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Abstract

Exposure to high levels of air pollutant concentration is known to be associ-
ated with respiratory problems which can translate into higher morbidity and
mortality rates. The link between air pollution and population health has
mainly been assessed considering air quality and hospitalization or mortality
data. However this approach limits the analysis to individuals characterized
by severe conditions. In this paper we evaluate the link between air pollution
and respiratory diseases using general practice drug prescriptions for chronic
respiratory diseases, which allow to draw conclusions based on the general
population.

We propose a two-stage statistical approach: in the first stage we specify
a space-time model to estimate the monthly NO2 concentration integrating
several data sources characterized by different spatio-temporal resolution;
in the second stage we link the concentration to the β2-agonists prescribed
monthly by general practices in England and we model the prescription rates
through a small area approach.
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1. Introduction

Exposure to high levels of air pollutant concentration is known to be as-
sociated with respiratory problems which can translate into higher morbidity
and mortality rates. Short term and long term effects have been documented,
with a scientific literature increasing exponentially since the London great
smog in 1952 and the following Clean Air Act of 1955 in the US and 1956 in
the UK (Schwartz and Marcus, 1990; Dockery et al., 1993; Atkinson et al.,
2014; Rushworth et al., 2014), with particular focus on cardiovascular and
respiratory diseases (Brunekreef and Holgate, 2002; Künzli, 2012; Schikowski
et al., 2005; Lanki et al., 2006; Brook et al., 2010).

Asthma and chronic obstructive pulmonary disease (COPD) are the two
main respiratory diseases which cause heavy social and economic burden
worldwide (WHO, 2012). It is estimated that the number of people who are
suffering from asthma was 334 million around the world in 2014 and this
number is projected to elevate to 400 million by the year 2025 (Masoli et al.,
2004). According to the latest World Health Organisation (WHO) estima-
tion, 64 million people are currently suffering from COPD and there are 3
million deaths attributable to this condition; they predict that COPD will
become the third leading cause of death worldwide by 2030 (Vos et al., 2015).
As asthma and COPD are both long-term conditions, they can be controlled
by regular medication. According to the recent report of the Office for Na-
tional Statistics (ONS), the drugs prescribed for controlling these conditions
have experienced a rapid increase in recent years, so it becomes more and
more important to carry out epidemiological surveillance and risk assessment
of such diseases, with the aim of guiding decision making for control and pre-
vention (Prescribing and Primary Care Health and Social Care Information
Centre, 2014).

Historically, administrative datasets such as Hospital Episode Statistics
(HES) or Mortality registries have been used for this purpose and the nature
of these registries implies that only individuals characterized by a severe con-
dition of the diseases are included in the analysis. Alternatively data on drug
prescriptions from general practices (GPs) allows to change the perspective
to primary care and to focus on the general population instead of restricting
the analysis to severe cases.

The strength and validity of GP prescription data have been proven by
several studies for different diseases using diverse study designs (Hansell
et al., 1999; Katz et al., 2010; Jick et al., 2003), for example evaluating
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the risk of cardiovascular diseases (Osborn et al., 2007; Clayton et al., 2008),
monitoring the use of antibiotics for respiratory diseases (Howie et al., 1971;
Petersen et al., 2007) and identifying asthmatic children through GP pre-
scription database (Moth et al., 2007). A few studies have used salbutamol
prescribing data in respiratory diseases surveillance. Vegni et al. (2005) used
a Poisson regression model to study how the respiratory drug dispensation is
linked to the air pollution effect of total suspended particles and suggested
that respiratory drug prescribing data are a good indicator of air pollution.
Naureckas et al. (2005) used short acting β2-agonists (SABA) prescription as
an indicator of asthma attributable hospital admissions and found a signifi-
cantly positive relationship between SABA prescription and hospital admis-
sions at area level. A study by Laurent et al. (2009) suggested that SABA
sales would increase with the elevated concentration of air pollution factors
such as NO2, PM10 and O3. Sofianopoulou et al. (2013) used primary care
data to investigate the association between respiratory prescription, social
economic status and PM10 and found a small but positive increase in pre-
scriptions for an increase in air pollution.

In all these studies, SABA prescription data were limited to specific re-
gions (Como, Italy for Vegni et al., 2005; Newcastle and North Tyneside for
Sofianopoulou et al., 2013; Strasbourg region in France for Laurent et al.,
2009), while to the best of our knowledge no previous study has focused on
an entire country at a small area level.

In this paper we propose to evaluate the link between air pollution and
respiratory diseases through a two stage approach: in the first stage we
develop a spatio-temporal model for Nitrogen Dioxide (NO2) as measure of
air pollution. The model considers that monthly NO2 concentrations are
realizations of a continuous spatial process that changes in time with an
autoregressive dynamics; in addition it includes some covariates characterized
by a different spatial resolution, ultimately aiming at prediction of NO2 at
a different spatial resolution. This leads to the change of support problem
(COSP, Gotway and Young, 2002; Gelfand et al., 2010), a crucial issue in
environmental modeling and health risk assessment. In the literature several
solutions have been identified to deal with the COSP, mainly by means of
hierarchical models; see for example the Bayesian melding of Fuentes and
Raftery (2005), the spatio-temporal downscaler of Berrocal et al. (2010a),
the joint modelling of point and grid spatio-temporal data by Sahu et al.
(2010) and the Bayesian 2-Stage Space-Time Mixture Modeling of Lawson
et al. (2012). A critical point concerning COSP regards the computational
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costs, which can become prohibitive in case of massive data sets or complex
models, giving rise to the so called big n problem (Lasinio et al., 2013). In
this work we propose a computationally efficient solution to the COSP by
adopting the Integrated Nested Laplace Approximation (INLA) approach
developed by Rue et al. (2009) and implemented in the R-INLA package
(http://www.r-inla.org/). We use the first stage model to perform point-
to-area NO2 prediction, so that the pollutant concentration estimates are
available at the same spatio-temporal resolution of the drug prescriptions.
At the second stage, the NO2 concentration is linked to the prescription
rates in a small area approach, taking into account potential confounders.

An additional feature of our modelling framework is that we move away
from the standard public health approach, where the exposure estimated at
the first stage is plugged in the second stage without taking its uncertainty
into account (Rushworth et al., 2014; Lee and Sarran, 2015; Huang et al.,
2015); instead we consider the entire NO2 posterior distribution from the
first stage and feed it forward into the health model. We compare the results
from this model with the naive one, that plugs in the mean from the NO2

distribution into the second stage model.
The rest of the paper is structured as follows. Section 2 presents the

data considered in this work. Section 3 introduces the first stage statistical
model which is used to obtain NO2 estimates at the area level for a monthly
temporal resolution, while Section 4 describes the second stage statistical
model used to link exposure with the health data. After a short introduction
in Section 5 of the INLA approach adopted for Bayesian inference in spatial
statistics, results and main findings are reported in Section 6, while discussion
points and concluding remarks are given in Section 7.

2. Exploratory data analysis

2.1. Drug prescription data

Drug prescribing data are released by the English National Health Ser-
vice (NHS) for all the GPs in England and all the drugs and are available
from https://data.gov.uk/. The database includes around 11,000 prac-
tices and 30,000 drugs with around 112 million drug items prescribed and
redeemed each month. For each general practice the number of drug items
prescribed monthly are provided. In this work, prescribing data regarding
the following drugs based on short acting β2-agonists are considered: Salbu-
tamol 100mcg, Ventolin 100mcg and Clenil Modulite 100mcg, accounting for
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around 96% of all β2-agonists prescriptions in England (Sofianopoulou et al.,
2013). Additionally the geographic coordinates of each GP are available. We
limit the analysis to the 8,003 practices where information on the registered
population is available to the period from August 2010 to November 2012.

Figure 1 shows the space and time rates of β2-agonists prescriptions,
calculated as the ratio between observed and expected prescription assuming
the whole of England as standard population. As a geographical unit we
consider the clinical commissioning groups (CCG), which are organizations
of GPs in the same area and that are responsible to provide health and
care services to patients. From the figure a spatial variability is visible, with
more prescriptions in the north, north-est and in the south-west corner of the
country. A temporal variability can also be appreciated, with an increase in
prescription for early spring, which might be explained by allergies, and late
autumn/early winter, which could relate to infections.

2.2. NO2 concentration data

Data about Nitrogen Dioxide (NO2, in µg/m3) concentration are available
through the OpenAir project (Carslaw and Ropkins, 2012) and the related R

package openair (Carslaw and Ropkins, 2015). In particular, we consider the
daily NO2 data for the period August 2010 - November 2012 available from
the UK Automatic Urban and Rural Network (AURN), the King’s College
London’s London Air Quality Network (KCL) and the European Air qual-
ity dataBase (AIRBASE). We excluded kerbside and roadside stations and
considered only sites with at least 75% of data. The final dataset comprises
44 stations for which monthly NO2 mean concentration and coordinates are
available (see Figure 2). The NO2 monthly time series reported in Figure 3
show, as expected, higher pollutant concentration in the cold season; more-
over, most of the stations are characterized by a similar temporal pattern.

2.3. NO2 baseline data

As NO2 stations are quite sparse over England and there are some areas
with no monitoring sites, we integrate these data with the annual NO2 con-
centration obtained combining a numerical model (ADMS-Urban) and land
use regression (Gulliver et al., 2013). These data, while being constant in
time, are defined at a very high spatial resolution given by the Lower Super
Output Area (LSOA) geography (32,844 areas); we consider here 2009 as
this is the latest year when concentration at such a fine resolution is avail-
able and use it to represent the NO2 baseline level. From the map in Figure
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Figure 1: Map of monthly prescription rates for β2-agonists in England for 2011. The
spatial unit considered is the Clinical Commissioning Group (CCG).
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Figure 2: Map of NO2 monitoring stations in England.
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Figure 3: NO2 concentration (in µg/m3) monthly time series for the 44 stations in England
(August 2010 - November 2012).

8



4 it is possible to identify some zones with high levels of NO2 concentration
located around the main urban areas, e.g. London, Manchester, Liverpool
and Newcastle.

Figure 4: Map of NO2 baseline level (in µg/m3) for 2009 with LSOA resolution (left) and
map of mean temperature in C◦ for May 2011 on a 0.25 degree regular latitude-longitude
grid.

2.4. Temperature data

To take into account the NO2 seasonality shown in Figure 3 we con-
sider daily temperature data, which are made available on a 0.25 degree
regular latitude-longitude grid (covering Europe and the Mediterranean) by
the European Climate Assessment & Dataset project (Haylock et al., 2008)
(http://www.ecad.eu/). For this work, we compute monthly mean aver-
ages for the period of interest (August 2010 - November 2012) and for the
grid cells covering England (see for example Figure 4). As expected, the
average temporal correlation between NO2 concentration and temperature,
computed by assigning to each monitoring station the temperature value of
the closest cell, is negative and moderate (−0.42).
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2.5. Confounders

Several factors can influence the relationship between air pollution and
drug prescribing rates. For this reason in the epidemiological analysis at
the second stage of the modelling framework we include the known con-
founders available from different sources. From the GP datasets the popu-
lation by age and sex registered to each practice is available and we calcu-
late the % of active population (between 14 and 64 years old) and the %
of males. From the Health and Social Care Information Centre we obtained
asthma and chronic obstructive pulmonary disease prevalence at the GP level
and for the period August 2010 - November 2012 (http://www.hscic.gov.
uk/catalogue/PUB05756). Finally, from the Department for Communities
and Local Government (https://www.gov.uk/government/collections/
english-indices-of-deprivation) we downloaded the multiple depriva-
tion index (IMD) at the LSOA level and linked each practice to the corre-
sponding area.

3. First stage: spatio-temporal NO2 model

The first stage concerns the modeling of NO2 monthly concentration
available at the 44 monitoring sites, by integrating also temperature and
NO2 baseline data. To deal with the spatial misalignment of the consid-
ered datasets, we associate with each NO2 station the temperature and NO2

baseline value of the nearest grid cell or area (see e.g. Berrocal et al., 2010b;
Zidek et al., 2011). The spatio-temporal model we specify here is widely
adopted in the air quality literature thanks to its flexibility in modeling rel-
evant covariates as well as correlation in space and time (Fassò and Finazzi,
2011; Cocchi et al., 2007; Cameletti et al., 2011; Sahu, 2011). Moreover, it
has been already implemented in R-INLA and validated by Cameletti et al.
(2013).

Let yit denote the NO2 concentration (square root transformed to ensure
normality) measured at station located at site si (i = 1, . . . , 44) and month
t = 1, . . . , 28. We assume the following distribution for the observations

yit ∼ Normal(ηit, σ
2
e)

with linear predictor given by

ηit = β0 + β1Tempit + β2NO2baselinei + ωit, (1)
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where β = {β0, β1, β2} are the fixed effects. The term ωit refers to the latent
spatio-temporal process which changes in time with first order autoregressive
dynamics with coefficient a and spatially correlated innovations:

ωit = aωi(t−1) + ξit,

for t = 2, . . . , 28, with |a| < 1 and ωi1 deriving from the stationary distri-
bution Normal(0, σ2

ω/(1 − a2)). In the previous equation ξit is a zero-mean
Gaussian Field (GF) defined by the following spatio-temporal covariance
function

Cov (ξit, ξju) =

{
0 if t 6= u

C(si, sj) if t = u
,

where C(si, sj) is the Matérn covariance function (Cressie and Wikle, 2011)

C(si, sj) =
σ2
ω

Γ(λ)2λ−1
(κ||si − sj||)λKλ (κ||si − sj||)

depending on the Euclidean spatial distance h = ||si − sj|| ∈ R, the spatial
variance σ2

ω and the scaling term κ. The term Kλ(·) denotes the modified
Bessel function of second kind and order λ > 0. Lindgren et al. (2011)
proposed an empirically derived definition for the range ρ =

√
8λ/κ, inter-

preted as the distance at which the spatial correlation is close to 0.1 for each
λ ≥ 1/2.

Model estimation and prediction is performed in a Bayesian setting us-
ing the INLA-SPDE approach described in Section 5. Note that in R-INLA

the smoothness parameter λ, which is usually kept fixed to ensure model
identifiability, is by default equal to 1; in addition the SPDE parameters
are represented as log(τ) = θ1 (τ is related to the variance through the re-
lationship σ2

ω = 1/(4πκ2τ 2)) and log(κ) = θ2, with θ1 and θ2 being given
independent Normal(0,1) prior distributions (for more details see Blangiardo
and Cameletti, 2015). Moreover, weakly informative Normal priors centered
on 0 and with a small precision equal to 0.01 are specified for the fixed effects
in Equation (1).

As we are interested in predicting the NO2 concentration - represented by
the linear predictor in (1) - at the Middle Super Output Area level (MSOA) -
for inclusion in the second model stage (see Section 4), we perform this change
of support from points to areas in two steps: first the posterior distribution of
NO2 concentration is obtained for a regular grid and for all the time points
(in particular we use the grid described in Section 2.4). This task can be
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easily achieved using the SPDE approach, which provides an approximation
of the spatial process over all the considered spatial domain. Second, for
a given time point t and area Bk, we compute a linear combination of the
NO2 posterior distributions ηjt available at the grid cells Sj which have an
intersection with area Bk:

NO2Bkt =
∑
Sj

ηjt∆j, (2)

where ∆j = |Sj ∩Bk| is the weight identifying the proportion of the j-th grid
cell overlapping with the MSOA Bk. Note that the MSOA spatial resolution
has been chosen to approximate the GP catchment areas; in addition it is a
relatively small area with a population on average around 10,000 individuals,
but at the same time it ensures computational tractability (there are 6790
MSOA in England to be predicted over 28 months).

4. Second stage: health data model

The NO2 concentration predicted at the MSOA level from the first stage
model in (2) is linked to the GP prescription data in the second stage. We
assume a Poisson distribution for the number of prescriptions Okt for practice
k (k = 1, . . . , 8003) at month t (t = 1, . . . , 28):

Okt ∼ Poisson(θktEkt)

with Ekt indicating the number of expected prescriptions for each practice
and each month considering the whole of England as the standard region,
while the typical log-linear model is specified on the risk θkt

log(θkt) = γ0 + xTktγ + Uk + vck + uck + ζt, (3)

where γ0 is the intercept and represents the average prescription rate across
England, γ = {γ1, . . . , γP} identifies the covariate effects including the expo-
sure of interest (NO2Bkt) from the MSOA where each GP is located and the
confounders (age, sex, prevalence of COPD, prevalence of asthma, quartiles
of deprivation). Note that the inclusion of COPD and asthma prevalence
adjusts for the baseline prescription rate due to underlying cases of obstruc-
tive respiratory diseases at each GP and allows to pick up the effect of air
pollution on the prescribing rates for new cases or for exacerbated ones. We
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include a random effect at the GP level (Uk ∼ Normal(0, τU), with a non
informative prior on τU) to consider the effect of unmeasured confounders at
that level.

As the CCGs are man-made organisations which take decisions on pri-
mary care strategies, it is reasonable to assume that they influence the pre-
scribing behaviour at GP level. To take this into account we include a
Besag-York-Mollie specification (BYM, Besag et al., 1991) for CCGs (c =
1, . . . , 211), assuming vc ∼ Normal(0, τv) and a conditionally autoregressive
structure for uc:

uc | u−c ∼ Normal

(∑
j∈Dc

uj

nDc

, (nDcτu)

)
where Dc is the set of neighbouring areas for CCG c and nDc is its total
number of neighbours.

In this paper we specify a modified version of the BYM as proposed
by MacNab (2011) and Simpson et al. (2015), and recently implemented in
R-INLA. This prior specification relaxes the assumption of independence be-
tween uc and vc and at the same time considers a standardised marginal
variance so that the hyperprior does not depend on the neighbouring struc-
ture and it is transferable and comparable across studies based on different
neighbouring structures (Simpson et al., 2015). Thus the specification pre-
sented in (3) becomes the following

log(θkt) = γ0 + xTktγ + Uk + ζt +
1√
τ

(√
1− φvck +

√
φu∗ck

)
(4)

where u∗c is a modified random effect which has a marginal precision equal
to 1 and vc has a Normal distribution centered on 0 with precision equal to
1. Both random effects are specified at the CCG level and are driven by two
hyperparameters: a precision τ on which a Gumbel distribution is specified
and a scale parameter φ which governs the proportion of variability due to
the local spatial dependency or to the global smoothing. This can also be
interpreted in terms of penalised complexity, assuming that φ is different
from 0 if the data provide evidence of a spatial pattern which cannot be
explained by the simpler random effect v. The prior on φ is given by an
exponential distribution truncated between 0 and 1.

As the data span over 28 months ζt is included to account for the temporal
variation in prescriptions and is modelled as an autoregressive of order 1,
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NO2 modelling NO2 prediction GP model Residuals
Points: 44 Monitors Points: Prescriptions Clinical Commissioning

Group (CCG):

LSOA: baseline NO2 MSOA Points: Confounders Spatially structured
at 2009 and unstructured effects

Grid: Temperature 8003 general practices Practice level:
28 months unstructured effect

Why chosen
Data availability To approximate To allow variability To account

GP catchment across GPs for clustering (CCG)
areas to be considered and GP level

variability

Table 1: Summary of the different spatial resolutions used in the modelling framework.

assuming that each time point depends only on the previous one in the time
series as follows:

ζt = bζt−1 + εt; εt ∼ Normal(0, τζ)

Finally on the regression coefficients (fixed effects) weakly informative
prior are specified similarly to the ones presented in (1).

Given that a different spatial resolution has been used across the mod-
elling framework we have summarised it in Table 1, spelling out the reason
for each choice to aid clarity.

4.1. Uncertainty Propagation
The fact that our modelling framework is split into two stages means that

uncertainty from the predicted NO2 concentration is not automatically prop-
agated into the health model which could artificially increase the precision of
the estimates of the NO2 effect. To take into account uncertainty we propose
to draw J values (e.g. 1,000) from the posterior distribution of NO2 at the
area level obtained from (2) and then to include each NO2Bktj into the health
model

log(θktj) = γ0 + γNO2NO2Bktj + . . . (5)

which is then run J times. Then the posterior distribution of γNO2 will be
combined across all the runs accounting for the uncertainty.

To evaluate the impact of uncertainty on the air pollution effect estimates
we compare this model with the naive one, obtained simply plugging in the
posterior mean of the NO2 estimates for each area and time point into the
health model.
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5. Bayesian inference with INLA and SPDE

INLA (Rue et al., 2009; Blangiardo and Cameletti, 2015) is a computa-
tionally efficient alternative to Markov chain Monte Carlo (MCMC) methods,
which are usually adopted for Bayesian inference but suffer from computa-
tional complexity, especially in case of large datasets characterized by high
spatial and/or temporal resolution. INLA performs approximate Bayesian
inference for latent Gaussian models by using integrated nested Laplace ap-
proximations and its use is now well established in several research fields,
including ecology, epidemiology, econometrics and environmental science (Il-
lian et al., 2013; Blangiardo et al., 2013; Musenge et al., 2013; Bilancia and
Demarinis, 2014; Carson and Mills Flemming, 2014; Cosandey-Godin et al.,
2015; Bivand et al., 2014; Muff et al., 2015; Mtambo et al., 2015; Gómez-
Rubio et al., 2015), also thanks to the availability of the R-INLA package.

Latent Gaussian models can be represented through hierarchical struc-
tures; using the general notation adopted in Blangiardo and Cameletti (2015),
at the first stage the model for the data y = (y1, . . . , yn) is defined assuming
independence conditionally on the latent field θ (which includes both fixed
and random effects defined in the linear predictor) and on the hyperparam-
eters ψ = (ψ1, . . . , ψK):

y | θ,ψ ∼ p(y | θ,ψ) =
n∏
i=1

p (yi | θi,ψ) .

At the second stage, a multivariate Normal prior is assumed on θ with mean
0 and precision matrix Q(ψ), i.e. θ | ψ ∼ p(θ | ψ) = Normal (0,Q(ψ)−1) .
For a wide range of models we can assume that the components of the latent
Gaussian field θ admit conditional independence, hence the precision matrix
Q(ψ) is sparse and the latent field θ is a Gaussian Markov random field
(GMRF, Rue and Held, 2005). The sparsity of the precision matrix is crucial
for computational benefits, as it allows to use numerical methods for sparse
matrices which are faster then the general algorithms for dense matrices.
The hierarchical model specification is then completed with a prior for the
hyperparameters ψ ∼ p(ψ).

The INLA algorithm substitutes MCMC simulations with accurate de-
terministic approximations to the marginal posterior distributions of interest
for each element of the parameter and hyperparameter vector, i.e. p(θi | y)
and p(ψk | y). Moreover, as described in Martins et al. (2013), INLA can
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provide approximations to the posterior marginals of linear combinations of
the latent field defined as ν = Bθ, where matrix B contains the weights
defining the linear combination.

When Bayesian inference involves a spatial process defined over a contin-
uous domain (i.e. a GF), it is possible to combine INLA with the Stochastic
Partial Differential Equation (SPDE) approach proposed by Lindgren et al.
(2011). The strength of SPDE derives from representing a GF with Matérn
spatial covariance function as a discrete indexed GMRF, which is character-
ized by a sparse precision matrix and enjoys computational benefits in terms
of fast inference.

This representation is based on a finite combination of piecewise linear
functions defined over a triangulation (or mesh) of the domain of interest and
with basis weights defined by a GMRF with sparse precision matrix explic-
itly depending on the Matérn parameters (Simpson et al., 2012a,b). Spatial
prediction in a given location belonging to the considered spatial domain is
straightforward since SPDE provides the approximation of the entire spatial
process; it is just a matter of including in the model the locations where
predictions are required as missing values observations (Lindgren and Rue,
2015). For a comprehensive review on the INLA and SPDE approach we
refer the reader to Blangiardo et al. (2013) and Blangiardo and Cameletti
(2015).

6. Results

First stage model
Running the model presented in (1) on our data and using the mesh with

342 vertexes shown in Figure 5 we obtain the coefficients reported in Table
2: the intercept value, equal to 5.049 on the square root scale, corresponds
to a posterior average pollution level of about 25.8 µg/m3, after adjustment
for covariates. As expected a significant and negative relationship is ob-
served between temperature and NO2 concentration, while the coefficient of
NO2 baseline level indicates a positive association. The lag one coefficient
a = 0.9782 shows a strong correlation in time; the spatial range estimate is
equal to ρ = 1.911 degrees which corresponds to about 210 km, thus denot-
ing a spatial correlation almost null for medium-long distances. Then after
performing point-to-area prediction as presented in (2), we obtain predictive
distributions of NO2 concentration for each time point and for each area
at the MSOA level; an example of this high-resolution map, is reported in
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Figure 6, which displays the posterior mean, posterior 2.5% and 97.5% for
December 2011.

Additionally, in order to validate the model we re-run the first stage
dropping 10% of the monitoring stations: by comparing predicted and ob-
served values we obtain an average (over stations) correlation index equal

to 0.91, an average mean absolute percentage error (MAPE= 1
28

∑28
t=1

|ŷi−yi|
yi

,

Morrison et al., 2016) equal to 0.03 and an average root mean square error
given by 0.62. This suggests that the model is able to accurately capture the
space-time dynamics.

mean 0.025quant 0.5quant 0.975quant
β0 5.0490 3.9140 5.0510 6.1710
β1 -0.1040 -0.1210 -0.1050 -0.0860
β2 0.0180 0.0110 0.0180 0.0260
σ2
e 0.2515 0.2337 0.2513 0.2706
a 0.9782 0.9722 0.9784 0.9832
σ2
ω 2.7539 1.9980 2.7205 3.6917
ρ 1.9110 1.4580 1.8946 2.4530

Table 2: Posterior estimates (mean and quantiles) of the NO2 model (first stage).

Second stage model
Including the NO2 posterior distribution in the health model we obtain

the results presented in Table 3: the posterior summary for the regression
coefficients are reported for (i) the main model, which takes uncertainty from
the first stage into account through re-sampling of NO2 concentration from
its posterior distribution, as presented in (5) and (ii) the naive model, which
includes only the posterior means of NO2 from the first stage model. We find
a small association between NO2 and GP prescriptions, with a posterior rela-
tive risk of prescribing increasing on average by 0.07% when NO2 increases of
10 µg/m3 (CI95 going from 0.01% to 0.15%). The numbers might seem very
small, but this can loosely translate into an additional monthly 31,547 pre-
scriptions across England assuming that NO2 increases of 10 µg/m3 in each
MSOA. The confounders show an effect on the outcome: as expected depri-
vation is associated with prescriptions, with a posterior mean relative risk
increasing of almost 60% going from the least deprived (first quartile of IMD)
to the most deprived (4th quartile of IMD) areas. Also population structure
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Figure 5: Representation of the triangulation (or mesh) with 342 vertexes used for the
SPDE basis function representation of the Matérn Gaussian field. The grey points denote
the NO2 monitoring stations.

Figure 6: Posterior summaries (2.5% quantile, mean, 0.975% quantile) of NO2 concentra-
tion (in µg/m3) at the MSOA level for December 2011.
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With Uncertainty
mean 0.025quant 0.5quant 0.975quant

NO2 1.0007 1.0001 1.0006 1.0015
IMD(q2) 1.1454 1.1443 1.1454 1.1466
IMD(q3) 1.3448 1.3431 1.3448 1.3464
IMD(q4) 1.5886 1.5865 1.5886 1.5907
% male 1.9611 1.9246 1.9610 2.0014
% active pop 0.1597 0.1581 0.1597 0.1613
COPD prev. 35.0624 32.6591 35.0176 37.7483
Asthma prev. 8065.1546 7834.6360 8063.9923 8303.9261

Without Uncertainty
mean 0.025quant 0.5quant 0.975quant

NO2 1.0010 1.0003 1.0010 1.0014
IMD(q2) 1.1454 1.1443 1.145 1.1465
IMD(q3) 1.3449 1.3433 1.3449 1.3465
IMD(q4) 1.5886 1.5865 1.5886 1.5908
% male 1.9618 1.9242 1.9616 1.9989
% active pop 0.1597 0.1580 0.1597 0.1614
COPD prev. 35.0163 32.4203 35.0578 37.7270
Asthma prev. 8069.7698 7849.0205 8069.3956 8299.9460

Table 3: Posterior estimates (mean and CI95) of the relative risks in the health model
(second stage). The top part of the table shows the results from the model which takes into
account uncertainty on the NO2 concentration estimates from the first stage model; the
bottom part of the table presents the results of the naive analysis, plugging the posterior
mean of NO2 concentration estimates only.

presents an association with prescriptions, with a posterior mean relative risk
equal to 0.16 for active population versus older/younger patients and of 1.96
for males compared to females. Finally areas where the prevalence of COPD
and asthma is higher experience higher rates of prescriptions as expected
(posterior mean relative risk equal to 35.062 and 8065.154 respectively).

Comparing the results reported above to the ones for the naive model
shows (i) a change in the NO2 posterior distribution, which is narrower and
has a mean further away from zero (posterior mean relative risk suggesting
a 0.1% increase in the prescription rate when NO2 increases of 10 µg/m3

and a credibility intervals going from 0.03% to 0.14%); (ii) stable results
for the confounders. The hyperparameter φ shows that about 70% of the
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variability is explained by the spatial component u∗ = {u∗1, . . . , u∗211} in both
the model specifications (with and without uncertainty, see Figure 7) and
Figure 8 presents the map of the spatial residual (exp(u∗c + vc)), suggesting
the presence of spatial variation.

Figure 7: Posterior distributions of the hyperparameter φ for the model with and without
uncertainty (dashed and solid line respectively). They show a similar behavior, with about
70% of the variability explained by the spatial component u∗.

7. Discussion

In this paper we have developed a two stage modelling framework to
evaluate the effect of NO2 concentration on β2-agonist to control chronic
respiratory diseases like asthma and COPD in a primary care perspective,
i.e. considering the general population instead of focussing on severe cases
only (i.e. using hospital admissions or mortality registries). Similarly to the
recent literature on air pollution statistical modelling we have considered a
Bayesian spatio-temporal specification to account for spatial and temporal
misalignment between pollutant concentration data, which are available at
a finite number of monitoring stations on a daily basis, and disease data,
represented by counts over spatial units at a monthly resolution.

The Integrated Nested Laplace Approximations approach (INLA) has
proven to be a faster alternative to MCMC yet providing accurate results;
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Figure 8: Posterior distribution of the spatial random effects exp(u∗c + vc) for the model
with uncertainty. The map shows the presence of spatially structured variation, which is
in line with the posterior distribution of the hyperparameter φ.

INLA coupled with the Stochastic Partial Differential Equation (SPDE)
strategy means that also continuous spatial domains can benefit from the
sparsity of precision matrices which results in reduced computational burden
making possible to work with fine spatio-temporal resolutions. In our case
the point-to-point and point-to-area prediction involved 690 grid points and
6790 areas replicated over 28 time points, a highly computationally intensive
task which can be tackled in a single R-INLA routine, performing at the same
time parameter estimation and spatial prediction. In addition the specifi-
cation of the modified BYM prior relaxes the assumption that the spatially
structured and unstructured random effects are independent, and provides a
more interpretable way of comparing the relative impact of the two random
effects on the total variability through the φ hyperparameter.

Similarly to Lee and Shaddick (2010), we move away from the standard
public health approach which summarizes the (posterior) distribution of the
pollutant via the mean or median and plugs it in the health model: our
modeling approach feeds the entire NO2 posterior predictive distributions
for each area into the small area health model, thus accounting for the un-
certainty intrinsic in the concentration estimates in the health model. This is
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a simple solution to take into account that the exposure level predicted at the
first-stage, and included in the health model as covariate, do not necessarily
represent the true area level exposure. Alternatively, it would be possible
to refer to the measurement error modeling framework (see e.g. Gryparis
et al., 2009; MacNab, 2009; Szpiro et al., 2011; Lopiano et al., 2013; Szpiro
and Paciorek, 2013) and define an ecological regression model accounting for
errors in covariates. In a fully Bayesian framework the natural approach
would consist in a joint model of exposure and health, which would allow to
propagate properly all the uncertainty sources (due to spatial misalignment,
measurement error, etc.). However this would require careful thinking into
allowing/blocking the impact of the outcome from the health model on the
prediction of the pollutant; in addition this approach raises computational
issues which are beyond the scope of this paper and will be explored the
future. We have compared our model with the naive formulation which does
not take uncertainty into account and have found as expected a wider poste-
rior distribution and a posterior mean shifted towards zero when uncertainty
is considered.

A limitation of our approach is that by default in R-INLA the posterior
marginals are obtained for each MSOA, while the joint posterior distribution
would be normally available through a MCMC algorithm. This means that
the NO2 sampling is done independently for each area and time point. It is
in theory possible to account for the spatio-temporal structure starting from
the joint posterior correlation matrix and then sampling using a Gaussian ap-
proximation, but this would increase substantially the computational burden
given the number of areas and time points we are considering in this work. To
understand the impact of independent sampling on the spatial correlation,
we computed Moran’s autocorrelation index for each time point and poste-
rior sample and obtained values between 0.692 and 0.774, thus suggesting
that some degree of spatial correlation is maintained. Temporal correlation
was studied through the correlograms and it was found that at the first lag
the absolute serial correlation is on average equal to 0.534 with 75% of the
values being greater than 0.4. Thus, it seems reasonable to conclude that
the NO2 spatio-temporal correlation is not completely lost even when sam-
pling from the posterior marginal predictive distributions. Recently a new
function has been made available in the R-INLA package for sampling from
the joint posterior distribution, but it is still at an experimental stage and
its behaviour in the present context needs to be tested with an exhaustive
simulation study, which is the object of a current research project.
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We need to stress that given the nature of the available prescription data,
which are aggregated at the GP level not even disaggregated for age/sex, we
cannot make inference at the individual level or link the data with hospital
admissions or mortality registries to follow the individuals from primary to
secondary care; nevertheless we think that this is an important contribution
at the population level to understand the impact that air pollution might
have in new cases or in exacerbating asthma and COPD conditions. This
analysis could be linked to a proper health economic evaluation to provide
policy makers with figures related to additional NHS spending (or saving)
for different air pollution scenarios (for instance what would be the impact
of implementing the congestion charge in several large cities in England).
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