294 research outputs found

    Natural Language Processing Methods to Identify Oncology Patients at High Risk for Acute Care with Clinical Notes

    Full text link
    Clinical notes are an essential component of a health record. This paper evaluates how natural language processing (NLP) can be used to identify the risk of acute care use (ACU) in oncology patients, once chemotherapy starts. Risk prediction using structured health data (SHD) is now standard, but predictions using free-text formats are complex. This paper explores the use of free-text notes for the prediction of ACU instead of SHD. Deep Learning models were compared to manually engineered language features. Results show that SHD models minimally outperform NLP models; an l1-penalised logistic regression with SHD achieved a C-statistic of 0.748 (95%-CI: 0.735, 0.762), while the same model with language features achieved 0.730 (95%-CI: 0.717, 0.745) and a transformer-based model achieved 0.702 (95%-CI: 0.688, 0.717). This paper shows how language models can be used in clinical applications and underlines how risk bias is different for diverse patient groups, even using only free-text data.Comment: 11 pages, 6 figures, 2 table

    Disparities in Healthcare Coverage and Utilization after Expanded Dependent Coverage

    Full text link
    Background. A goal of expanding insurance coverage is reducing racial disparities in healthcare utilization, however the effects of such expansions under the affordable care act (ACA) on disparities remain unclear. The 2010 dependent coverage expansion provided an opportunity to evaluate disparities following a major coverage expansion. Objectives. We sought to understand changes in emergency department (ED)utilization following a major insurance expansion, the 2010 dependent coverage expansion. Research Design. We present changes in coverage and utilization among young adults (19-25 years old) before and after the dependent coverage expansion, compared to a control group (26-31 years old) unaffected by the provision using administrative records from four states (California, Florida, Massachusetts and New York) using a difference in difference methodology. ResultsWe identified 9,089,116 adults aged 19-31 with at least one ED visit between 2008 and 2013. While rates of ED utilization continue to increase, we found dependent coverage expansion was associated with a reduced increase in adjusted ED utilization among Whites, Blacks, and Asians (p Conclusions. Expansion of dependent insurance coverage was associated with significantly different ED healthcare utilization patterns among Hispanics than among other young adults. This suggests that eligibility or accessibility of dependent coverage remains a barrier to care for young Hispanics

    Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review

    Get PDF
    Objectives In this systematic review we aimed at assessing how artificial intelligence (AI), including machine learning (ML) techniques have been deployed to predict, diagnose, and treat chronic kidney disease (CKD). We systematically reviewed the available evidence on these innovative techniques to improve CKD diagnosis and patient management.Methods We included English language studies retrieved from PubMed. The review is therefore to be classified as a "rapid review ", since it includes one database only, and has language restrictions; the novelty and importance of the issue make missing relevant papers unlikely. We extracted 16 variables, including: main aim, studied population, data source, sample size, problem type (regression, classification), predictors used, and performance metrics. We followed the Preferred Reporting Items for Systematic Reviews (PRISMA) approach; all main steps were done in duplicate. The review was registered on PROSPERO.ResultsFrom a total of 648 studies initially retrieved, 68 articles met the inclusion criteria.Models, as reported by authors, performed well, but the reported metrics were not homogeneous across articles and therefore direct comparison was not feasible. The most common aim was prediction of prognosis, followed by diagnosis of CKD. Algorithm generalizability, and testing on diverse populations was rarely taken into account. Furthermore, the clinical evaluation and validation of the models/algorithms was perused; only a fraction of the included studies, 6 out of 68, were performed in a clinical context.Conclusions Machine learning is a promising tool for the prediction of risk, diagnosis, and therapy management for CKD patients. Nonetheless, future work is needed to address the interpretability, generalizability, and fairness of the models to ensure the safe application of such technologies in routine clinical practice

    Caryoscope: An Open Source Java application for viewing microarray data in a genomic context

    Get PDF
    BACKGROUND: Microarray-based comparative genome hybridization experiments generate data that can be mapped onto the genome. These data are interpreted more easily when represented graphically in a genomic context. RESULTS: We have developed Caryoscope, which is an open source Java application for visualizing microarray data from array comparative genome hybridization experiments in a genomic context. Caryoscope can read General Feature Format files (GFF files), as well as comma- and tab-delimited files, that define the genomic positions of the microarray reporters for which data are obtained. The microarray data can be browsed using an interactive, zoomable interface, which helps users identify regions of chromosomal deletion or amplification. The graphical representation of the data can be exported in a number of graphic formats, including publication-quality formats such as PostScript. CONCLUSION: Caryoscope is a useful tool that can aid in the visualization, exploration and interpretation of microarray data in a genomic context

    Development of FuGO: An ontology for functional genomics investigations

    Get PDF
    The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the “semantic glue” to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans

    Extracting Patient-Centered Outcomes from Clinical Notes in Electronic Health Records: Assessment of Urinary Incontinence After Radical Prostatectomy

    Get PDF
    Objective: To assess documentation of urinary incontinence (UI) in prostatectomy patients using unstructured clinical notes from Electronic Health Records (EHRs). Methods: We developed a weakly-supervised natural language processing tool to extract assessments, as recorded in unstructured text notes, of UI before and after radical prostatectomy in a single academic practice across multiple clinicians. Validation was carried out using a subset of patients who completed EPIC-26 surveys before and after surgery. The prevalence of UI as assessed by EHR and EPIC-26 was compared using repeated-measures ANOVA. The agreement of reported UI between EHR and EPIC-26 was evaluated using Cohen\u2019s Kappa coefficient. Results: A total of 4870 patients and 716 surveys were included. Preoperative prevalence of UI was 12.7 percent. Postoperative prevalence was 71.8 percent at 3 months, 50.2 percent at 6 months and 34.4 and 41.8 at 12 and 24 months, respectively. Similar rates were recorded by physicians in the EHR, particularly for early follow-up. For all time points, the agreement between EPIC-26 and the EHR was moderate (all p < 0.001) and ranged from 86.7 percent agreement at baseline (Kappa = 0.48) to 76.4 percent agreement at 24 months postoperative (Kappa = 0.047). Conclusions: We have developed a tool to assess documentation of UI after prostatectomy using EHR clinical notes. Our results suggest such a tool can facilitate unbiased measurement of important PCOs using real-word data, which are routinely recorded in EHR unstructured clinician notes. Integrating PCO information into clinical decision support can help guide shared treatment decisions and promote patient-valued care

    The Stanford Microarray Database: implementation of new analysis tools and open source release of software

    Get PDF
    The Stanford Microarray Database (SMD; ) is a research tool and archive that allows hundreds of researchers worldwide to store, annotate, analyze and share data generated by microarray technology. SMD supports most major microarray platforms, and is MIAME-supportive and can export or import MAGE-ML. The primary mission of SMD is to be a research tool that supports researchers from the point of data generation to data publication and dissemination, but it also provides unrestricted access to analysis tools and public data from 300 publications. In addition to supporting ongoing research, SMD makes its source code fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD. In this article, we describe several data analysis tools implemented in SMD and we discuss features of our software release

    The Stanford Microarray Database accommodates additional microarray platforms and data formats

    Get PDF
    The Stanford Microarray Database (SMD) (http://smd.stanford.edu) is a research tool for hundreds of Stanford researchers and their collaborators. In addition, SMD functions as a resource for the entire biological research community by providing unrestricted access to microarray data published by SMD users and by disseminating its source code. In addition to storing GenePix (Axon Instruments) and ScanAlyze output from spotted microarrays, SMD has recently added the ability to store, retrieve, display and analyze the complete raw data produced by several additional microarray platforms and image analysis software packages, so that we can also now accept data from Affymetrix GeneChips (MAS5/GCOS or dChip), Agilent Catalog or Custom arrays (using Agilent's Feature Extraction software) or data created by SpotReader (Niles Scientific). We have implemented software that allows us to accept MAGE-ML documents from array manufacturers and to submit MIAME-compliant data in MAGE-ML format directly to ArrayExpress and GEO, greatly increasing the ease with which data from SMD can be published adhering to accepted standards and also increasing the accessibility of published microarray data to the general public. We have introduced a new tool to facilitate data sharing among our users, so that datasets can be shared during, before or after the completion of data analysis. The latest version of the source code for the complete database package was released in November 2004 (http://smd.stanford.edu/download/), allowing researchers around the world to deploy their own installations of SMD

    The pharmacogenetics and pharmacogenomics knowledge base: accentuating the knowledge

    Get PDF
    PharmGKB is a knowledge base that captures the relationships between drugs, diseases/phenotypes and genes involved in pharmacokinetics (PK) and pharmacodynamics (PD). This information includes literature annotations, primary data sets, PK and PD pathways, and expert-generated summaries of PK/PD relationships between drugs, diseases/phenotypes and genes. PharmGKB's website is designed to effectively disseminate knowledge to meet the needs of our users. PharmGKB currently has literature annotations documenting the relationship of over 500 drugs, 450 diseases and 600 variant genes. In order to meet the needs of whole genome studies, PharmGKB has added new functionalities, including browsing the variant display by chromosome and cytogenetic locations, allowing the user to view variants not located within a gene. We have developed new infrastructure for handling whole genome data, including increased methods for quality control and tools for comparison across other data sources, such as dbSNP, JSNP and HapMap data. PharmGKB has also added functionality to accept, store, display and query high throughput SNP array data. These changes allow us to capture more structured information on phenotypes for better cataloging and comparison of data. PharmGKB is available at www.pharmgkb.or
    • …
    corecore