4,081 research outputs found

    The puzzling source IGR J17361-4441 in NGC 6388: a possible planetary tidal disruption event

    Get PDF
    On 2011 August 11, INTEGRAL discovered the hard X-ray source IGR J17361-4441 near the centre of the globular cluster NGC 6388. Follow up observations with Chandra showed the position of the transient was inconsistent with the cluster dynamical centre, and thus not related to its possible intermediate mass black hole. The source showed a peculiar hard spectrum (Gamma \approx 0.8) and no evidence of QPOs, pulsations, type-I bursts, or radio emission. Based on its peak luminosity, IGR J17361-4441 was classified as a very faint X-ray transient, and most likely a low-mass X-ray binary. We re-analysed 200 days of Swift/XRT observations, covering the whole outburst of IGR J17361-4441 and find a t^{-5/3} trend evident in the light curve, and a thermal emission component that does not evolve significantly with time. We investigate whether this source could be a tidal disruption event, and for certain assumptions find an accretion efficiency epsilon \approx 3.5E-04 (M_{Ch}/M) consistent with a massive white dwarf, and a disrupted minor body mass M_{mb}=1.9E+27(M/M_{Ch}) g in the terrestrial-icy planet regime. These numbers yield an inner disc temperature of the order kT_{in} \approx 0.04 keV, consistent with the blackbody temperature of kT_{in} \approx 0.08 keV estimated by spectral fitting. Although the density of white dwarfs and the number of free-floating planets are uncertain, we estimate the rate of planetary tidal disruptions in NGC 6388 to be in the range 3E-06 to 3E-04 yr^{-1}. Averaged over the Milky Way globular clusters, the upper limit value corresponds to 0.05 yr^{-1}, consistent with the observation of a single event by INTEGRAL and Swift.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal on 2014 July 16; 9 pages, 5 figures. Added references; corrected typo
    • …