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Dynamic loading of marine fenders is a situation that is unique to the United 

States Navy (USN), due to the use of Heavy Weather Mooring (HWM) for naval vessels 

during extreme weather events, such as hurricanes. Traditional analysis has not been 

concerned with the fender reaction on vessel hulls. However, newer classes of Naval 

ships, such as the Littoral Combat Ships (LCS), have designs that emphasize speed 

and agility, resulting in them having thinner hulls more susceptible to damage from 

fenders. In traditional analysis, fenders are modeled as idealized springs, with static- 

load derived spring constants from manufacturer charts. This has been adequate for 

previous warships, however with more susceptible warships, a better understanding of 

the fenders reaction is required.  

Two series of tests were created, a quasi-static testing series to mimic the 

current testing of fenders, and a cyclic testing series to determine if repeated loading of 

fenders would provoke a dynamic response.  

Testing was conducting using a Finite Element Analysis (FEA) model to simulate 

ship impacts on fenders and determine the fender reaction to both quasi-static and 

cyclic loading patterns at various ship velocities and loading periods. 
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This research found that there was no impact on fender response provoked by a 

difference in loading speed during quasi-static testing. Cyclic loading of the fender did 

not provoke a dynamic fender response even under a second wave cycle where impact 

forcing could have caused different behavior. Overall, results of this study lead to the 

conclusions that both loading speed and loading pattern do not have an impact on 

fender response.  
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CHAPTER 1 
INTRODUCTION AND BACKGROUND  

1.1 Importance of Dynamic Loading of Marine Fenders 

The issue of dynamic loading of marine fenders is a situation that is unique to the 

United States Navy (USN). This uniqueness derives from another condition unique to 

the USN, Heavy Weather Mooring (HWM). Heavy Weather Mooring is the condition in 

which Naval vessels stay in port during extreme weather events, such as tropical storms 

and hurricanes. Traditionally, most vessels would leave port to avoid the worst impacts 

of these storms. However, according to OPNAV INST 4700.7M Maintenance Policy for 

Navy Ships (2019), Naval vessels are routinely placed in conditions that prevent them 

from leaving port for periods of at least 6 months, up to multiple years, during which 

they are undergoing extensive repairs and upgrades. These situations necessitate the 

need for Heavy Weather Mooring.  

Traditional analysis of Heavy Weather Mooring conditions on vessels has not 

been concerned with the fender reaction on vessel hulls. This was due to the robust 

nature of traditional Naval ships, which were impervious to damage from the fenders. 

However, newer classes of Naval ships, such as the Littoral Combat Ships (LCS), have 

designs that emphasize speed and agility, resulting in them having thinner hulls. This 

tradeoff has resulted in the newer ships being more susceptible to damage from fenders 

during Heavy Weather Mooring events.  

In traditional Heavy Weather Mooring analysis, fenders are modeled as idealized 

springs, with spring constants derived from manufacturer provided load versus 

deflection charts. These charts, however, are for a static loading case. In the past, this 

has not been an issue, due to the previously stated robust nature of warships. However, 
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with the newer, more susceptible warships, a better understanding of the fenders 

reaction under dynamic conditions is required. 

1.2 Industry Testing Standards 

The current industry standard for the testing of marine fenders is ASTM F2192-

05, Standard Test Method for Determining and Reporting the Berthing Energy and 

Reaction of Marine Fenders. This method covers foam filled fenders, as well as rubber 

and pneumatic fenders. As stated by ASTM, “Its primary purpose is to ensure that 

engineering data reported in manufacturers’ catalogues are based upon common 

testing methods.” For testing ASTM allows for two methods. The first method calls for a 

constantly decreasing velocity, with the velocity determined through the use of either 

equation 1-1 or 1-2. 

  

𝑉 =
𝑉଴(𝐷 − 𝑑)

𝐷
𝑜𝑟 0.005

𝑚

𝑠
  𝑤ℎ𝑖𝑐ℎ𝑒𝑣𝑒𝑟 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 

 
(1-1) 

 

𝑉 =  𝑉଴ඨ
𝐸 − 𝑒

𝐸
  𝑜𝑟  0.005

𝑚

𝑠
 𝑤ℎ𝑖𝑐ℎ𝑒𝑣𝑒𝑟 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 

 
(1-2) 

 

Where 𝑉଴ is the initial deflection velocity, 𝐷 is the rated deflection of the fender, 𝑑 is the 

instantaneous deflection of the fender, 𝐸 is the rated energy absorption of the fender, 

and 𝑒 is the instantaneous running total of energy absorbed. The second method calls 

for the fender to be deflected at a constant velocity of 0.15 m/s to the rated deflection of 

the fender.  
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Both of these methods call for the fender to be “broken in” before the initial 

testing, with a minimum recovery time before testing of one hour. This testing method is 

adequate for manufacturers’ data, but they provide no data in terms of dynamic loading 

of the fender, as the rated data is taken from a single compression of the fender. 

1.3 United States Navy Standards 

The United States Navy does not have a single specific document regulating the 

construction and use of foam filled fenders; instead, this topic is addressed in multiple 

sources. Two of the documents, Unified Facilities Criteria (UFC) 4-152-01 (DoD, 2017), 

and UFC 4-159-03 (DoD, 2020), are documents issued by the Department of Defense 

that provide guidance and standards for all military construction. The other main 

document TR-6015-OCN (NFESC, 1997), was published by Naval Facilities 

Engineering Command. These documents are used in the proper sizing and use of 

foam fenders in the USN 

1.3.1 TR-6015-OCN Foam Filled Fender Design to Prevent Hull Damage (NFESC, 
1997) 

This report covers, as the title suggests, the design of foam filled fenders to 

prevent hull damage. However, this report was published in 1997, and has not been 

updated since. In the report, it specifically states that, “This report examines only carbon 

steel hulls fabricated from grades of steel varying from 34 ksi yield to 100 ksi yield” 

(NFESC, 1997). As such, this report, which is partially the basis for the following two 

design manual fender sections, is not applicable to LCS hulls, as they are not 

composed of carbon steel. This report mostly addresses the stresses that would be 

exerted on the ship, such as the yielding and bending stresses that would be allowed for 

different ships in different situations (DoD, 1997). The report does not take into 
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consideration specific fender properties, except for in section 6 Foam filled fender 

characteristics., where it is stated that,  

Cross—linked foam composes the core of most foam-filled fenders. The 
foam deforms elastically when subjected to an applied force. The 
relationship between pressure and deflection is non-linear, due in part to 
the shape of the fender. See Attachment A.xvi To prevent damage to the 
fender, manufacturers normally recommend that the fender not exceed 
60% compression under design conditions. At this deflection, most 
fenders exhibit a reactive pressure of approximately 25 psi. (NFESC, 
1997) 

The document referenced as Attachment A is the Sea Cushion Design Manual, 

published in 1982 by Seaward International, Inc. This document was not able to be 

located.  

This report seems to be more to provide guidance to the fender manufacturers 

on the requirements that their fenders need to meet, rather than a serious analysis on 

the characteristics of foam filled fenders. It does not have any data on fender reactions 

and no data on possible fender dynamic responses. 

1.3.2 UFC 4-152-01 Design: Piers and Wharves (DoD, 2017) 

Unified Facilities Criteria 4-152-01 Design: Piers and Wharves, which is issued 

by the United States Department of Defense, and governs the Department of the Navy, 

includes in it Chapter 5, Fender Systems, that covers the considerations and selection 

of fender systems for naval vessels (DoD, 2017). This document, and Chapter 5 

specifically, addresses all fender systems used by the United States Government, and 

as such is not exclusively focused on floating foam fenders. The document’s chapter on 

the design of fender systems mostly addresses the proper dissipation of berthing and 

mooring energy transmitted from the ship to the fender system. The only guidance in 

reference to hull damage is in section 5-4.1.3. Hull Pressure, which states: 
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This is the pressure exerted on the ship’s hull by the fender unit and is 
derived by dividing the reaction force by the fender area in contact with the 
ship. Limit hull pressure to levels that will not cause permanent damage to 
the berthing ship. (DoD, 2017) 

And, Section 5-4.4.2. Allowable Hull Pressure states: 

When the ship’s energy is resisted through foam-filled or pneumatic 
fenders, the resulting force in concentrated in a small area of the ship’s 
hull. In such cases, the allowable pressure on the ship’s hull becomes a 
critical design issue. Most surface combatants have a thin hull plating with 
a low allowable pressure. For more specific information on the ships being 
berthed, consult NAVSEA. See TR-6015-OCN Foam Filled Fender Design 
to Prevent Hull Damage, and note that the values in Table 7 are based on 
yielding of the hull plating and include a 1.5 safety factor. Consequently, 
when checking for an accidental condition, the allowable value for hull 
pressure may be increased by up to 50 percent. (DoD, 2017) 

As seen in section 1.3.1, TR-6015-OCN does not specifically address the fender 

response beyond giving upper limits for different ships. As with TR-6015-OCN, UFC 4-

152-01 seems to be more of a guidance document for fender manufacturers’ than an 

analysis of fender reactions.  

1.3.3 UFC 4-159-03 Design: Moorings (DoD, 2020) 

Unified Facilities Criteria 4-159-03 Design: Moorings is issued by the United 

States Department of Defense and governs the Department of the Navy. Included in this 

document are Chapter 6, Facility Mooring Equipment Guidelines, and paragraph 6.1, 

Fenders. Like UFC 4-152-01, UFC 4-159-03 refers all detailed fender questions to TR-

6015-OCN. It does however contain a chart, shown in Figure 1-1, detailing the hull 

pressures exerted by different sized Sea-Guard fenders at different compression levels 

and the forces required at each compression level (DoD, 2020). However, while no 

information is given on how this data was collected, it can be assumed that the fender 

information given was determined using the traditional static loading method.  
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Figure 1-1. Graph depicting the hull pressure exerted by SEA-GUARD fenders of 

various sizes, as well as the corresponding fender percent compression. 
(DoD, 2020) 

 
While this data is helpful, UFC 4-159-03, like TR-6015-OCN and UFC 4-152-01, 

seem to be more of guidance documents than an analysis of fender performance. 

1.4 Heavy Weather Mooring Analysis 

As stated previously, analysis of Heavy Weather Mooring conditions has not 

traditionally been concerned with fender reactions on the hulls of the warships. 
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The current testing, conducted by NAVFAC EXWC, uses the AQWA module of 

ANSYS. Data from a testing run was provided by the USN. In this testing run, a vessel 

was moored alongside a wharf under HWM conditions. The wind was defined by the 

Ochi Shin spectrum, with a 30-second wind speed of 80 knots and 1-hour wind speed of 

57 knots, at a direction of 270 degrees. The significant wave height, Hs, was 3.3 feet. 

The significant wave period, Tz, was 5 seconds. The waves were modeled using a 

Pierson-Moskowitz spectrum, at a direction of 270 degrees, perpendicular to the ship. In 

terms of the model, shown in Figure 1-3, the waves travelled along the y-axis. 

 

 

Figure 1-3. Overview of USN Heavy Weather Mooring testing profile. 

  The fenders were idealized as single springs, with a spring coefficient of 0.9 s, 

derived from the manufacturer published, static load testing determined fender 

capabilities. These tests are used to produce loads on the fender, which are useful in 
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the determining if the fender will fail but not useful in determining the fender reaction on 

the ship. Forcing upon the ship hull associated with these events at each fender 

(assuming springs) is shown below in Fig. 1-3 and Fig. 1-4:  

 

Figure 1-4. Chart of forces exerted on each fender during the three-hour testing period 
versus frequency. Note: there are only four fenders listed as they were the 

only 4 to record a reading during the test. 
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Figure 1-5. Chart of percent of maximum rated deflection on each fender during the 
three-hour testing period versus frequency. Note: there are only four fenders 

listed as they were the only 4 to record a reading during the test. 

This testing provided valuable information on the possible loads and frequency of 

impacts that fenders undergo during a HWM event. However, due to the fact that the 

fenders themselves were modelled as idealized springs with damping coefficients 

derived from the static testing data, there is no information to be derived from it about 

possible dynamic responses of fenders. In other words, these data depend upon the 

assumption that the dynamic load response of fenders is similar to fenders’ static load 

responses. It is unclear if this is actually the case.  

1.5 Fenders Used by USN 

The United States Navy mostly uses floating foam fenders for the mooring of 

naval vessels. For the purposes of this thesis, the focus of the analysis will be on the 
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Trelleborg SeaGuard Foam Filled Fender, a commonly used fender by the United 

States Navy (see Fig. 1-5 below).  

Figure 1-6. Example construction diagram of a Trelleborg Seaguard marine fender 
(Trelleborg, 2017) 

This type of fender utilizes a closed-cell polyethylene foam core and an outer 

skin of reinforced polyurethane elastomer. These fenders dissipate the forces from the 

ships impact through their physical deformation. More detailed information on the 

specific fender properties can be found in chapter 2, methodology.         

 
1.6 Goals and Objectives 

The goal of this thesis is to determine the response of marine fenders in a 

dynamic loading situation. Specifically, this thesis attempts to address if fender dynamic 

load response is significantly different from static load response. And, if dynamics load 

response is significantly different, an ancillary goal is to quantify these differences. This 
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was initially planned to be accomplished through physical testing of fenders under 

dynamic loading conditions. However, due to the COVID-19 pandemic, this was not 

achievable in the timeframe of this thesis. As a first cut at answering this question then, 

computational simulations were used instead to model the fenders and their reaction to 

dynamic loading. Then, these data were analyzed using the same methods that would 

have been used with physical fender data.  

1.7 Thesis Organization 

This thesis is organized into five chapters: 

 Chapter one presented the background information on the importance of 
dynamic loading of fenders and a review of relevant literature and USN 
documentation on marine fenders and their application 

 Chapter two presents the methodology used in the execution of this thesis, 
including the equations used by the modelling software 

 Chapter three presents the results of the computer modelling 

 Chapter four presents the discussion of the results shown in chapter four 

 Chapter five presents a summary, preliminary conclusions, and 
recommendations for future work.  
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CHAPTER 2 
METHODOLOGY 

2.1 Finite Element Analysis (FEA) Model 

 ANSYS Workbench 2020 R1 was used throughout this study. Specifically, its 

explicit dynamics finite element (FE) model was utilized. Figure 2-1 below shows an 

approximate relationship between problem timescale magnitude and expected 

nonlinearity: 

 

Figure 2-1. Problem time magnitude versus nonlinearity (adapted from 
http://www.mechead.com/what-is-explicit-dynamics-in-ansys/) 

In the case of ship fender impacts, one would expect the governing timescales to be on 

the order of hundredths of a second, (when the ship first strikes the fender), to tens of 

seconds, (as would be seen with typical wave periods). As such, this 

fender/structure/ship interaction problem spans both implicit and explicit timescales. In 

these sorts of situations, the appropriate solution is to err on the side of the smaller 

timescales. As such, the explicit solver (as opposed to an implicit transient solver, which 

would only be appropriate for deflection timescales in tens of seconds) appeared to be 
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appropriate. Details associated with the selected explicit dynamics model are presented 

in this section.  

2.2.1 Reference Frame 

The ANSYS explicit dynamics model utilizes a Langrangian reference frame. As 

such, a mesh is created that is fitted to the body or bodies being analyzed. This mesh is 

divided into elements, and each element is assigned a specific volume and mass of the 

body material.  This assigned mass remains associated with each element throughout 

the simulation. As the mesh deforms throughout the simulation, the mass deforms as 

well.  

2.2.2 Governing Equations 

Like most FE structural models, the ANSYS explicit structural dynamics model 

conserves mass. As the model is run at each timestep, the model’s mesh deforms and 

distorts as the material distorts. Eq. 2-1 is used to determine an element’s density at 

any given timestep:  

𝜌଴𝑉଴ 

𝑉
=  

𝑚

𝑉
 

 

 
(2-1) 

where 𝜌଴ is the initial density of the zone, 𝑉଴ is the initial volume, 𝑚 is the current mass 

of the zone, and 𝑉 is the current volume of the zone.  

In addition, conservation of momentum is enforced. The governing momentum 

equations are presented below in Eq. 2-2 through Eq. 2-4 

𝜌�̈� =  𝑏௫ +  
𝑑𝜎௫௫

𝑑𝑥
+  

𝑑𝜎௫௬

𝑑𝑦
+  

𝑑𝜎௫௭

𝑑𝑧
 

 

 
(2-2) 

𝜌�̈� =  𝑏௭ + 
𝑑𝜎௭௫

𝑑𝑥
+  

𝑑𝜎௭௬

𝑑𝑦
+  

𝑑𝜎௭௭

𝑑𝑧
 

 
(2-3) 

𝜌�̈� =  𝑏௬ +  
𝑑𝜎௬௫

𝑑𝑥
+ 

𝑑𝜎௬௬

𝑑𝑦
+  

𝑑𝜎௬௭

𝑑𝑧
 

 
(2-4) 
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Where 𝑏௜ is the body force in the x, y, or z direction, 𝜌 is the material density, and 𝜎௜௝ is 

the stress tensor. Finally, energy is conserved via Eq. 2-5: 

�̇� =  
1

𝜌
൫𝜎௫௫𝜀௫̇௫ +  𝜎௬௬𝜀௬̇௬ + 𝜎௭௭𝜀௭̇௭ +  2𝜎௫௬𝜀௫̇௬ + 2𝜎௬௭𝜀௬̇௭ +  2𝜎௭௫𝜀௭̇௫൯ 

 
(2-5) 

where �̇� is the work done, 𝜌 is the material density, 𝜎௜௝ is the stress tensor, and 𝜀௜̇௝ is the 

strain tensor. 

For all of these equations, explicit solutions are determined for each element in 

the model, based on the previous timestep input values. It is important to note that 

equilibrium is not required for an explicit dynamics solution by the solver.  

2.2.3 Time Integration 

ANSYS’ explicit dynamics solver uses central differencing time integration to 

compute each element’s acceleration according to Eq. 2-6:  

�̈�௜ =  
𝐹௜

𝑚
+  𝑏௜ 

 

 
(2-6) 

where �̈�௜ are the components of nodal acceleration, 𝐹௜ are the forces acting on the nodal 

points,  𝑏௜ are the components of body acceleration, and 𝑚 is the mass attributed to the 

node. These accelerations are then used to determine the velocities and positions of 

each node in the mesh, using equations 2-7 and 2-8, respectively.  

�̇�
௜

௡ାଵ
ଶൗ

=  �̇�
௜

௡ିଵ
ଶൗ

+  �̈�௜
௡Δ𝑡௡  

(2-7) 

𝑥௜
௡ାଵ =  𝑥௜

௡ +  �̇�
௜

௡ାଵ
ଶൗ

Δ𝑡
௡ାଵ

ଶൗ  
 

 
(2-8) 

Where 𝑥௜ are the components of nodal positions, �̇�௜  are the components of nodal 

velocity, and �̈�௜ are the components of nodal acceleration. 
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2.2 Material Properties  

2.2.1 Fender Properties  

As discussed in Section 1.5, this study focused on the Trelleborg SeaGuard foam 

filled marine fender. These fenders come in a variety of different loading and reaction 

varieties, including standard, high, extra high, and super high capacity fenders, as well 

as low reaction fenders (Trelleborg, 2017). For this thesis, the standard capacity fender 

was analyzed, because it is the most common fender used by the United States Navy. 

Figure 2-2 shows the fender’s dimensions while its properties are presented in Table 2-

1:  

 

Figure 2-2. Fender dimensions.  

Table 2-1. Performance data for Trelleborg SeaGuard 7 ft by 14 ft fender (Trelleborg 
Marine Systems, 2018). 

Size: 7 ft x 14 ft English Units SI Units Metric Units 

Performance at 60 
% Compression 

      

Energy Absorption 487 ft-kip 660 kN-m 67.3 ton-m 

Reaction Force 259 kip 1152 kN 117.5 ton 

Average Reaction 
Pressure 

3.3 kip/ft2 155 kPa 15.9 ton/m2 
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The reaction/deflection curve associated with this fender is shown below in Fig. 

2-3 (Trelleborg Marine and Infrastructure, 2017). In addition, the individual material 

properties for the fender materials – i.e., the polyurethane skin and the closed cell foam 

core – are presented below in Table 2-2 and Table 2-3. 

 

Figure 2-3. Generic plot for SeaGuard fender reaction and energy as a function of 
fender deflection. (Trelleborg Marine and Infrastructure, 2017) 

Table 2-2. Trelleborg material properties for SeaGuard fender skin. (Trelleborg Marine 
Systems, 2018) 

Sprayed Polyurethane Elastomer Skin 

Tensile Strength 1.38e7 Pa 

Elongation 300% 

Tear Strength 3.24e4 Pa 
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Table 2-3 Trelleborg material properties for SeaGuard fender core. (Trelleborg Marine 
Systems, 2016) 

TMS Standard Energy Absorbing Foam 

Density 61.67 kg/m3 
Tensile Strength 29.65e4 Pa 

Compressive Strength 
at:   

10% Deflection 2.69e4 Pa 

25% Deflection 4.76e4 Pa 

40% Deflection 7.72e4 Pa 

50% Deflection 10.96e4 Pa 

 

Unfortunately, to model these materials in ANSYS, additional information was 

needed that was unavailable. As such, two generic replacement materials that were 

readily available in the ANSYS material library were used throughout this study to 

approximate the fenders’ material characteristics. For the outer skin, a generic 

polyurethane rubber was used, with the material properties shown in Table 2-4. 

Table 2-4. Model material properties for fender skin. 
Rubber, Polyurethane 

Density 1200 kg/m3 
Zero Thermal-Strain Reference 

Temperature 20 oC 

Tensile Ultimate Strength 4.517e7 Pa 
Tensile Yield Strength 4.517e7 Pa 

 
For the foam inner core, a generic low-density polyethylene foam was used, with the 

material properties shown in Table 2-5. 
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Table 2-5. Model properties for fender core. 
Foam, LDPE 

Density 32.94 kg/m3 
Young's Modulus  8.485e5 Pa 
Poisson's Ratio 0.199 
Bulk Modulus 4.6982e5 Pa 

Shear Modulus 3.5384e5 Pa 
Isotropic Secant Coefficient of 

Thermal Expansion 0.0002045 1/ oC 

Tensile Ultimate Strength 4.131e5 Pa 
Tensile Yield Strength 19900 Pa 

 

2.2.2 Ship and Caisson Properties  

During modeling, the fenders were assumed to be squeezed between a generic 

“ship” that was approximated as a structural steel hyperrectangle and a generic 

“caisson” that was approximated as another hyperrectangle. Since the focus of this 

thesis was on fender (as opposed to ship) performance, this approach was deemed 

adequate. The generic “ship” was 14.37-ft long by 11-ft wide by 2-ft deep. Its material 

properties are shown below in Table 2-6:  

Table 2-6. Model properties for ship hull. 

Structural Steel 
Density 7850 kg/m3 

Young's Modulus  2e11 Pa 
Poisson's Ratio 0.3 
Bulk Modulus 1.6667e11 Pa 

Shear Modulus 7.6923e10 Pa 
Isotropic Secant Coefficient of 

Thermal Expansion 1.2e-5 1/ oC 

Compressive Yield Strength 2.5e8 Pa 
 

Similarly, the generic caisson’s dimensions were 14.37 ft long by 11 ft wide by 2 

ft deep Its material was generic “concrete” from the ANSYS material library, since this 
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material is common in naval piers. The concrete’s material properites are shown shown 

below in Table 2-7. 

Table 2-7. Model properties for pier wall/caisson. 
Concrete 

Density 2300 kg/m3 
Young's Modulus  3e10 Pa 
Poisson's Ratio 0.18 
Bulk Modulus 1.5628e10 Pa 

Shear Modulus 1.2712e10 Pa 

Isotropic Secant Coefficient of 
Thermal Expansion 1.4e-5 1/ oC 

Tensile Ultimate Strength 5e6 Pa 
 

2.3 Boundary Conditions 

As noted above, the modeled fenders were assumed to be squeezed between a 

generic “ship” and caisson.” This configuration is illustrated below in Fig. 2-4:  

 

Figure 2-4. Isometric view of fender testing model, with fender width and radius. 

The pier/caisson was assumed to be fixed along one face as shown in Figure 2-5.  
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Figure 2-5. View of fender with fixed support on pier highlighted in blue. 

 
Equations of motion associated with this fixity are as follows (ANSYS 2020):  

𝑑𝑥

𝑑𝑡
= 0 

 

 
(2-9) 

𝑑𝑦

𝑑𝑡
= 0 

 
(2-10) 

𝑑𝑧

𝑑𝑡
= 0 

 
(2-11) 

Along the face of the generic “ship” furthest from the fender, velocities were 

applied as shown below in Fig. 2-6: 
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Figure 2-6. View of fender model testing model showing the ship face that has been 
given a velocity profile highlighted in yellow. 
 

Equations of motion associated with this velocity distribution are as follows:  

𝑑𝑥

𝑑𝑡
= 0 

 

 
(2-12) 

𝑑𝑦

𝑑𝑡
= 𝑉௦ 

 

 
(2-13) 
 

Or 

𝑑𝑦

𝑑𝑡
= 𝑉௖ 

 

 
(2-14) 
 

𝑑𝑧

𝑑𝑡
= 0 

 

 
(2-15) 

where 𝑉௦ is the static testing velocity and 𝑉௖ is the cyclic testing velocity (please see 

below).  

At first, investigators did not impose any boundary restrictions on the fender’s 

movement. However, initial testing showed that if boundary restrictions were not imposed, 

the fender would tend to roll during loading/unloading. As such, two fixities (i.e., fixed 

supports) were imposed at each of the fender’s endpoints. These fixities were intended to 
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mimic the practical application of the fender, where it is secured to the pier via an internal 

chain, as shown in Figure 1-5. During analysis, the forces on these fixed supports was 

measured and added to the force on the caisson to generate total forcing.  

 

 

Figure 2-7. View of fender testing model showing the two fixities on the fender that have 
been given fixed supports, labeled “Fixed Support 2”, and “Fixed Support 3”. 
 

The contact surfaces between the fender/pier; fender/ship; and polyurethane 

skin/foam core were treated as frictionless surfaces, although in future efforts this could 

easily be improved by adding a friction factor.  

2.4 Mesh Characteristics 

For this thesis, the mesh used had 22,493 nodes resulting in 72,117 unique 

elements across the three bodies. The mesh used on both the caisson and ship was a 

quadrilateral mesh, while the mesh used on the fender was a tetragonal mesh, as seen 

in figure 2-8. 
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Figure 2-8.  View of fender testing model with mesh visible. 

The mesh used for the caisson and ship, was coarser than the fender mesh since the 

fender was the focus of this study. Using a coarser mesh on these lower interest 

elements decreased computational cost and led to faster runtimes. For explicit 

dynamics analysis, ANSYS (2020) recommends several mesh characteristics a 

uniformly sized mesh, with evenly sized elements because the explicit dynamics time 

step is controlled by the smallest mesh element. It is also important to note that the 

results of this study are directly correlated to the characteristics of the mesh used. In 

future work, it would be useful to conduct a mesh study to determine how/if different 

mesh geometries affect results.  

2.5 Testing Methods 

As implied above, two test-series were conducted – a quasi-static test-series and 

a dynamic test series. Details about these test-series are presented below:  

2.5.1 Quasi-Static Testing 

The purpose of the quasi-static test series was to mimic standard 

fender/deflection testing discussed in detail by ASTM F2192-05 (ASTM, 2017), whereby 

a fender is to be loaded using a load plate moving at a constant velocity until the fender 
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is deflected to approximately 60% of its original width. Trelleborg (2016) recommends 

that the loading rates should be no more than 0.0003 m/s. However, performing this sort 

of computational analysis would require a prohibitively small explicit timestep which 

would in turn lead to a model that could not feasibly be run within current time 

constraints using available computational resources. As such, an alternative testing 

matrix was developed using increasing velocities to determine if load rate significantly 

affected the shape of the force/deflection curve. The testing matrix is presented below in 

Table 2-8 and includes the total time required to achieve 60% deflections.  

Table 2-8. Static testing velocity testing matrix 

Test Number 
Ship 

Velocity 
(m/s) 

Testing Period 
(s) 

1 0.0625 24 
2 0.125 12 
3 0.25 6 
4 0.5 3 
5 1 1.5 
6 2 0.75 

 
It is also important to note that while Trelleborg recommends a very slow load 

rate, the velocities of 0.0625, 0.125, are within the range shown in section 5.2 of ASTM 

F2192-05. The velocities of 0.5, 1, and 2 m/s are outside of this range. The purpose of 

these higher velocity simulations was to determine if the fender responded significantly 

differently to these faster load rates.  

2.5.2 Cyclic Velocity Testing 

After the completion of the quasi-static testing, cyclic testing of the fender was 

conducted. The fender model was subjected to two (2) impacts following a sinusoidal 

path, to mimic the impact of a wave on the ship, driving the ship into the fender. The 

velocity equation is shown in equation 2-17.  
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𝑑𝑦

𝑑𝑡
=  −𝑉଴sin (

2𝜋

𝑇
𝑡) 

 

 
(2-17) 

Where 
ௗ௬

ௗ௧
 is the instantaneous velocity, 𝑉0 is the input velocity, 𝑇 is the wave period, and 𝑡 

is the time.  

The impact velocities used were calculated using moored ship velocity data from 

UFC 4-152-01 (DoD, 2017), shown in Figure 2-9, and the published gross tonnage of a 

LCS, which is approximately 3,000 long tons (SURFPAC Littoral Combat Ships Page, 

n.d.). Using these data, an impact velocity for each mooring condition was calculated.  

These velocities were 0.334 m/s for an exposed berthing condition; 0.25 m/s for a 

moderate berthing condition; and 0.15 m/s for a sheltered berthing condition. 

 
Figure 2-9. Plot of ship velocity as it pertains to ship weight and berthing conditions as 

seen in UFC 4-152-01 (DoD, 2017) 

To test the impact of wave period on fender response, four different wave periods 

were chosen:  T = 1.5, 3, 4.5. and 6 seconds. Using the calculated velocities and 
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chosen wave periods, a testing matrix was developed. This matrix is shown in Table 2-

9, while A sample velocity profile is shown in Figure 2-10. 

Table 2-9. Cyclic velocity testing matrix. 

Test Number 
Input Ship 
Velocity 

(m/s) 

Wave Period 
(s) Test Duration (s) 

1 0.15 1.5 3 
2 0.15 3 6 
3 0.15 4.5 9 
4 0.15 6 12 
5 0.25 1.5 3 
6 0.25 3 6 
7 0.25 4.5 9 
8 0.25 6 12 
9 0.334 1.5 3 

10 0.334 3 6 
11 0.334 4.5 9 
12 0.334 6 12 

 

 

Figure 2-10. Example velocity profile for cyclic testing. X-axis has units of seconds, and 
Y-axis has units of m/s. 

For each run, directional deflection of the fender body and force reactions at the 

two fixities and the main fender body were taken, in order to analyze the reaction vs 

deflection curve created. 

In order to compare the analysis results to the published fender reaction data, the 

directional deformation of the fender body, in the x, y, and z directions. The force 

readings from the fender body, as well as the force readings from the two fixities were 

taken in the x, y, and z directions. These readings were then used to create three 

different plots. 
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2.6 Data Analysis  
 

During each simulation, directional deformation of the fender body in the x, y, and 

z directions was tracked using two mechanisms. First, maximum deflection along the 

outside fender skin was saved directly in ANSYS. Secondly, projectile motion was used 

to find the “ship’s” position over time: 

 𝛿 = 𝑉଴Δ𝑡 (2-18) 

where 𝛿 is the deflection; 𝑉଴ is the ship speed; and Δ𝑡 is the explicit timestep. These 

data were used to plot deflection versus time curves for each simulation.  

 Force was tracked by saving the reaction force on each models’ three fixities 

(behind the caisson; and on each ends of the fender) in the x, y, and z directions. Total 

force was computed by adding together each of these forces’ directional components. 

These data were used to develop force versus time curves.  

 Finally, force/deflection data were combined and used to plot several 

force/deflection curves. If different load rates (or load cycles, in the transient loading 

cases) led to different force/deflection curves – either in terms of their slopes, intercepts, 

or behavior (i.e., linear versus nonlinear), then this could mean that a dynamic response 

was invoked. If all curves were relatively similar, this would indicate that the simulations 

showed that the fenders responded similarly even when subjected to higher loading 

rates.  
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CHAPTER 3 
RESULTS  

The testing matrices outlined in Tables 2-8 and 2-9 were completed according to 

the testing protocol outlined in Chapter 2. Each simulation was run until the test was 

completed, or the fender model failed under loading conditions. The results of these 

tests are illustrated in this chapter in several figures. In each of these figures, simulated 

deflection (blue line) and deflection computed from input velocity were plotted as a 

function of time (top); simulated force was plotted as a function of time (middle); and 

force was plotted as a function of displacement (bottom). Note that total force was 

computed by adding the forces on each of the fenders’ end fixities with total force on the 

caisson’s fixity. For cyclic results, these forces components were added to the plots as 

well to illustrate the relative contribution of each fixity on total fender force.  

3.1 Quasi-Static Testing 

 Data from quasi-static simulations are presented below in Fig. 3-1 through Fig. 3-
6:  
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Figure 3-1. Quasi-static simulation with 2 m/s ship velocity results 

 
Figure 3-2. Quasi-static simulation with 1 m/s ship velocity results 
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Figure 3-3. Quasi-Static simulation with 0.5 m/s ship velocity results 

 
Figure 3-4. Quasi-static simulation with 0.25 m/s ship velocity results 
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Figure 3-5. Quasi-static simulation with 0.125 m/s ship velocity results 

 
Figure 3-6. Quasi-static simulation with 0.0625 m/s ship velocity results 
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3.2 Cyclic Testing 

Data from 1.0-s period testing are presented below in Fig. 3-7 through Fig. 3-18. 

These figures are grouped by wave period. As such, data from the 1.5-s period 

simulations are presented in Fig. 3-7 through Fig. 3-9. Data from the 3-s period 

simulations are presented in Fig. 3-10 through Fig. 3-12. Data from the 4.5-s period 

simulations are presented in Fig. Fig. 3-13 through Fig. 3-15. And finally, data from the 

6-s period simulations are presented in Fig. 3-16 through Fig. 3-18:  

 

 
Figure 3-7. Cyclic test with 0.15 m/s ship velocity and 1.5 s period results 
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Figure 3-8. Cyclic test with 0.25 m/s ship velocity and 1.5 s period results 

 
Figure 3-9. Cyclic test with 0.334 m/s ship velocity and 1.5 s period results 
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Figure 3-10. Cyclic test with 0.15 m/s ship velocity and 3 s period results 

 
Figure 3-11. Cyclic test with 0.25 m/s ship velocity and 3 s period results 
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Figure 3-12. Cyclic test with 0.334 m/s ship velocity and 3 s period results 

 
Figure 3-13. Cyclic test with 0.15 m/s ship velocity and 4.5 s period results 
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Figure 3-14. Cyclic test with 0.25 m/s ship velocity and 4.5 s period results 

 
Figure 3-15. Cyclic test with 0.334 m/s ship velocity and 4.5 s period results. 
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Figure 3-16. Cyclic test with 0.15 m/s ship velocity and 6 s period results 

 
Figure 3-17. Cyclic test with 0.25 m/s ship velocity and 6 s period results 
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 Figure 3-18. Cyclic test with 0.334 m/s ship velocity and 6 s period results 
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CHAPTER 4 
DISCUSSION 

4.1 Quasi-Static Testing 

The results of the quasi-static testing indicated that the speed of loading had little 

to no effect on the force response of the fender – at least throughout elastic 

deformation. A combined plot of the quasi-static simulations, along with a best-fit 

regression line through all data points is shown in Figure 4-1 to illustrate this:  

 

Figure 4-1. Plot of all quasi-static testing simulations with line of best fit and equation. 
 

Unfortunately, due to the difference in materials used for the testing run, from the 

actual fender material, a direct comparison to the fender performance values given in 

Table 2-1 was not possible. However, a visual comparison to Figure 2-3, the generic 

reaction plot for SeaGuard fenders, showed that the fenders did not behave in a manner 

markedly different than that of the published data.  

However, it was interesting to note that load rate appeared to affect fender 

failure. To illustrate this, percent maximum deflection at failure was plotted as a function 
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of load speed (Fig. 4-2). As shown, slower load speeds appeared to lead to faster 

failure as a function of deflection.  

One possible explanation for this phenomenon could be that the fender is failing 

sooner at a slower loading velocity due to the increased amount of time that the fender 

is under load. This could be causing more stress to be placed on the fender, causing a 

failure sooner in the deflection profile than at a faster velocity. Physical testing will be 

needed to confirm this hypothesis. 

 

Figure 4-2. Plot of percent of maximum deflection of the fender at failure as a function of 
loading speed. 

Preliminarily, it is believed that the inner core is failing at the endpoint fixities under a 

sort of quasi-fatigue loading. As such, continuously pressing against the foam causes 
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the foam matrix to fail over time. This is illustrated below in Fig. 4-3 which illustrates a 

fender at failure. Note that the inner core has significantly deflected.  

 

Figure 4-3. LDPE foam core of fender at failure during 2 m/s quasi-static testing. 

Further investigation is needed to determine if this phenomenon is reflected in physical 

testing, as well as to determine the method of failure.  

4.2 Cyclic Testing 

Results from the cyclic testing indicated that there was not a significant difference 

in fender reactions under cyclic loading conditions when compared to quasi-static 

conditions. A combined plot of the cyclic simulations, along with a best-fit regression line 

through all data, is shown below in Figure 4-4 to illustrate this:  
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Figure 4-4. Plot of all cyclic testing simulations with line of best fit and equation. 

 

It is also interesting to note that the cyclic testing did not have the same 

correlation between the loading speed and percentage of maximum deflection at failure 

of the fender. This is likely due to the fact that the fender compression in the cyclic 

testing models was at its maximum 0.32 m, which occurred during the 0.334 m/s 

velocity 6 s period simulation. Using the results shown in Figure 4-2, at this velocity, the 

fender would need to be compressed to 40.03% of its maximum rated deflection, which, 

for the fender simulated, is 0.60 m. From this, it can be concluded that the cyclic loading 

did not compress the fenders sufficiently to possibly induce material failure. This is an 

area for further study, but preliminarily it would appear to indicate that if anything, cyclic 

loading like the loading that would be seen during a HWM event would, if anything, 

actually help as opposed to cause ship damage.  

4.3 Conclusions 

The results of both the quasi-static testing and the cyclic testing appear to show 

that there is no significant difference in fender reaction from a cyclic loading pattern. 
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Figure 4-5 below shows both the combined plots of the cyclic tests and static tests, as 

well as their respective lines of best fit. The top of Fig. 4-5 is from cyclic loading; from 

the middle is quasi-static loading; and the bottom is the best-fit regression line from 

cyclic loading overlaid upon the best-fit regression line from quasi-static loading. As 

shown in the bottom plot, these lines were almost identical.  

 

Figure 4-5. Compiled plots of both cyclic and quasi-static testing, along with their lines 
of best fit. 

This point bears a bit of further discussion. The load sequence associated with 

cyclic loading is illustrated below in Fig. 4-6 through 4-8. Shown in these figures are the 

following:  

1. At t = 0, the simulated ships started in contact with the fenders.  



 

57 

2. From t = 0 to t = T/4 (T is the wave period), the ships moved toward the fenders 
at a decreasing rate of speed and compressed the fenders.   

3. From t = T/4 to t = T/2, the ships moved away from the fender at an increasing 
rate of speed. During this time, the fenders returned to zero deformation.  

4. From t = T/2 to T = 3T/4, the ships continued to move away from the fenders at a 
decreasing rate of speed. This caused a space to form between the fenders and 
the ships.  

5. From t = 3T/4, the ships began moving toward the ships once again. At t = T, the 
ship was back in contact with the fender, and the cycle could repeat.  

 

Figure 4-6. Starting position of cyclic testing simulation, with the ship model in contact 
with the fender model. 

 

Figure 4-7. Cyclic testing simulation at time T/4, at full compression. 
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Figure 4-8. Cyclic testing simulation at time 3T/4, at its farthest position from the fender. 

It is especially interesting to note that the second cycle would have started with 

an impact load as the space between the fenders and the ships approached zero. This 

impact load appears to have had little effect on simulated fender performance because 

as seen in the data, the force/deflection relationships for the first simulated wave cycles 

were almost identical to the force/deflection relationships shown for the second 

simulated wave cycles. Future work in this subject should focus on confirming these 

behaviors using physical testing.  
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CHAPTER 5 
SUMMARY, CONCLUSIONS AND DISCUSSION OF FUTURE WORK 

 
To summarize, investigators were attempting to determine if cyclic loading of a 

SeaGuard marine fender would provoke a dynamic response. Two different sets of 

simulations were conducted to evaluate this. First, quasi-static testing that 

approximatlye replicated the testing method that would be used by the fender 

manufacturer, was conducted to determine the effects of loading speed on fender 

reaction. Secondly, cyclic testing was conducted to determine if repeated loading in a 

short time duration would provoke a dynamic response from the fender. Results showed 

the following. 

 There was no impact on fender response provoked by a difference in 
loading speed during quasi-static testing. 
 

 Cyclic loading of the fender did not provoke a dynamic fender response 
even under a second wave cycle where impact forcing could have caused 
different behavior.  

 

In addition, correlations were developed between the loading velocity during 

quasi-static testing and the percent of fender maximum deflection at which it failed. 

Overall, results of this study lead to the conclusions that both loading speed and loading 

pattern do not have an impact on fender response. These results need to be validated 

using physical testing.  
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