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Abstract
Objectives In this systematic review we aimed at assessing how artificial intelligence (AI), including machine learning (ML) 
techniques have been deployed to predict, diagnose, and treat chronic kidney disease (CKD). We systematically reviewed 
the available evidence on these innovative techniques to improve CKD diagnosis and patient management.
Methods We included English language studies retrieved from PubMed. The review is therefore to be classified as a “rapid 
review”, since it includes one database only, and has language restrictions; the novelty and importance of the issue make 
missing relevant papers unlikely. We extracted 16 variables, including: main aim, studied population, data source, sample 
size, problem type (regression, classification), predictors used, and performance metrics. We followed the Preferred Report-
ing Items for Systematic Reviews (PRISMA) approach; all main steps were done in duplicate. 
Results From a total of 648 studies initially retrieved, 68 articles met the inclusion criteria.
Models, as reported by authors, performed well, but the reported metrics were not homogeneous across articles and therefore 
direct comparison was not feasible. The most common aim was prediction of prognosis, followed by diagnosis of CKD. 
Algorithm generalizability, and testing on diverse populations was rarely taken into account. Furthermore, the clinical 
evaluation and validation of the models/algorithms was perused; only a fraction of the included studies, 6 out of 68, were 
performed in a clinical context.
Conclusions Machine learning is a promising tool for the prediction of risk, diagnosis, and therapy management for 
CKD patients. Nonetheless, future work is needed to address the interpretability, generalizability, and fairness of the models 
to ensure the safe application of such technologies in routine clinical practice.
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Introduction

Chronic Kidney Disease (CKD) is a state of progressive loss 
of kidney function ultimately resulting in the need for renal 
replacement therapy (dialysis or transplantation) [1]. It is 
defined as the presence of kidney damage or an estimated 
glomerular filtration rate less than 60 ml/min per 1.73  m2, 
persisting for 3 months or more [2]. CKD prevalence is grow-
ing worldwide, along with demographic and epidemiologi-
cal transitions [3]. The implications of this disease are enor-
mous for our society in terms of quality of life and the overall 
sustainability of national health systems. Worldwide, CKD 
accounted for 2,968,600 (1%) disability-adjusted life-years 
and 2,546,700 (1% to 3%) life-years lost in 2012 [4]. There-
fore, it is of the utmost importance to assess how to promptly 
and adequately diagnose and treat patients with CKD.

The causes of CKD vary globally. The most common pri-
mary diseases causing CKD and ultimately kidney failure are 
diabetes mellitus, hypertension, and primary glomerulone-
phritis, representing 70–90% of the total primary causes [1, 
2, 4]. Although these three causes are at the top of the CKD 
etiology charts, other features are involved in CKD pathophys-
iology (e.g., pollution, infections and autoimmune diseases) 
[5–9]. Similarly, there are numerous factors that play a role in 
CKD progression, namely non-modifiable risk factors (e.g., 
age, gender, ethnicity) and modifiable ones (e.g., systolic and 
diastolic blood pressure, proteinuria) [1, 2, 4–9].

Given how dauntingly vast the number of factors that can 
play a significant role in the etiology and progression of CKD 
is, it can be difficult to correctly assess the individual risk of 
CKD and its progression. Naturally, as with any complex prob-
lem, humans seek simplification, and therefore the question 
shifts to what to take into account when assessing CKD risk. 
Thanks to new methodological techniques, we now have the 
ability to improve our diagnostic and predictive capabilities.

Artificial Intelligence (AI) is the capacity of human-built 
machines to manifest complex decision-making or data analy-
sis in a similar or augmented fashion in comparison to human 
intelligence [10]. Machine Learning (ML) is the collection of 
algorithms that empower models to learn from data, and there-
fore to undertake complex tasks through complex calculations 
[11–15]. In recent years AI and ML have offered enticing solu-
tions to clinical problems, such as how to perform a diagnosis 
from sparse and seemingly contrasting data, or how to predict 
a prognosis [16]. Given the enormous potential of ML, and 
its capacity to learn from data, researchers have tried to apply 
its capacities to resolve complex problems, such as predicting 
CKD diagnosis and prognosis, and managing its treatment.

In this complex scenario, we aimed to systematically 
review the published studies that applied machine learning 
in the diagnosis and prediction, prognosis, and treatment of 
CKD patients. In doing so, the primary objective is to describe 
how ML models and variables have been used to predict, 

diagnose and treat CKD, as well as what results have been 
achieved in this field.

Methods

Search strategy and selection criteria

We conducted a systematic literature review, following the 
Preferred Reporting Items for Systematic Reviews (PRISMA) 
approach [17], including studies that applied ML algorithms 
to CKD forecasting, diagnosis, prognosis, and treatment. This 
systematic review’s outcomes of interest are machine learn-
ing models, features used, performances and uses regarding 
diagnosis, prognosis and treatment of CKD. The review itself 
and its protocol were not registered.

The initial search was implemented on October 20, 2021. 
The search query consisted of terms considered pertinent by 
the authors.

We searched for publications on PubMed using the follow-
ing search string: “((artificial intelligence[Title/Abstract]) OR 
(machine learning[Title/Abstract]) OR (computational*[Title/
Abstract]) OR (deep learning[Title/Abstract])) AND ((ckd) 
OR (chronic kidney disease) OR (chronic kidney injury) OR 
(chronic kidney) OR (chronic renal) OR (end stage renal) OR 
(end stage kidney) OR (ESKD) OR (ESRD) OR (CKJ) OR 
(CKI) OR (((renal) OR (kidney)) AND (failure)))”.

We included articles for review if they were in vivo studies 
(human-based), which applied AI & ML techniques in order 
to assess the diagnosis, prognosis, or therapy of CKD patients 
and reported original data. We did not limit our inclusion cri-
teria to any specific study design, nor to any outcome of inter-
est, as our main goal was to be as inclusive as possible, and 
we wanted to capture all available evidence from any study 
design and any outcome of interest.

We excluded studies that were not in English, those focus-
ing on animals, reviews, systematic reviews, opinions, editori-
als, and case reports. We decided to exclude in vitro studies 
(conducted on cellular substrates) and studies focusing on 
animals, in order to summarize the current evidence on the 
application of ML models on humans.

Data extraction

Data were extracted by two independent reviewers (AC and 
FS). Disagreement on extracted data was discussed with an 
independent arbiter (DGol).

The following data were extracted from each included article 
(main text and/or supplementary material): author(s) name, date 
of publication, first author affiliation (country and region), main 
study objective, objective category (risk, diagnosis, progno-
sis, and treatment), prognosis category, study population, data 
source, sample size, problem type (regression, classification), 
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machine learning algorithms examined in the study, predictor 
categories, number of predictors used, predictor list, perfor-
mance metrics, final conclusions, use in clinical context and the 
5 most important model features. When more than one model 
was considered in the study, the one the authors deemed best 
was extracted. Performance metrics always refer to the models’ 
performance on test sets.

Quality and risk assessment

Evaluation of the included studies was performed using 
both PROBAST [18] and the Guidelines for developing and 

reporting machine learning predictive models in biomedical 
research developed by Luo and colleagues [19].

Results

Included studies

Of the 648 articles retrieved from PubMed, 421 were ruled 
out after title screening, and 140 were excluded after abstract 
screening; a total of 87 articles were selected for full-text 
screening (Fig. 1). Of these 87 studies, 68 were included in 
the final set of articles (Table 1) [20–87].

Fig. 1  PRISMA flow-chart
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Table 1  Extracts of the main findings

Authors Country Year Sample size Main Aim Model task Selected model Performance 
metric(s)

Clinical 
Deploy-
ment

Akl et al Africa 2001 30 Prognosis Regression ANN – No
Kusiak et al North America 2005 188 Prognosis Classification Decision tree Accuracy: 85 No
Chen et al Asia 2007 153 Prognosis Regression ANN – No
Luo et al North America 2013 66,633 Prognosis Classification Hidden Markov 

Model
– No

Escandell-
Montero et al

Europe 2014 128 Therapy Regression Markov decision 
processes

– No

Martínez-Mar-
tínez et al

Europe 2014 13,011 Prognosis Regression Ensemble model MSE: 0.90
MAE: 0.67

No

Barbieri et al Europe 2015 4135 Prognosis Regression ANN MSE: 0.75
MAE: 0.55

No

Singh et al North America 2015 6435 Prognosis Classification ANN AUC: 0.72
Sensitivity: 54

No

Barbieri et al Europe 2016 752 Therapy Regression ANN – Yes
Chen et al Asia 2016 400 Risk/forecast Classification Support vector 

machine
Accuracy: 99
Sensitivity: 100
Specificity: 99

No

Norouzi et al Asia 2016 465 Diagnosis + Prog-
nosis

Regression ANN MSE: 54.88
MAE: 5.50

No

Rodriguez et al Europe 2016 1758 Prognosis Regression Random forest – No
Goldstein et al North America 2017 18,846 Prognosis Classification LASSO regres-

sion
AUC: 0.84 No

Polat et al Europe 2017 400 Diagnosis Classification Support vector 
machine

AUC: 0.99
Sensitivity: 98

No

Kleiman et al North America 2018 401 Prognosis Classification Random forest AUC: 0.86
Accuracy: 54

No

Kolachalama et al North America 2018 171 Diagnosis Classification CNN AUC: 0.91 No
Tang et al Asia 2018 173 Risk/forecast Classification Random forest – No
Akbilgic et al North America 2019 27,615 Prognosis Classification Random forest AUC: 0.69 Yes
Almansour et al Africa 2019 400 Diagnosis Classification ANN Accuracy: 99

Sensitivity: 99
Specificity: 100

No

Elhoseny et al Africa 2019 400 Diagnosis Classification ANN Accuracy: 95
Sensitivity: 96
Specificity: 93

No

Forné et al Europe 2019 1366 Prognosis Classification Random forest AUC: 0.74 No
Galloway et al North America 2019 449,380 Prognosis Classification CNN AUC: 0.87
Guo et al South America 2019 703 Diagnosis + Prog-

nosis
Classification LASSO regres-

sion
Accuracy: 99 Yes

Han et al Asia 2019 1370 Risk/forecast Classification Random forest Accuracy: 93
Sensitivity: 80
Specificity: 95

No

Huang et al Asia 2019 400 Diagnosis Classification ANN Accuracy: 99
Sensitivity: 99
Specificity: 99

No

Kanda et al Asia 2019 7465 Prognosis Classification Support vector 
machine

Accuracy: 89 No

Kannan et al North America 2019 171 Diagnosis Classification CNN Accuracy: 95
Sensitivity: 56
Specificity: 99

No

Kuo et al Asia 2019 1299 Diagnosis Classification CNN Accuracy: 86 No
Lin et al Asia 2019 48,153 Prognosis Classification Random forest MSE: 0.75

MAE: 0.51
No
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Table 1  (continued)

Authors Country Year Sample size Main Aim Model task Selected model Performance 
metric(s)

Clinical 
Deploy-
ment

Navaneeth et al Asia 2019 104 Diagnosis Classification CNN Accuracy: 98
Sensitivity: 98
Specificity: 98

No

Yu et al North America 2019 703 Diagnosis Classification ANN Accuracy: 99 No
Aldhyani et al Africa 2020 768 Diagnosis Classification Support vector 

machine
Accuracy: 100
Sensitivity: 100
Specificity: 100

No

Belur Nagaraj et al Europe 2020 11,789 Prognosis Classification ANN AUC: 0.82 No
Chen et al Asia 2020 101 Diagnosis Classification Support vector 

machine
Accuracy: 90
Sensitivity: 100
Specificity: 79

No

Dovgan et al Europe 2020 8492 Prognosis Classification XGBoost AUC: 0.78
Sensitivity: 62
Specificity: 78

No

Garcia-Mon-
temayor et al

Europe 2020 1571 Prognosis Classification Random forest AUC: 0.7
Accuracy: 73

No

Glazyrin et al Asia 2020 48 Diagnosis Classification K nearest neigh-
bor

Accuracy: 87 No

Huang et al Europe 2020 3080 Risk/forecast Classification Random forest AUC: 0.86 No
Inaguma et al Asia 2020 19,894 Prognosis Classification Random forest AUC: 0.73 No
Jeong et al Asia 2020 134,895 Diagnosis Classification ANN Accuracy: 99 No
Kanda et al Asia 2020 79,860 Prognosis Classification Ensemble model Accuracy: 95

Sensitivity: 91
Specificity: 99

Yes

Komaru et al Asia 2020 101 Prognosis Classification Hierarchical 
clustering

AUC: 0.8 Yes

Kumar et al Asia 2020 400 Diagnosis Classification Genetic algo-
rithms

Accuracy: 99
Sensitivity: 99
Specificity: 100

No

Noh et al Asia 2020 1730 Prognosis Classification ANN AUC: 0.86 No
Nusinovici et al Asia 2020 6762 Risk/forecast Classification Logistic regres-

sion
AUC: 0.90
Sensitivity: 80
Specificity: 60

No

Ogunleye et al Africa 2020 400 Diagnosis Classification XGBoost Accuracy: 100
Sensitivity: 100
Specificity: 100

No

Pellicer-Valero 
et al

Europe 2020 110,758 Prognosis Regression RNN MSE: 0.72
MAE: 0.65

No

Roth et al Europe 2020 12,761 Risk/forecast Classification RNN AUC: 0.96 No
Sabanayagam et al Asia 2020 5188 Diagnosis Classification ANN AUC: 0.91 No
Segal et al Asia 2020 550,000 Prognosis Classification XGBoost AUC: 0.93

Sensitivity: 72
Specificity: 96

No

Shih et al Asia 2020 19,270 Risk/forecast Classification Decision tree AUC: 0.79
Accuracy: 82
Sensitivity: 67
Specificity: 79

No

Song et al North America 2020 14,039 Risk/forecast Classification Gradient boosting 
machine

AUC: 0.83
Sensitivity: 83
Specificity: 78

No

Vitsios et al Europe 2020 12,713 Risk/forecast Classification Random forest AUC: 0.84 No
Weber et al Europe 2020 785 Diagnosis Classification ANN ACU: 0.91

Sensitivity: 100
Specificity: 82

No
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Most of the included articles (n = 51) were published 
from 2019 to 2021. Among the 68 articles selected for data 
extraction, the majority were published by authors from 
organizations based in Asia (n = 33; 48.5%). The remain-
ing articles were published by authors from Europe (n = 17; 
25%), North America (n = 12; 17.6%), Africa (n = 5; 7.35%) 
and South America (n = 1; 1.47%). The analyzed studies 
were classified as observational.

Study aim

A total of 28 studies focused on the use of ML algorithms 
in disease prognosis analysis, 21 investigated the use of 
ML techniques on diagnosis (4 evaluated both), 12 evalu-
ated the risk of developing the disease, and 3 investigated 
the use of ML in CKD treatment. Among the articles 
focusing on prognosis, the majority studied the applica-
tion of ML in evaluating CKD progression (n = 13) and 
mortality (n = 8).

Study populations and sample size

The most commonly investigated study population con-
sisted of patients with CKD and healthy subjects (n = 26; 
38.2%), followed by patients with CKD only (n = 16; 23.5%) 
and patients with CKD treated with hemodialysis (n = 12; 
17.6%). The sample size investigated in the selected articles 
varied from a minimum of 30 individuals to a maximum of 
550,000 (median = 776; IQR 400–12,020).

Data sources

The majority of the included articles analyzed data obtained 
from single-hospital registries (n = 33; 48.5%), datasets pro-
vided by universities (n = 15; 22.1%), and datasets collected 
in multi-center studies (n = 12, 17.6%). Five studies analyzed 
health insurance data (7.35%) and 3 studies used data pro-
vided by national health services (4.41%).

The most commonly used data were various combinations 
of demographic data along with individual clinical char-
acteristics and laboratory data (n = 60; 82.24%), followed 

Table 1  (continued)

Authors Country Year Sample size Main Aim Model task Selected model Performance 
metric(s)

Clinical 
Deploy-
ment

Wu et al Asia 2020 508 Risk/forecast Classification XGBoost AUC: 0.76 No
Xin et al Asia 2020 163 Diagnosis + Prog-

nosis
Classification XGBoost AUC: 0.96

Sensitivity: 92
No

Yuan et al Asia 2020 1090 Prognosis Classification Random forest AUC: 0.88
Accuracy: 85

No

Daniel et al Europe 2021 60 Prognosis Classification CNN Accuracy: 99
Sensitivity: 93
Specificity: 99

No

Jeong et al Asia 2021 586 Prognosis Classification Random forest Sensitivity: 68 No
Krishnamurthy 

et al
Asia 2021 90,000 Risk/forecast Classification CNN AUC: 0.95

Accuracy: 89
Sensitivity: 94
Specificity: 88

No

Ohara et al Asia 2021 440 Therapy Classification RNN Accuracy: 95 No
Parab et al Asia 2021 57 Prognosis Regression ANN MSE: 2.06 No
Peng et al Asia 2021 198 Diagnosis Regression DNN MSE: 11.62 No
Rashed-Al-Mah-

fuz et al
Asia 2021 400 Diagnosis Classification Random forest AUC: 0.97

Accuracy: 97
Sensitivity: 96
Specificity: 99

No

Schena et al Europe 2021 758 Diagnosis + Prog-
nosis

Classification ANN Accuracy: 80 No

Senan et al Asia 2021 400 Diagnosis Classification Random forest Accuracy: 100
Sensitivity: 100

No

Shang et al North America 2021 2350 Diagnosis Classification Ensemble model Sensitivity: 87
Specificity: 97

No

Zhang et al Asia 2021 115,344 Risk/forecast Classification ANN AUC: 0.89 Yes
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by data obtained by medical imaging technologies (n = 5; 
7.35%) and genomic data (n = 3; 4.41%).

Models

The number of models tested and reported in each article 
varied from a minimum of 1 model to a maximum of 10 
(mean = 3). The most frequently tested model class was tree 
algorithms (n = 58, 33.53%), such as random forest (n = 27, 
15.61%), decision trees (n = 10, 5.78%) and extreme gradient 
boosting (n = 9, 5.20). Subsequently, neural networks (NNs) 

were often inspected (n = 44, 16.18%), especially the multi-
layer perceptron (MLP) (n = 28, 16.18%). Another popular 
choice of machine learning model class was Support Vector 
Machines (n = 25, 14.45%) and logistic regression (n = 18, 
10.45%) with various regularizations. Another  popular 
method that we did not classify into a larger model class was 
the non-parametric k-Nearest Neighbors algorithm (n = 8, 
2.31%). The complete list of models can be found in Table 2.

All the articles implemented supervised learning algo-
rithms, 57 (83.8%) of them addressed classification tasks 
and 11 (16.2%) regression tasks.

Table 2  List of machine 
learning models used in the 
selected papers

The models were also classified in larger model families to present a general overview. Some models that 
we were not able to classify in larger model families were classified as “Others”

Model class Specific model n %

Neural networks Feedforward NN/multilayer perceptron (MLP) 44 28 25.43 16.18
Convolutional NN (CNN) 9 5.20
Recurrent NN and long short-term memory NN (RNN) 5 2.89
Auto-encoder 1 0.58
Extreme learning machine 1 0.58

Tree Algorithms Random forest 58 27 33.53 15.61
Decision trees 10 5.78
Extreme gradient boosting (XGBoost) 9 5.20
Gradient boosting machine 5 2.89
Bagged decision trees 3 1.73
Extremely randomized trees 2 1.16
Light gradient boosting machine 1 0.58
Adaptive boosting machine 1 0.58
Categorical boost 1 0.58

Support Vector Machines Support vector machines 25 22 14.45 12.72
Genetic algorithm based on SVM 1 0.58
Particle swarm optimization SVM 1 0.58
Simulated annealing particle swarm optimization SVM 1 0.58

Logistic Regression Logistic regression 18 13 10.45 7.51
LASSO logistic regression 3 1.73
Ridge logistic regression 1 0.58
Elastic net logistic regression 1 0.58

Others k-Nearest neighbors (kNN) 28 8 16.18 4.62
Gaussian Naïve Bayes 4 2.31
Ensemble model 3 1.73
Linear regression 2 1.16
(Adaptive) Neuro-fuzzy Inference System 2 1.16
Partial Least Square Regression 1 0.58
Hidden Markov Model (HMM) 1 0.58
k-Means 1 0.58
Cox regression 1 0.58
Hierarchical clustering 1 0.58
Genetic programming 1 0.58
Linear discriminant analysis (LDA) 1 0.58
Markov decision process (MDP) 1 0.58
Hierarchical clustering 1 0.58
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The majority of the included articles (n = 52) speci-
fied the total number of features used to train the models. 
These models used a highly variable number of features, 
ranging from 4 to 6624 (median = 24; IQR = 17—46). Of 

the 68 included studies, 55 specified the variables used in 
the models (n = 130). The most frequently used features 
are reported in Fig. 2.

Fig. 2  Occurrence of variables in the selected articles, divided per aim

Table 3  List of metrics and 
their occurrence in number 
and percentages of the selected 
papers

Furthermore, the last column specifies for which task the metric is used

Name n % Task

Accuracy 30 17.05 Classification
ROC AUC/C statistic 30 17.05 Classification
Sensitivity/recall 29 16.48 Classification
Specificity 24 13.64 Classification
Precision/positive predictive value (PPV) 16 9.09 Classification
F1 score 14 7.95 Classification
Matthews correlation coefficient 7 3.98 Classification
Mean absolute error (MAE) 6 3.41 Regression
Root mean squared error (RMSE) 5 2.84 Regression
Negative predictive value (NPV) 3 1.70 Classification
R2/coefficient of determination 3 1.70 Regression
Mean squared error (MSE) 2 1.14 Regression
Precision-recall AUC (AUPRC) 2 1.14 Regression
Bayesian information criterion (BIC) 1 0.57 Regression/classification
Cohen’s kappa statistic 1 0.57 Classification
Jaccard index/intersection over union 1 0.57 Classification
Normalized mean squared error (NMSE) 1 0.57 Regression
q2 Statistic 1 0.57 Regression
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Performance metrics

The most common performance metrics were accuracy 
(n = 30, 17.05%) and the area under the receiver operating 
characteristic curve (often also referred to as ROC-AUC, 
AUROC, AUC, or C-statistic) (n = 30, 17.05%). Subse-
quently, other classification metrics, such as sensitivity 
(n = 29, 16.48%), specificity (n = 24, 13.64%), precision 
(n = 16, 9.09%), and F1-score (n = 14, 7.95%) were often 
used to compare the machine learning models. Note that 
all the aforementioned metrics, except ROC AUC, were 
used for classification and required establishing a risk 
threshold as a decision boundary. ROC AUC conversely 
did not require setting a decision threshold as it was calcu-
lated by iterating over all the decision thresholds. In terms 
of regression, the most used metrics for comparison were 
mean absolute error (n = 6, 3.41%) and root mean squared 
error (n = 5, 2.84%). The full list of the metrics and how 
often they occurred can be found in Table 3.

Best performing models, and their performances

In the included articles, neural networks were the models 
that commonly performed best (n = 28, 41.18%) compared 
to the median performance of other models, such as MLP 
(n = 18, 26.47%) and convolutional neural networks (n = 7, 
24.53%). Tree-based algorithms performed best (n = 24, 
35.29%); these algorithms included Random Forest (n = 16, 
23.53%) and Extreme Gradient Boosting (n = 5, 7.35%). The 
results for Support Vector Machines (n = 5, 7.35%) were also 
noteworthy. A complete list of the best performing models 
in the selected papers can be found in Table 4.

In terms of performance, we compared the metrics of 
prediction models, diagnostic models and risk prediction 
models separately. Of the 25 (36.76%) machine learning 
models for diagnosis, 19 papers reported accuracy. Three 
models reported the highest accuracy of 1.00 while the low-
est reported accuracy is 0.80 (mean = 0.95, median = 0.98). 
Sensitivity was reported 15 times, with a maximum of 
1.00, a minimum of 0.56, a mean of 0.95 and a median 
of 0.99. In addition, specificity was reported in 13 cases 
(max = 1.00, min = 0.79, mean = 0.96, median = 0.99). The 
ROC-AUC was reported in 6 papers (max = 0.99, min = 0.91, 
mean = 0.941, median = 0.94).

For the prediction models (n = 32, 47.06%), 15 papers 
reported the ROC-AUC with a maximum of 0.96 and a 
minimum of 0.69 (mean = 0.82, median = 0.82). Ten papers 
reported accuracy, ranging from 0.54 to 0.99, with a mean of 
0.85 and a median of 0.87. Sensitivity was reported 8 times, 
ranging from 0.54 to 0.93 (mean = 0.765, median = 0.76), 
and specificity was reported 5 times (max = 0.99, min = 0.78, 
mean = 0.917, median = 0.96).

Next, the risk prediction models (n = 12, 17.65%) showed 
ROC-AUC 9 times (max = 0.96, min = 0.76, mean = 0.864, 
median = 0.86) and accuracy 4 times (max = 0.99, 
min = 0.82, mean = 0.901, median = 0.91).

Finally, 3 (4.41%) papers focused on therapy, one of 
which reported an accuracy of 0.95, while the other two 
focused on outcome differences (p-values).

Most common variables and most important ones

The total number of variables used in the included studies 
was 813. The five most common ones were: Blood Pressure 

Table 4  List of the best 
performing models throughout 
the selected papers, classified by 
model family

Model class Model n %

Neural networks Feedforward NN/multilayer perceptron (MLP) 28 18 41.18 26.47
Convolutional NN (CNN) 7 10.29
Recurrent NN and long short-term memory NN (RNN) 3 4.41

Tree algorithms Random forest 24 16 35.29 23.53
Extreme gradient boosting (XGBoost) 5 7.35
Decision tree 2 2.94
Gradient boosting machine 1 1.47

Support vector machines Support vector machines 5 5 7.35 7.35
Logistic regression LASSO logistic regression 3 2 4.41 2.94

Logistic regression 1 1.47
Others Ensemble model 8 3 11.76 4.41

k-Nearest Neighbors (kNN) 1 1.47
Genetic algorithms 1 1.47
Hierarchical clustering 1 1 1.47
Hidden Markov Model 1 1.47
Markov decision processes 1 1.47
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(n = 62, 7.63%), Age (n = 45, 5.54%), Hemoglobin (n = 37, 
4.55%), Creatinine (serum) (n = 31, 3.81%) and Sex (n = 31, 
3.81%).

Nonetheless, to better capture how variables were used 
in the selected papers, we classified the variables into 4 
subsets (CKD Prognosis, CKD Diagnosis, Risk of Devel-
oping CKD, CKD Treatment) based on the primary aim the 
authors stated their model would have attempted to achieve.

Regarding CKD Prognosis, 342 variables were used out 
of 813 total (42%). The most common ones were: Blood 
Pressure (n = 24, 7%), Age (n = 19, 5,56%), Cholesterol 
(serum) (n = 18, 5.26%), Sex (n = 14, 4%) and Hemoglobin 
(blood) (n = 13, 3.8%), with the most important variables 
being: Age, Hemoglobin and Proteinuria.

Concerning CKD Diagnosis, 311 variables were used 
out of 813 total (38.25%). The most common ones were: 
Blood Pressure (n = 22, 7%), Hemoglobin (blood) (n = 19, 
6.1%), Pus Cell General—used to indicate the number of 
dead white cells in urine—(n = 18, 5.79%), Age (n = 14, 
4.50%) and Glucose (serum) (n = 14, 4.50%). The most 
important variables in this case were Albumin, Creatinine, 
and Hemoglobin.

With regard to Risk of Developing CKD, 137 variables 
were used out of 813 total (16.85%). The most common ones 
were: Blood Pressure (n = 12, 8.75%), Age (n = 9, 6.57%), 
Sex (n = 7, 5.11%), History of Cardiovascular Disease (n = 6, 
4.38%) and estimated Glomerular Filtration Rate (eGFR) 
(n = 6, 4.38%). The most important variables were Age, GFR 
and Blood Pressure.

Finally, regarding CKD Treatment, 23 variables were 
used out of 813 total (2.83%). The most common ones were: 
Blood Iron (n = 5, 21.74%), Hemoglobin (n = 3, 13%), Drugs 
Used (n = 2, 8.70%), MCV (n = 2, 8.70%) and White Blood 
Cells (blood) (n = 2, 8.70%). Regarding this aim, no weights 
were listed in the examined articles.

The complete spreadsheet with all variables and percent-
ages can be found in Supplemental Material, together with 
the most important variables, divided per aim.

Fairness

Other than using PROBAST to assess risk of bias, we also 
assessed fairness based on how the authors explicitly used 
variables. In some studies, variables were not fully listed, 
and in such cases, if the variable (sex, or race/ethnicity) was 
not indexed, we considered the feature as not included in 
the general model.

Out of 68 studies, 43 included gender in the model and 
12 included race/ethnicity. When Non-Hispanic Whites were 
part of the assessed cohort, they were the majority group, 
ranging from 87 to 31%. Ten out of 68 studies addressed 
both gender and race/ethnicity, and included these variables 
in the model.

Race/ethnicity was included in 4 out of 12 studies predict-
ing risk, in 5 out of 28 studies predicting prognosis, and in 3 
out of 21 studies classifying diagnosis. It was never included 
in models investigating prognosis and diagnosis combined, 
and therapeutics.

Clinical Deployment

Regarding Diagnosis, just one model was actually deployed 
in a clinical environment [60]. The authors applied a lasso 
regression with metabolites as features, achieving an accu-
racy of 99%; the authors used data from a real clinical con-
text, and therefore they deployed and evaluated their model 
performance on a clinical context, nevertheless, they did 
not validate their model. Regarding Prognosis, just 3 stud-
ies were conducted in a clinical setting [49, 50, 62]. Komaru 
et al. [49] predicted 1-year mortality following the start of 
hemodialysis through hierarchical clustering and achieved 
an AUC of 0.8; the authors used data from a clinical pro-
spective study to deploy and evaluate their model. Further-
more, they validated the used clusters. Kanda et al. [50] 
applied a support vector machine model onto a real popula-
tion in an observational study to deploy and evaluate their 
model. The authors achieved an accuracy of 89% through 13 
variables; unfortunately, they did not disclose the weights of 
the variables nor did they validate the model, and therefore 
we do not know which variables were the most important. 
Akbilgic et al. [62] used a model based on a Random Forest 
algorithm, and achieved an AUC of 0.69; the most impor-
tant features were eGFR, Spontaneous Bacterial Peritonitis, 
Age, Diastolic Blood Pressure and BUN. The authors used 
data from a real clinical context to deploy and evaluate their 
model; furthermore, they validated their results and model 
internally. Regarding Risk of developing CKD, one study’s 
model was used in a clinical context [42]. The authors used 
a NN, achieving an AUC of 0.89, using retinal images as 
features from a clinical context to deploy, evaluate and vali-
date their model. Finally, regarding CKD Treatment, one 
study’s model was used in a clinical environment [26]; they 
presented their results through differences in achieved values 
by their algorithms, and the best performance was achieved 
by a NN. They evaluated the model with clinical data, but 
did not validate it.

Quality assessment

According to the PROBAST assessment tool [18], most 
of the included articles showed an overall low risk of 
bias (n = 48; 67.6%), and 65 (91.5%) of the included arti-
cles showed low applicability. Moreover, only 8.5% of 
the included studies scored less than 70% in the reporting 
guidelines for machine learning predictive models in bio-
medical research developed by Luo and colleagues [19]. The 
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complete quality assessment can be found in Supplemental 
Material.

Discussion

This systematic review describes how machine learning has 
been used for CKD. Six overarching themes were found, 
each of which underlines the need for further consideration 
by the scientific community.

First, despite the ever-growing number of studies focus-
ing on the topic, a staggeringly low amount are being con-
sidered for actual clinical implementation. In this review, 
just 5 out of 68 articles tried to deploy their model in a real 
clinical setting. This might indicate either that the technol-
ogy is not ready yet, or, considering 4 of these 5 articles 
were published in the last 3 years, that the technology is 
just starting to creep into real clinical settings. Recent evi-
dence suggests that it is paramount to test newly developed 
algorithms in clinical settings before trying to deploy them 
[88]. Despite promising laboratory results, clinical transla-
tion is not always guaranteed. As an example, when study-
ing the feasibility of providing an automated electronic 
alarm for acute kidney injury in different clinical settings, 
substantial heterogeneity in the findings among hospitals 
was described, with the worrying result of a significantly 
increased risk of death for some hospitals [89].

Second, as expected, the most important features were 
profoundly related to the main aim the authors were pur-
suing. In this regard, there were no surprises in the stud-
ied topics as the most important features were related to 
conditions known to lead to CKD diagnosis, worsening of 
prognosis and risk of developing CKD (e.g., age, comor-
bidities, systolic and diastolic blood pressure and eGFR 
values).

Third, a lack of consistency in reporting results was 
found. Most of the studies chose to report accuracy, but 
this was not the norm. Furthermore, while accuracy pro-
vides information on model performance, it fails to consider 
class imbalance and data representation. This is extremely 
important as accuracy in highly unbalanced datasets can be 
very high by always predicting the same binary outcome 
because of a flawed model. For instance, considering a low 
prevalence disease, if the algorithm is flawed for it always 
predicts a negative event, the accuracy will be high, but the 
veracity of the model will not [90]. As a result, AUCs and 
ROCs better measure the model precision without requir-
ing the definition of a risk threshold. Twenty-nine authors 
chose to express their results including AUCs and ROCs: 
the minimum value was 0.69 and the maximum was 0.99 
(mean: 0.83, median: 0.84). These results best express how 
precise the algorithms were and confirm the overall high 
performance of the assessed models.

Fourth, a common conundrum regarding feature selec-
tion and output was found in studies assessing CKD diag-
nosis. The definition of CKD requires certain variables 
to be present in order to make a diagnosis, thus including 
those variables in the model might be considered mandatory. 
Nonetheless, including those variables forces the model to 
streamline its decision process to a simple match in altered 
values, effectively transforming a complex machine learning 
model into a linear decision flow-chart, the performance of 
which will always be stellar.

This phenomenon is especially clear in four of the stud-
ies this systematic review assessed [36, 39, 46, 47]. In these 
studies, the same database [91] is used, and accuracy, sensi-
tivity, specificity, and ROC-AUC are never below 98%. We 
believe researchers should carefully assess the variables used 
in their machine learning models to make sure that no data 
leakage is present between features and results.

Fifth, model bias and fairness were almost never consid-
ered. This is critical, as both biased and unfair models will 
not achieve the same results in different demographics, and 
their societal impact could exasperate disparities in certain 
populations. These issues need to be further explored before 
any model can be implemented at point of care.

Finally, among the included studies, only 6 evaluated 
their models in a clinical setting [26, 42, 49, 50, 60, 62], 
and only 3 were validated [42, 49, 62]. These studies showed 
promising results and did not report any unintended conse-
quences after evaluation and/or validation. Notwithstand-
ing the robust results described by the authors, as discussed 
before, recent evidence suggests that it is paramount to test 
newly developed algorithms in clinical settings to avoid 
adverse or unintended consequences [88, 89]. Taking into 
account the pinnacle of importance of validating ones’ 
results in real clinical contexts and not just “in lab”, in read-
ing their results, their generalizability has to be questioned, 
especially since no multi-center validations were described 
among the validated models.

This systematic review presents a few limitations: first, 
only one database (PubMed) was used to collect studies of 
interest. It should be noted that systematic reviews are usu-
ally exhorted to use at least two databases as stated by the 
PRISMA statement. Nonetheless, as PubMed has grown to 
be one of the most used search engines for medical sciences 
this limitation should be self-amending. Secondly, this sys-
tematic review assessed only papers written in English since 
English is the most widely adopted and commonly used lan-
guage for the publication of medical papers.

In addition to these limitations, due to this review’s 
design, all in vitro studies (on cellular substrates) were 
excluded. Consequently, the evidence presented in this 
review is not to be interpreted as definitive for all things con-
cerning CKD, since in vitro studies (on cellular substrates), 
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the insight of which is critical in understanding pathogenetic 
as well as therapeutic mechanisms, were not assessed.

Lastly, the majority of included studies did not evalu-
ate the integration of ML models in daily clinical practice, 
therefore the results and discussion have to be considered 
largely from an academic standpoint. Despite these limita-
tions, we feel this review advances the knowledge on the 
current state of data-driven algorithms to advance CKD 
diagnosis, prognosis and treatment.

Despite the potential benefits, the application of machine 
learning for CKD diagnosis, prognosis, and treatment pre-
sents several issues, namely fairness, model and result inter-
pretability [90], and the lack of validated models. Result 
interpretability concerns reflect the inability to explain 
which aspects of the dataset used in the training phase led 
to a predicted result in a particular case [92, 93]. Therefore, 
as the trend in machine learning techniques moves from tra-
ditional algorithms (e.g., lasso regressions, support vector 
machine, and decision trees), to more complex ones (e.g., 
ensemble algorithms and deep learning), the interpretability 
concerns become more pronounced [90]. Notably, research-
ers highlighted the need for explainability and for models 
that could have a significant impact on patients' health [94, 
95]. These models should be reported using best practice 
reporting guidelines such as the Transparent Reporting of 
a Multivariate Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) [94] or MINimum Information for 
Medical AI Reporting (MINIMAR) [97]. Transparent and 
accurate reports are also fundamental in advancing multi-
center validations of the applied models, which in turn is an 
essential step to ensure that only safe and sound models are 
applied on a large scale.

Most of the studies failed to report on the ethical issues 
revolving around their model development; the impact on the 
patient's well-being can also be affected by algorithmic bias 
[98, 99] and this can be worse in certain underrepresented 
populations. This concern is closely related to the general-
izability of the developed model [100–102]. Specifically, 
retrospective data that are usually used during the training 
phase often have significant biases towards subgroups of 
individuals that have been defined by factors such as age, 
gender, educational level, socioeconomic status, and location 
[98]. The issues of fairness and bias in algorithms should be 
evaluated by investigating the models’ performance within 
population subgroups.

This systematic review underlines the potential benefits 
and pitfalls of ML in the diagnosis, prognosis, and manage-
ment of CKD. We found that most of the studies included 
in this systematic review reported that ML offers invalu-
able help to clinicians allowing them to make informed 
decisions and provide better care to their patients; nonethe-
less most of those articles were not actually piloted in real 
life settings, and therefore, notwithstanding the excellent 

model performance results reported by authors, the tech-
nology might not be ready for mass real-time adoption or 
implementation.

Although future work is needed to address the viability, 
interpretability, generalizability, and fairness issues, to allow 
a safer translation of these models for use in daily clinical 
practice, the implementation of these techniques could fur-
ther enhance the effective management of hospital resources 
in a timely and efficient manner by potentially identifying 
patients at high risk for adverse events and the need for addi-
tional resources.

We hope the summarized evidence from this article will 
facilitate implementation of ML approaches in the clinical 
practice.
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