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ON THE COMPLEXITY OF FINDING A SUN IN A GRAPH∗

CHÍNH T. HOÀNG†

Abstract. The sun is the graph obtained from a cycle of length even and at least six by adding
edges to make the even-indexed vertices pairwise adjacent. Suns play an important role in the study
of strongly chordal graphs. A graph is chordal if it does not contain an induced cycle of length at
least four. A graph is strongly chordal if it is chordal and every even cycle has a chord joining vertices
whose distance on the cycle is odd. Farber proved that a graph is strongly chordal if and only if
it is chordal and contains no induced suns. There are well known polynomial-time algorithms for
recognizing a sun in a chordal graph. Recently, polynomial-time algorithms for finding a sun for a
larger class of graphs, the so-called HHD-free graphs (graphs containing no house, hole, or domino),
have been discovered. In this paper, we prove the problem of deciding whether an arbitrary graph
contains a sun is NP-complete.
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1. Introduction. A hole is an induced cycle with at least four vertices. A graph
is chordal if it does not contain a hole as an induced subgraph. Farber [6] defined
a graph to be strongly chordal if it is chordal and every cycle in the graph on 2k
vertices, k ≥ 3, has a chord uv such that each segment of the cycle from u to v has an
odd number of edges. We denote by k-sun the graph obtained from a cycle of length
2k (k ≥ 3) by adding edges to make the even-indexed vertices pairwise adjacent.
Figure 1 shows a 5-sun. A sun is simply a k-sun for some k ≥ 3. Farber showed [6]
that a graph is strongly chordal if and only if it is chordal and does not contain a sun
as induced subgraph. Farber’s motivation was a polynomial-time algorithm for the
minimum weighted dominating set problem for strongly chordal graphs. The problem
is NP-hard for chordal graphs [1]. In this paper, we prove that it is NP-hard to find
a sun in an arbitrary graph. This result is motivated by the following discussion on
chordal and strongly chordal graphs. For more information on this topic, see [3, 7].

We use N(x) to denote the set of vertices adjacent to vertex x in a graphG. Define
N [x] = N(x) ∪ {x}. A vertex x in a graph is simplicial if N(x) induces a complete
graph. It is well known [4] that graph G is chordal if and only if every induced
subgraph H of G contains a simplicial vertex of H . Farber proved [6] an analogous
characterization for strongly chordal graphs. A vertex x in a graph is simple if the
vertices in N(x) can be ordered as x1, x2, . . . , xk such that N [x1] ⊆ N [x2] ⊆ · · · ⊆
N [xk]. Thus, every simple vertex is simplicial. For a graph G, let R = v1, v2, . . . , vn
be an ordering of vertices of G. Let G(i) = G[{vi, vi+1, . . . , vn}], i.e., the subgraph
induced in G by the set vi through vn of vertices. R is a simple elimination ordering
for G if vi is simple in G(i), 1 ≤ i ≤ n. The following is due to Farber [6].

Theorem 1 (see [6]). The following are equivalent for any graph G:
• G is strongly chordal.
• G is chordal and does not contain a sun.
• Vertices of G admit a simple elimination ordering.
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Fig. 1. The 5-sun.

HOUSE HOLE DOMINO

Fig. 2. The house, the hole, and the domino.

Thus, suns play an important role in the studies of chordal and strongly chordal
graphs. There are well known algorithms [16, 12] to test whether a chordal graph is
strongly chordal and thus whether it contains a sun. It is natural to investigate the
problem of sun testing for larger classes of graphs. A graph is HHD-free if it does
not contain a house, a hole, or a domino (see Figure 2). Every chordal graph is an
HHD-free graph. HHD-free graphs [10] have several properties analogous to those of
chordal graphs. Brandstädt [2] proposed the problem of finding a sun in an HHD-free
graph. This problem was proved to be polynomial-time solvable in [13] and [5]. The
absence of a sun in a graph seems to suggest that the graph has a certain structure.
The author has thought, but has not been able to prove, that a sun-free HHD-free
graph contains a homogeneous set or a simple vertex (a set H of vertices of a graph
G = (V,E) is homogeneous if 2 ≤ |H | < |V | and every vertex outside H is adjacent to
all, or to no vertices of H ; homogeneous sets are also known as nontrivial modules).
One may wonder whether the existence of the algorithms in [16, 12, 13, 5] is due to
the property of being sun-free or of being chordal (or HHD-free). This has led several
researchers to ask for the complexity of finding a sun in a graph. In this paper, we
will prove the following.

Theorem 2. It is NP-complete to decide whether a graph contains a sun.
The above theorem suggests that it is the property of being chordal (or HHD-free)

that allows us to test for a sun efficiently and it is unlikely there is a polynomial-time
algorithm for finding a sun in an arbitrary graph. Denote by k-hole the hole on k
vertices. A k-antihole is the complement of a k-hole. A graph is weakly chordal [8]
if it does not contain a k-hole or k-antihole with k ≥ 5. Weakly chordal graphs
generalize chordal graphs in a natural way, and they are known to be perfect and
have many interesting algorithmic properties (see [9]). In spite of Theorem 2, it is
conceivable there are polynomial-time algorithms to solve the sun recognition problem
for weakly chordal graphs or even perfect graphs [15]. In this spirit, we will refine
Theorem 2 to obtain a stronger result.
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Theorem 3. It is NP-complete to decide whether a graph G contains a sun, even
when G does not contain a k-antihole with k ≥ 7.

Let k-CLIQUE (respectively, k-SUN) be the problem whose instance is a graph
G and an integer k, for which the question to be answered is whether G contains a
clique on k vertices (respectively, k-SUN). It is well known [11] that k-CLIQUE is
NP-complete. It is not difficult to prove but perhaps interesting to note that k-SUN
is also NP-complete. Observe that if k is a constant (not part of the input), then the
two problems can obviously be solved in polynomial time.

Theorem 4. k-SUN is NP-complete.
Note that Theorem 2 implies Theorem 4: To decide whether a graph contains a

sun, we need only to solve O(n) instances of k-SUN with k running from 3 to n/2,
where n is the number of vertices of the graph. However, we have a short and direct
proof of Theorem 4. We will give the proofs of Theorems 2, 3, and 4 in the remainder
of the paper.

2. The proofs. First, we need to introduce some definitions. For simplicity, we
will say a vertex x sees a vertex y if x is adjacent to y; otherwise, we will say x misses
y. Let G,F be two vertex-disjoint graphs, and let x be a vertex of G. We say that a
graph H is obtained from G by substituting F for x if H is obtained by replacing x
by F in G and adding the edge ab for any a ∈ V (G) − {x} and any b ∈ F whenever
ax is an edge of G. In the proofs, we will often use the observation that every vertex
in H − F either sees all, or misses all, vertices of F .

By (c1, c2, . . . , ck, r1, r2, . . . , rk) we denote the k-sun with vertices c1, c2, . . . , ck,
r1, r2, . . . , rk such that c1, c2, . . . , ck induce a clique and r1, r2, . . . , rk induce a stable
set; each ri has degree two and sees ci, ci+1 with the subscripts taken modulo k. The
vertices ri will be called the rays of the k-sun. A triangle is a clique on three vertices.

We will rely on the following NP-complete problem due to Poljak [14].

Stable set in triangle-free graphs.
Instance: A triangle-free graph G, an integer k.
Question: Does G contain a stable set with k vertices?

Proof of Theorem 2. We will reduce stable set in triangle-free graphs to the
problem of finding a sun in a graph.

Let G = (V,E) be a triangle-free graph with V = {v1, v2, . . . , vn}, and without
loss of generality assume k ≥ 4. Define a graph f(G, k) from G as follows. Substi-
tute for each vertex vi a clique Vi = {v1i , v2i , . . . , vki }; add a clique W with vertices
u1, w1, . . . , uk, wk; add a stable set X with vertices x1, . . . , xk; for i = 1, 2, . . . , k, add
edges xiwi and xiui+1 (the subscripts are taken module k); for i = 1, 2, . . . , n and
j = 1, 2, . . . k, add edges vji uj , v

j
iwj . Figure 3 shows a graph G whose graph f(G, 4)

is shown in Figure 4 (for clarity, we do not show all edges of f(G, 4); all adjacency
between V1 and W and between V2 and W are shown, and adjacency between V3

and W are not shown; the thick line between V1 and V2 (and between V2 and V3)
represents all possible edges between the two sets; there are no edges between V1 and
V3; each of the sets Vi, W induces a clique; the set X induces a stable set). We will
often rely on the following observations.

Observation 1. Suppose G is triangle-free. Then f(G, k) does not contain a tri-
angle each of whose vertices belongs to a distinct Vi.

Observation 2. Let x be a vertex in Vi, and y be a vertex in Vj with i �= j. If x
and y have a common neighbor z in W , then N(x) ∩W = N(y) ∩W .

The theorem follows from the following claim.
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Fig. 3. The graph G.
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Fig. 4. The graph f(G,4).

Claim 1. G has a stable set with k vertices if and only if f(G, k) contains a sun.
Proof of Claim 1. Suppose G has a stable set with vertices v1, v2, . . . , vk. Then

f(G, k) has a 2k-sun (c1, c2, . . . , c2k, r1, r2, . . . , r2k) with r2i−1 = vii , r2i = xi, c2i−1 =
ui, and c2i = wi for i = 1, 2, . . . , k.

Now, suppose f(G, k) contains a sun. Write T = V1 ∪ V2 ∪ · · · ∪ Vn. We will
establish that

any sun S of f(G, k) is a 2k-sun with k rays in T .(1)

Consider a sun S = (c1, c2, . . . , ct, r1, r2, . . . , rt) of f(G, k). First, we claim that
(with the subscript taken modulo k)

if a ray rj lies in X , then rj−1, rj+1 lie in T .(2)

Let xi be a vertex in X that is a ray rj of S. We may assume that cj = wi and
cj+1 = ui+1. Since rj−1 sees wi and misses ui+1, we have rj−1 ∈ Vs for some s.
Similarly, we have rj+1 ∈ Vr for some r. Note that r �= s. So, (2) holds.
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Since W is a clique, S must have a ray in T ∪X . (2) implies that

T contains a ray of S.(3)

Next, we will prove

if ri ∈ Vj , then ci, ci+1 ∈ W.(4)

Suppose (4) is false. For simplicity, we may assume i = 1 and j = 1 (we can
always rename the vertices of f(G, k) and S so that this is the case). We will often
implicitly use the fact that a vertex in Va either sees all, or misses all, vertices of Vb

whenever a �= b. Note that c1, c2 cannot be in X . We will distinguish among several
cases.

Case 1. c1, c2 ∈ V1. Since c3 sees c1, c2 and misses r1, c3 cannot be in T . Thus,
c3 is in W . But no vertex in W can see two vertices in V1, a contradiction.

Case 2. c1 ∈ V1, c2 ∈ Vj for some j �= 1. We may write j = 2. Since c3
(respectively, rt) sees c1 and misses r1, c3 (respectively, rt) cannot be in T . Thus, c3
and rt are in W . Observation 2, with z = c3, x = c1, and y = c2, implies rt sees c2, a
contradiction to the definition of S.

Case 3. c1 ∈ V1, c2 ∈ W . This case is not possible since a vertex in W can have
at most one neighbor in any Vj .

Case 4. c1, c2 ∈ Vj for some j �= 1. We may write j = 2. Since r2 sees c2 and
misses c1, r2 is in W . Since rt sees c1 and misses c2, rt is in W . But then r2 sees rt,
a contradiction.

Case 5. c1 ∈ Vj , c2 ∈ Vr with j �= r, j �= 1, and r �= 1. In this case, r1, c1, and c2
contradict Observation 1.

Case 6. c1 ∈ Vj for some j �= 1 and c2 ∈ W . We may let j = 2. If c3 ∈
W , then Observation 2, with z = c2, x = r1, and y = c1, implies c3 sees r1, a
contradiction to the definition of S. So, we have c3 ∈ T . Since c3 misses r1, we have
c3 �∈ V1 ∪ V2. So, we may assume c3 ∈ V3. We have r2 �∈ W ; otherwise Observation 2,
with z = c2, x = c1, and y = c3, implies r2 sees c1, a contradiction to the definition
of S. We have r2 �∈ V1 ∪ V2 ∪ V3 since r2 misses r1 and c1. So, we may assume
r2 ∈ V4. Since r3 (respectively, c4 if it exists) sees c3 and misses r1, Observation
2, with z = c2, x = r1, and y = c3, implies r3 �∈ W (respectively, c4 �∈ W ). Since
r3 (respectively, c4 if it exists) misses r1 and r2, we have r3 �∈ V1 ∪ V2 ∪ V3 ∪ V4

(respectively, c4 �∈ V1 ∪ V2 ∪ V3 ∪ V4). Now, if t = 3, then the three vertices r3, c1,
and c3 contradict Observation 1. But if t > 3, then the three vertices c4, c1, and c3
contradict Observation 1.

So, (4) holds. Next, we will establish two more assertions (where the subscripts
are taken modulo k) below.

If a ray rj lies in T , then rj−1, rj+1 lie in X.(5)

By (4) and the definition of f(G, k), we may assume cj = ui, cj+1 = wi. Since xi is
the only vertex of f(G, k) that sees wi and misses ui, we have xi = rj+1. Similarly,
we have xi−1 = rj−1. So, (5) holds.

If some vertex xi ∈ X is a ray of S, then xi+1 is also a ray of S.(6)

Let xi be a vertex in X that is a ray rj of S. We may assume that cj = wi and
cj+1 = ui+1. By (2), we have rj+1 ∈ Va for some a. By (4), we have cj+2 = wi+1. By
(5), rj+2 lies in X , and so we have rj+2 = xi+1. Thus, (6) holds.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE COMPLEXITY OF FINDING A SUN IN A GRAPH 2161

We are now in a position to prove (1). From (3), we may assume r1 lies in T . By
(5), we have r2 ∈ X . By (6), all xj ’s are rays of S for j = 1, 2, . . . , k. It follows from
(2) that S has exactly k rays in T . Therefore, S is a 2k-sun. We have proved (1).

We continue with the proof of Claim 1 (and Theorem 2). Consider the k rays of
S that belong to T . Since each Vi is a clique, it contains at most one ray. So, there
are k sets Vi containing a ray of S. Let these sets be V1, V2, . . . , Vk. Clearly, in G, the
vertices v1, v2, . . . , vk form a stable set.

Proof of Theorem 3. We will use the notation defined in the proof of Theorem
2 with G being a triangle-free graph. We need only to prove the graph f(G, k) does
not contain a t-antihole with t ≥ 7. We will prove by contradiction. Suppose f(G, k)
contains a t-antihole A with vertices a1, a2, . . . , at with t ≥ 7 such that ai misses ai+1

with the subscripts taken modulo k. Since the vertices in X have degree two, none of
them can belong to A. Since each Vi is a clique,

no two consecutive vertices of A can belong to the same Vi.(7)

Similarly,

no two consecutive vertices of A can belong to W .(8)

Now, we claim that

one of ai, ai+1 must lie in W for all i.(9)

Suppose (9) is false for ai. For simplicity, we may assume i = 1, and so we have
a1, a2 ∈ T . By (7), we may assume a1 ∈ V1, a2 ∈ V2. Clearly, we have at �∈ V1.

Suppose at ∈ V2. Then a3 has to be in W ; otherwise a3 lies in some Vj and so it
misses at (since it misses a2) implying t = 4, a contradiction. By symmetry, we have
at−1 ∈ W . Since a1 sees a3, and at−1 is a common neighbor of a1 and a2, Observation
2 implies that a2 sees a3, a contradiction to the definition of A. So, we have at �∈ V2.

Suppose at ∈ W . By (8), we have at−1 ∈ Vj . If j = 2, then a1 misses at−1, a
contradiction to the definition of A. If j = 1, then a2 misses at−1 implying t = 4,
a contradiction. So, we may assume at−1 ∈ V3. Let j ∈ {t − 2, t − 3}. If aj ∈ W ,
then since a2 sees at, Observation 2 with z = aj , x = a2, and y = a1 implies a1 sees
at, a contradiction to the definition of A. So, we have at−2 ∈ Vm for some m, and
at−3 ∈ Vp for some p. Since at−2 misses at−1, we have at−2 �∈ V1∪V2∪V3. So, we may
assume m = 4. We have at−3 ∈ V2 ∪ V3; otherwise the three vertices at−3, at−1, and
a2 contradict Observation 1. Since at−2 sees a2, at−2 sees all of V2. Thus, we have
at−3 �∈ V2, and so at−3 ∈ V3. Since t ≥ 7, the vertex at−4 exists. Since at−4 misses
at−3 but sees at−1, at−4 is not in T ; so we have at−4 ∈ W . Observation 2 with z =
at−4, x = at−1, and y = at−2 implies at−1 sees at, a contradiction to the definition ofA.

Thus, at belongs to some Vj which is distinct from V1, V2. It follows from sym-
metry and the definition of f(G, k) that a3, at−1 also belong to distinct Vi. Now, the
three vertices at−1, a1, and a3 contradict Observation 1. So, (9) holds.

From (8) and (9), we may assume without loss of generality that ai ∈ T whenever
i is odd, and ai ∈ W whenever i is even. In particular, t is even and at least eight.
The definition of A implies that a1 sees a4, a6. Thus, we have {a4, a6} = {ui, wi} for
some i. The definition of f(G, k) means that every vertex of T either sees both a4, a6
or misses both of them. But a3 misses a4 and sees a6, a contradiction.

Proof of Theorem 4. We will reduce k-CLIQUE to k-SUN. Let G, k be an instance
of k-CLIQUE. We may assume k ≥ 4. Construct a graph h(G) from G by adding a
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vertex v(a, b) for each edge ab of G and joining v(a, b) to a and b by an edge of h(G).
Let Y be the set of vertices v(a, b). It is easy to see that if G has a clique K on k
vertices, then h(G) has a k-sun induced by K and some k vertices in Y . If h(G) has a
k-sun (c1, . . . , ck, r1, . . . , rk), then since the vertices in Y have degree two, none of them
can be a vertex ci; thus, the vertices c1, . . . , ck induce a clique on k vertices in G.
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