x) by one
if (γ > n)

return “No C-obstruction for x”
let δ(x) point to the first vertex in N(γ)

until (xγ is not an edge) and δ(x) is not null
if (xδ is not an edge) and (γ < δ)

return the C-obstruction (γ, δ, x)
advance δ(x) in N(γ)

}
Suppose we eliminate a vertex z and x loses its C-obstruction (g, d, x) (because g = z
or d = z). If d is eliminated, then we advance δ(x) in N(γ(x)) and call Procedure
ListSmallest-C-Obstruction. If g is eliminated, then we repeatedly increase γ(x) by
one until we get the next smallest nonneighbor of x and call Procedure ListSmallest-
C-Obstruction.

For each vertex x and each γ(x), the list N(γ(x)) is scanned at most once. Thus,
for each x, we can list the smallest C-obstruction in O(n + m) time over the life of
the algorithm. This method requires O(n2) space.

In the case of listing the C-obstructions, we do not know how to implement our
algorithm in O(nm) time using linear space. We leave this as an open problem. We
note Spinrad’s algorithm [12] uses O(n2) space since it relies on matrix multiplications.

REFERENCES

[1] A. Brandstädt, V. B. Le, J. P. Spinrad, Graph Classes: A Survey, SIAM Monogr. Discrete
Math. Appl. 3, SIAM, Philadelphia, 1999.

[2] V. Chvátal, Perfectly ordered graphs, in Topics on Perfect Graphs, C. Berge and V. Chvátal,
eds., Ann. Discrete Math. 21, North–Holland, Amsterdam, 1984, pp. 63–65.

[3] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
[4] I. M. Gorgos, A Characterization of Quasi-triangulated Graphs, Preprint 11B494, Kishinev

State University, Kishinev, Moldova, 1984 (in Russian).



602 ION GORGOS, CHÍNH T. HOÀNG, AND VITALY VOLOSHIN

[5] I. M. Gorgos, Method of Alternating Chains and Its Applications, Ph.D. Thesis, Kishinev
State University, Kishinev, Moldova, 1985 (in Russian).

[6] C. T. Hoàng, Recognizing Quasi-triangulated Graphs in O(nm) Time, manuscript.
[7] C. T. Hoàng and N. V. R. Mahadev, A note on perfect orders, Discrete Math., 74 (1989),

pp. 77–84.
[8] C. T. Hoàng, S. Hougardy, F. Maffray, and N. V. R. Mahadev, On simplicial and co-

simplicial vertices in graphs, Discrete Appl. Math., 138 (2004), pp. 117–132.
[9] V. I. Voloshin, Quasi-triangulated Graphs, Preprint 5569-81, Kishinev State University,

Kishinev, Moldova, 1981 (in Russian).
[10] V. I. Voloshin, Quasi-triangulated Graphs Recognition Program, Algorithms and Programs

P006124, Moscow, Russia, 1983 (in Russian).
[11] V. I. Voloshin, Triangulated Graphs and Their Generalizations, Ph.D. Thesis, Kishinev State

University, Kishinev, Moldova, 1983 (in Russian).
[12] J. Spinrad, Recognizing quasi-triangulated graphs, Discrete Appl. Math., 138 (2004), pp. 203–

213.


	A Note on Quasi-Triangulated Graphs
	Recommended Citation

	tmp.1333978563.pdf.VBJ7p

