275 research outputs found

    Measurement Procedures for the Electrical Characterization of Oxide Thin Films

    Get PDF
    This paper describes a measurement system for the electrical characterization of oxide thin films. Such films can be produced using plasma-sputtering processes and permit the realization of a large set of high-performance components, such as capacitors, active devices, sensors, and protective coatings. The electrical properties of the oxide films, which have a thickness of less than 1 Ī¼m, are difficult to measure since very high resistances (on the order of gigaohms) and small capacitances (on the order of picofarads) are expected for contact areas smaller than 1 mm2. The measurement system and the procedures described in this paper represent an alternative solution to the commercial devices, which usually employ a mercury probe for performing the contact with the specimen under characterization. Furthermore, the proposed system can be used not only to estimate the electrical properties of a single point but to evaluate the uniformity of oxide films on large specimens as well. The experimental results reported refer to valve-metal-based oxide films deposited in a lab-scale capacitively coupled parallel-plate reactor and show the effectiveness of the proposed procedure

    A Remotely Controlled Calibrator for Chemical Pollutant Measuring-Units

    Get PDF
    The increasing diffusion of pollutant measuring units, which are installed over wide areas, along with the short calibration interval of several sensors for pollutant quantities, requires new calibration infrastructures to be developed. This paper describes an attempt to develop an innovative calibration system which is based on traveling standards and which does not require units to be removed from the measuring site during the calibration process. The calibration system is based on a traveling standard, which is composed of one or more cylinders that contain gas mixtures, a cell with standard sensors, and a control unit with networking capabilities, which allows the traveling standard to be remotely exercised. A prototype of the proposed system is described and the preliminary results reporte

    Noninvasive Solution for Electrochemical Impedance Spectroscopy on Metallic Works of Art

    Get PDF
    Metallic works of art of cultural relevance are continuously subjected to corrosion as the environment becomes increasingly polluted. A fast and simple method to in situ assess the conservation conditions is therefore required. This paper describes the development and performance of dry and gel-based electrodes which can be used to assess the surface conservation state without the need to move the artifacts and which do not cause any damage to them. The electrodes can be used with a portable electrochemical impedance spectroscopy system, without employing electrochemical cells. The proposed solution does not provide all the information that one can obtain using an electrochemical cell, but it can discriminate between protective coatings. It can be used to assess the protective capability of corrosion product layers and natural patinas, and it can therefore enable a noninvasive routine surface assessment to be conducted that could be extremely useful for people working in the field of conservation of cultural heritag

    Guest Editorial for Recent Advances in Medical, Biomedical, and Healthcare Measurements Special Section

    Get PDF
    Measurement is fundamental to medical research and clinical practice. Physicians, clinicians, and medical laboratory scientists must not only be able to detect and diagnose health issues but also have confidence in the results reported by their instruments and measurement methods in order to make the correct decision for their patients. Reliability, accuracy, and efficiency of the implemented methods and devices are, therefore, the main concerns of researchers working in the field of medical measurements and applications

    An Optical Sampling System for Distributed Atmospheric Particulate Matter

    Get PDF
    The atmospheric particulate matter is considered one of the most dangerous pollutants because of its effects on the climate and human health. Particulate concentration changes largely with spatial position and time, and thus, a distributed real-time monitoring would be mandatory, especially in densely populated areas. The proposed optical sampling system has a negligible cost with respect to the already available instruments and can be used for deploying a capillary particulate monitoring network thanks to its wireless capability based on the LoRa protocol. The proposed solution employs an optical method for the atmospheric particulate detection and the estimation of its concentration and size distribution. The air is sampled by a small pump which forces a known flux through a commercial glass-fiber filter, where the particulate is captured. A low-cost digital camera coupled with a multi-wavelength lighting system takes periodical photographs of the filter surface, and a small PC-on-single-board processes the acquired images in order to identify the particles and to estimate their size. The system can work unattended for a long time and transmit remotely measurement data with a typical range of few kilometers

    Modified POF Sensor for Gaseous Hydrogen Fluoride Monitoring in the Presence of Ionizing Radiations

    Get PDF
    This paper describes the development of a sensor designed to detect low concentrations of hydrogen fluoride (HF) in gas mixtures. The sensor employs a plastic optical fiber (POF) covered with a thin layer of glass- like material. HF attacks the glass and alters the fiber transmission capability so that the detection simply requires a LED and a photodiode. The coated POF is obtained by means of low-pressure plasma-enhanced chemical vapor deposition that allows the glass-like film to be deposited at low temperature without damaging the fiber core. The developed sensor will be installed in the recirculation gas system of the resistive plate chamber muon detector of the Compact Muon Solenoid experiment at the Large Hadron Collider accelerator of the European Organization for Nuclear Research (CERN

    Design and Deployment of Low-Cost Plastic Optical Fiber Sensors for Gas Monitoring

    Get PDF
    This paper describes an approach to develop and deploy low-cost plasti optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD). The interaction between the deposited layer and the gas alters the fiberā€™s capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber) muon detector of the Compact Muon Solenoid (CMS) experiment at CERN in Geneva

    Exposure-Tolerant Imaging Solution forCultural Heritage Monitoring

    Get PDF
    This paper describes a simple and cheap solution specifically designed for monitoring the degradation of thin coatings employed for metal protection. The proposed solution employs a commercial photocamera and a frequency-domain-based approach that is capable of highlighting the surface uniformity changes due to initial corrosion. Even though the proposed solution is specifically designed to monitor the long-time performance of protective coatings employed for the restoration of silver artifacts, it can be successfully used also for assessing the conservation state of other ancient metallic works of art. The proposed solution is made tolerant to exposure changes by using a procedure for sensor nonlinearity identification and correction, does not require a precise lighting control, and employs only free open-source software, so that its overall cost is very low and can be used also by not specifically trained operator

    Conservazione e sicurezza strutturale di colonne in ghisa prodotte e montate in opera nel XIX secolo

    Get PDF
    riassunto esteso e presentazione orale al convegno Workshop IGF - Problematiche di Frattura nei Materiali per l'Ingegneria, Forni di Sopra (UD), 7/1/2010 - 9/1/201
    • ā€¦
    corecore