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Abstract Peridynamic (PD) models are commonly
implemented by exploiting a particle-based method
referred to as standard scheme. Compared to numeri-
cal methods based on classical theories (e.g., the finite
element method), PD models using the meshfree stan-
dard schemeare typically computationallymore expen-
sive mainly for two reasons. First, the nonlocal nature
of PD requires advanced quadrature schemes. Second,
non-uniform discretizations of the standard scheme are
inaccurate and thus typically avoided. Hence, very fine
uniformdiscretizations are applied in thewhole domain
even in cases where a fine resolution is per se required
only in a small part of it (e.g., close to discontinu-
ities and interfaces). In the present study, a new frame-
work is devised to enhance the computational perfor-
mance of PD models substantially. It applies the stan-
dard scheme only to localized regions where discon-
tinuities and interfaces emerge, and a less demanding
quadrature scheme to the rest of the domain. Moreover,
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it uses a multi-grid approach with a fine grid spacing
only in critical regions. Because these regions are iden-
tified dynamically over time, our framework is referred
to as multi-adaptive. The performance of the proposed
approach is examined by means of two real-world
problems, the Kalthoff–Winkler experiment and the
bio-degradation of a magnesium-based bone implant
screw. It is demonstrated that our novel framework can
vastly reduce the computational cost (for given accu-
racy requirements) compared to a simple application
of the standard scheme.

Keywords Peridynamics · Hybrid discretization ·
Multi-grid approach · Dynamic brittle fracture ·
Corrosion

1 Introduction

Material failure and fracture modeling represents a
major issue for researchers and practitioners in com-
putational mechanics (Ravi-Chandar 2004; Anderson
2017). During the past years, several approaches based
on classical continuum mechanics (CCM) have been
employed to this end. However, their application intro-
duces some difficulties related to the presence of spa-
tial derivatives of displacements in the governing equa-
tions, which are undefined wherever continuity of dis-
placement fields is not verified (Silling 2000; Bobaru
et al. 2016). Many scientists have therefore tried to
equip these methods with the capability to simulate
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crack formation and propagation (Kuhn and Müller
2008; Amor et al. 2009; Moës et al. 1999; Belytschko
andBlack 1999;Ortiz et al. 1987; Pepe et al. 2020; Rec-
cia et al. 2018), but all the proposed strategies present
some drawbacks (Bobaru et al. 2016).

In recent years, innovative approaches based on the
peridynamic (PD) theory (Silling 2000; Silling et al.
2007), a nonlocal reformulation of classical contin-
uum mechanics based on integro-differential equa-
tions, have been proposed to address the shortcomings
of CCM-based methods in respect of the treatment of
discontinuities.

The PD theory deals with integral equations rather
than spatial differentiation. Therefore, the PD govern-
ing equations are valid even in presence of discontin-
uous displacement fields, allowing complex phenom-
ena such as nucleation, propagation, and branching of
cracks to be treated as natural material responses.

The accurate computation of integrals is of great
interest in the numerical implementation of PDmodels,
since spatial integration plays a crucial role in PD.

The majority of the implementations of PD mod-
els employ the particle-based method introduced in
Silling and Askari (2005), here referred to as standard
discretization scheme, which is meshfree since it does
not depend on any element or geometrical connection
between the underlying grid of nodes through which
the body is discretized.

In recent years, the reduction of the computational
burden of PD models has been the subject of various
studies. A series of works have in fact attempted to
enhance the computer implementation of PD models
through high performance computing methods (Mos-
saiby et al. 2017; Diehl et al. 2020; Boys et al. 2021;
Brothers et al. 2014; Fan and Li 2017), whereas other
studies have proposed adaptive grid refinement algo-
rithms to optimize the usage of the computational
resources (Bobaru et al. 2009; Bobaru and Ha 2011;
Dipasquale et al. 2014; Shojaei et al. 2018; Bazaz-
zadeh et al. 2020; Gu et al. 2017). Another branch
of studies have focused their attention on the devel-
opment of approaches which couple PD-based models
withmethods based onCCM,most commonly the finite
element method (FEM) (Oterkus et al. 2012; Han and
Lubineau 2012; Lubineau et al. 2012; Yu et al. 2018;
Sun and Fish 2019; Galvanetto et al. 2016; Wildman
and Gazonas 2014; Shojaei et al. 2016; Zaccariotto
et al. 2018; Ongaro et al. 2021, 2022, 2023; Seleson
et al. 2013; D’Elia et al. 2021; Wang et al. 2019b; Sele-

son et al. 2015). Despite the proven efficiency of these
approaches, they all suffer from some limitations (Mos-
saiby et al. 2022; Ongaro et al. 2021; Zaccariotto et al.
2018) which mainly arise out of the difference in dis-
persion relations of the coupled approaches (Shojaei
et al. 2023; Hermann et al. 2023).

In Shojaei et al. (2022), to boost the numerical per-
formance of PD models, the authors have introduced
an efficient meshfree-collocation scheme to discretize
the PD governing equations both in elasticity and diffu-
sion problems. As comprehensively discussed in Sho-
jaei et al. (2022), despite its advantages in terms of com-
putational cost and computation of spatial integrals, the
proposed collocation scheme may be affected by a loss
of accuracy in the proximity of critical regions, i.e.,
regions characterized by the presence of discontinu-
ities or with complex geometrical details, and close to
the boundary of the body, where, instead, the standard
scheme is known to perform better. Therefore, in Sho-
jaei et al. (2022), the authors have introduced a hybrid
meshfree discretization which exploits the advantages
of both the standard and collocation schemes by com-
bining them within an adaptive framework. In the
hybrid configuration, the application of the standard
scheme is in fact limited to localized critical regions and
boundaries, while the remaining regions of the body
are discretized through the more efficient collocation
scheme.

In the presentwork, to further improve the numerical
performance of PD models, the use of the hybrid dis-
cretization is integrated with the implementation of the
multi-grid method presented in Shojaei et al. (2018), in
which a PD model characterized by variable grid size
is achieved by coupling grids with different spacings.
In this way, the use of a fine grid is restricted only to
the small portions of the domain in which it is required
(i.e., critical regions and boundaries, since adopting a
finer grid along the boundary is in fact an effective
way to decrease the well-known surface effect of PD
models), whereas the remaining part of the domain is
discretized through a coarser grid. In the present study,
critical regions and boundaries are therefore discretized
using the standard scheme and a fine grid, while the col-
location scheme and coarse grid are employed to dis-
cretize the remaining regions. The proposed approach
is referred to as multi-adaptive, since, inspired by Sho-
jaei et al. (2016), an adaptive algorithm is designed
to dynamically switch both the discretization scheme
and the grid spacing of the regions represented by the
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collocation scheme and discretized with a coarse grid
to the standard scheme and fine grid spacing. Thanks
to this algorithm, the parts discretized using the stan-
dard scheme and a fine grid evolve in time and track
the evolution of the critical regions (e.g., the emerg-
ing crack morphology in dynamic fracture problems),
while updating the coupling configuration accordingly.

This results in a highly performing and efficient pure
PD model which optimally exploits the computational
resources.

The capabilities of the proposed approach are
assessed by performing some numerical examples,
including brittle fracture and corrosion problems in
two and three dimensions. The high performance of
the developed framework is highlighted by the com-
parison of the obtained solutions with those generated
by PD models represented by the standard scheme and
which respectively employ a uniform coarse discretiza-
tion, a uniform fine discretization, and a non-uniform
discretization based on the aforementioned multi-grid
approach (Shojaei et al. 2018).

The present work is an extension of the hybrid
scheme by Shojaei et al. (2022) to non-uniform dis-
cretization in space. Differently from the approach
presented in Shojaei et al. (2022), this work is more
focused on demonstrating the feasibility of the appli-
cation of the proposed strategy to the study of large
and complex structures for which a large horizon size
is required and which are affected by the presence of
discontinuities and interfaces in some localized regions
of the domain, for which a finer resolution is required.
Another innovative aspect lies in the application of the
approach to a real-world bio-degradation example with
physical parameters.

The contents of this paper are organized as follows.
In Sect. 2, a brief overview of the bond-based version
of the PD formulation for brittle fracture and diffu-
sion problems is provided. In Sect. 3, a short summary
of the standard scheme and of the collocation scheme
introduced in Shojaei et al. (2022) and employed in
this study is presented. In the last part of the sec-
tion, the implementation of the multi-adaptive scheme
is outlined, focusing on the description of the multi-
grid approach presented in Shojaei et al. (2018) and
of the switching strategy introduced in Shojaei et al.
(2016) and exploited in the present work. In Sect. 4, the
performance of the proposed multi-adaptive scheme
is numerically investigated with examples involving
dynamic brittle fracture in two-dimensional models in

Fig. 1 Representation of a generic PDdomain� before and after
deformation; the relative position vectors (initial and current) and
the relative displacement vector between the two material points
x and x′ are also reported

Sect. 4.1, and a three-dimensional corrosion problem in
Sect. 4.2. Section5 presents some concluding remarks.

2 Overview of bond-based peridynamics

2.1 Bond-based peridynamics for brittle fracture
modeling

In a domain � ⊂ R
p with p the spatial dimension,

described with a PD model, each material point x ∈
� interacts with all the other material points located
within a finite neighborhood,Hx, of that material point
(see Fig. 1). The bond-based PD equation of motion
for any material point x ∈ � at time t � 0 is given by
Silling (2000):

ρ(x)ü(x, t) =
∫
Hx

f
(
u(x′, t) − u(x, t), x′ − x

)
dVx′

+b(x, t), (1)

where ρ is the mass density, ü is the second deriva-
tive in time of the displacement field u, f denotes the
pairwise force function, which represents the force per
unit volume squared (or the micro-force density) that
the material point x′ exerts on the material point x, and
b is a prescribed body force density field. The neigh-
borhood Hx is defined by:

Hx := {
x′ ∈ � : ‖x′ − x‖ ≤ δ

}
, (2)

where δ > 0 is the horizon. For material points in the
bulk of the body, i.e., material points x ∈ � further than
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δ from the boundary of the body, ∂�, the neighborhood
Hx represents a line segment in one dimension, a disc in
twodimensions, and a ball in three dimensions centered
at x.

The relative position vector of the two material
points x and x′ in the reference configuration (or initial
relative position vector) is denoted by (see Fig. 1):

ξ := x′ − x, (3)

which represents the standard peridynamic notation for
a bond.

In the deformed configuration at time t > 0, the two
material points x and x′ would be displaced, respec-
tively, by u(x, t) and u(x′, t). As depicted in Fig. 1, the
corresponding relative displacement vector is defined
as η := u(x′, t) − u(x, t).

The force vector f , also called bond force, acts in
the direction of the line connecting the two material
points x and x′, i.e., in the direction of their relative
position vector in the deformed configuration (η + ξ),

usually referred to as current relative position vector
(see Fig. 1).

The general form of the pairwise force function f ,
which contains all the constitutive information of the
material, can be written as:

f(ηξ) = f (ηξ)
η + ξ

‖η + ξ‖ , (4)

where f (η, ξ) is a scalar-valued even function which
is defined based on the material type.

In the case of the prototype microelastic brittle
(PMB)material model introduced in Silling andAskari
(2005), f (η, ξ) is given by:

f (η, ξ) = cs, (5)

where c is referred to as micromodulus function and
represents the bond elastic stiffness, and s is the bond
stretch which is expressed by:

s = ‖η + ξ‖ − ‖ξ‖
‖ξ‖ . (6)

In the case of small deformations, in view of (5) and
assuming ‖η‖ � δ, the linearized version of (4) can be
written as:

f(η, ξ) = c
ξ ⊗ ξ

‖ξ‖3 η. (7)

It is possible to relate the micromodulus function c to
measurable macroscopic quantities such as the tensile
modulus E and the Poisson’s ratio ν of the material.

It is necessary to emphasize that, as a consequence of
the bond-based PD formulation, in which the bonds are
characterized based only on pairwise interactions, the
Poisson’s ratio is restricted to a fixed value. For three-
dimensional and two-dimensional plane strain cases,
the Poisson’s ratio is fixed to ν = 1/4, whereas for
the two-dimensional plane stress case it is restricted to
ν = 1/3 (Silling 2000; Gerstle et al. 2005). This limi-
tation has been eliminated in the state-based version of
the theory introduced in Silling et al. (2007). The proce-
dure adopted to obtain the bond elastic stiffness in terms
of the aforementioned macroscopic quantities is com-
prehensively outlined inSilling andAskari (2005),Ger-
stle et al. (2005), Bobaru et al. (2009), Ha and Bobaru
(2010). In the present work, a constant micromodulus
function is employed.

In the PMB material model, failure can be intro-
duced by establishing a predefined limit value for
the bond stretch s0, usually referred to as critical
stretch, and considering a bond to be broken when
its current stretch exceeds this limit value (Silling and
Askari 2005). The adopted failure criterion is therefore
referred to as maximum stretch criterion.

For thismaterialmodel, (4) canbe rewritten as (Silling
2000):

f(η, ξ) = μ(ξ , t)cs
η + ξ

‖η + ξ‖ , (8)

where μ(ξ , t) is a history-dependent scalar-valued
function which is introduced as a bond-breaking
parameter, and can therefore assume either of the fol-
lowing two values:

μ(ξ , t) =
{
1 if s(t ′) < s0, 0 < t ′ < t,
0 otherwise.

(9)

The critical stretch s0 can be related to measurable
macroscopic quantities such as the critical energy
release rate of the material G0 (see Silling and Askari
(2005)).

The interested reader may refer to Dipasquale et al.
(2022) for determining the critical stretch in state-based
PD. The history-dependence of the constitutive model
is a consequence of the fact that the rupture of a bond
is an irreversible process.

The concept of damage at a material point x at time t
is then expressed by introducing a local damage index,
ϕ(x, t), which is defined by the following relation:

ϕ(x, t) = 1 −
∫
Hx

μ(ξ , t)dVx′∫
Hx

dVx′
, (10)
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where 0 ≤ ϕ(x, t) ≤ 1, 0 represents the undamaged
state of the material, and 1 indicates the complete dis-
connection of the material point x from all the mate-
rial points located within its neighborhood (Silling and
Askari 2005).

The nonlocal nature of peridynamics introduces an
important issue regarding the application of boundary
conditions. Considering that the PD equilibrium equa-
tions are based on integral operators instead of par-
tial differential operators, their variational nature does
not result in natural (Neumann) boundary conditions,
as is the case of classical continuum mechanics mod-
els (Macek and Silling 2007). As a consequence, in
a domain described with a PD model, the prescribed
displacements or loads need to be applied through a
finite volume of boundary layers, rather than on a sur-
face. The depth of the boundary layer along thematerial
boundary is usually set to be equal to δ, as suggested
by the numerical investigations carried out in Macek
and Silling (2007).

2.2 Peridynamic diffusion formulation

In the following section, a brief outline of the nonlo-
cal formulation of bond-based PD for diffusion-type
problems is provided. A comprehensive derivation of
the formulation is presented in Bobaru and Duangpa-
nya (2010, 2012). The model is constructed by asso-
ciating a concentration value C(x, t) to each material
point x ∈ � at time t . Each material point x is con-
nected with all the material points x′ located within a
finite neighborhood,Hx, through pipe-like conductors
which are usually referred to as diffusion bonds. In this
framework, each bond ξ := x′ −x can be thought of as
a pipe which transfers the concentration between two
buckets, i.e., the twomaterial points x and x′ at its ends.
In the bond-based PD diffusion formulation, which is
the version of PD that is employed in this work, the
transport of the concentration in each bond ξ is inde-
pendent of the transport in the other bonds (Bobaru and
Duangpanya 2012).

The bond-based PD governing equation of diffusion
for any material point x ∈ � at time t � 0 is given by
Bobaru and Duangpanya (2010):

Ċ(x, t) =
∫
Hx

J
(
C(x′, t) − C(x, t), x′ − x

)
dVx′

+S(x, t), (11)

whereC represents the concentration field, Ċ is the first
time derivative ofC , S is a given source function, and J
is the kernel of the integral operator or the concentration
flowdensitywhich takes the following form (Zhao et al.
2018):

J (�, ξ) =
⎧⎨
⎩

κ 1
‖ξ‖q � ‖ξ‖ ≤ δ,

0 ‖ξ‖ > δ,

(12)

where δ > 0 is the horizon (see Sect. 2.1), � :=
C(x′, t) − C(x, t), q is an integer that influences the
shape of the kernel J and is normally selected to be
equal to 0, 1, or 2 (see Chen and Bobaru (2015b) for
further details), and κ is referred to as the PD micro-
diffusivity. Several forms are proposed for κ . In this
work, a constant micro-diffusivity is employed (Zhao
et al. 2018). The PD micro-diffusivity can be related
to the diffusion coefficient K of the classical local dif-
fusion equation by equating the PD flux to that of the
local diffusion as comprehensively outlined in Bobaru
and Duangpanya (2010); Shojaei et al. (2020). In two-
dimensional diffusion, assuming q = 2, κ can be
expressed by the following relation:

κ = 4K
πδ2

. (13)

Similar towhat introduced inSect. 2.1 for the elastic-
ity case, in PD diffusion, the boundary conditions need
to be applied through a finite volume of boundary lay-
ers whose depth is typically taken equal to δ. A part of
the source function S in (11) contains Neumann-type
boundary conditions (see Chen and Bobaru (2015b),
Wang et al. (2019a)).

3 Standard and proposed discretization schemes

3.1 The standard scheme

The numerical discretization of peridynamic models
can be pursued by employing different numericalmeth-
ods (Emmrich and Weckner 2007). The most common
approach used to discretize the PD governing equa-
tion is the meshfree scheme introduced in Silling and
Askari (2005), here referred to as standard discretiza-
tion scheme (Shojaei et al. 2022). In this framework,
the numerical approximation of the peridynamic equa-
tion requires the subdivision of the domain into a grid of
points called nodes: in a domain�, describedwith a PD
model, each node xi ∈ � is associated to a certain finite
volume in the reference configuration, such that the set
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Fig. 2 Schematic representation of the neighborhood associated
to node xi in the standard discretization scheme

of nodes forms a uniform grid in which the distance
between two nearest neighboring nodes is referred to
as grid spacing (see Fig. 2). In the uniform grid config-
uration, �x = �y = �z, where �x , �y, and �z are
the grid spacings in the x-, y-, and z-directions, respec-
tively. No elements or other geometrical connections
between nodes are foreseen (Silling and Askari 2005).
The volume associated to each node xi , i.e., the node
volume, is computed as a cube of volume Vi = �x3

for three-dimensional models, as a square cell of vol-
ume Vi = �x2 t̄ for the planar cases, and as Vi = A�x
for one-dimensional systems, where t̄ and A are the
thickness and constant cross-sectional area of two- and
one-dimensional domains, respectively. The node of
interest xi at which the volume is centered is referred
to as source node. Moreover, time is discretized into
instants, i.e., t0, t1, t2, . . . , tn−1, tn ,wheren represents
the time step number.

In the standarddiscretization scheme, the discretized
form of the bond-based PD equation of motion (cf. (1))
for any source node xi ∈ � at the time instant tn is
obtained by replacing the integral in (1) by a finite sum
as follows:

ρi üni =
∑
j∈Fi

f
(
unj−uni , x j−xi

)
β
(
x j−xi

)
Vj+bni .

(14)

In the same way, the discretized form of the PD dif-
fusion equation (cf. (11)) is derived by substituting the
integral in (11) by a finite sum, such that:

Ċn
i =

∑
j∈Fi

J
(
Cn

j −Cn
i , x j−xi

)
β
(
x j−xi

)
Vj+Sni .

(15)

In (14) and (15), i is the index of the source node, j
is the index associated to the set of family nodes Fi ,
which includes all nodeswithin the finite neighborhood
Hxi of node xi , Vj is the discretized volume associ-
ated to node x j , and β (ξ) is a volume correction factor
used to approximate the portion of Vj that falls within
the neighborhood of the source node xi (see Fig. 2).
For two-dimensional cases, β (ξ) takes the following
form (Yu et al. 2011):

β(ξ) =

⎧⎪⎨
⎪⎩

1 ‖ξ‖ ≤ δ − 1
2�x,

δ−‖ξ‖
�x + 1

2 δ − 1
2�x < ‖ξ‖ < δ + 1

2�x,

0 ‖ξ‖ ≥ δ + 1
2�x .

(16)

The spatial integration is performed by adopting
the one-point Gauss quadrature rule. In the present
work, the algorithm proposed by Yu et al. (2011) has
been selected among the currently available approaches
developed to improve the accuracy of the spatial inte-
gration, since it is the most commonly used among
the PD community, due to its ease of implementation
and quite accurate results. The quadrature algorithm
proposed by Seleson (2014) and the innovative algo-
rithm introduced in Scabbia et al. (2022) could cer-
tainly be used alternatively, perhaps leading to slightly
more accurate results. However, given that the focus of
the work is more on efficiency rather than on accuracy
of the computations, the selected algorithm provides
sufficiently accurate solutions for the type of problems
considered.

A fundamental parameter of the discretized version
of PD is the ratio between the horizon and the grid
spacing, i.e., m = δ/�x ; δ and m are, therefore, the
two parameters which determine the number of inter-
actions to be considered for each node in a discretized
PD model.

In the present work, the time integration of the elas-
ticity problem is performed by exploiting the velocity-
Verlet time integration (Swope et al. 1982). This
explicit algorithm is commonly used in the PD frame-
work due to its robustness and numerical stability.
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The time integration of the diffusion problem is
instead performed by applying the explicit forward
Euler algorithm. Given the nodal values of xi ∈ � at
time instant tn , i.e., Cn

i and Ċn
i , the update procedure

for the concentration field is achieved:

Cn+1
i = Cn

i + �tĊn
i . (17)

For numerical stability reasons, the time step �t
adopted during the simulations must be smaller than a
predefined critical time step,�tcrit . The computation of
this critical step size has been the subject of many stud-
ies reported in literature, such as (Silling and Askari
2005; Bobaru et al. 2016; Littlewood 2015). In Silling
and Askari (2005), the authors evaluated the critical
time step as follows:

�tcrit =
√

2ρ

c
∑

j∈Fi
V j

, (18)

where j iterates over all the family nodes of the source
node xi ∈ �. This stability condition is particularly
useful for bond-based PD models (Silling and Askari
2005).

An alternative option to compute the critical step
size is to consider the well-known Courant-Friedrichs-
Lewy condition, such that (Bobaru et al. 2016; Little-
wood 2015):

�tcrit = �xmin

ck
, (19)

where �xmin is the smallest grid size of the discretized
domain, while ck represents the speed of the longitu-
dinal waves in the material, and is expressed by the
following relation:

ck =
√

K

ρ
, (20)

where K is the bulk modulus of the material.
Nevertheless, the latter condition is rather conserva-

tive for PD models (Bobaru et al. 2016); in the present
work, the stability condition derived in Silling and
Askari (2005) is therefore considered to perform the
critical time step computation.

The standard discretization scheme is easy-to-imp
lement and can conveniently calculate the required inte-
gral terms in regions described by anonlinear PDmodel
including material separation (such as cracks).

However, it might become computationally expen-
sive as soon as δ takes a large value; the issue exacer-
bates in three-dimensional problemswhere both a large

horizon size and a fine grid spacing are required, such
as in correspondence of the crack tip region or in the
vicinity of corrosion interfaces.

This lies in the fact that, in the standard scheme,
all the neighboring nodes play the role of quadrature
points of integration. In Shojaei et al. (2022), to boost
the numerical performance of PD solvers, it is sug-
gested to restrict the application of the standard scheme
and thus to employ an efficient meshfree-collocation
scheme for regions where the application of the stan-
dard one is not necessarily required. The collocation
scheme is described in the following section.

3.2 The collocation scheme

The collocation scheme is truly meshfree as it cal-
culates the integrals semi-analytically and does not
require the back ground cells of integration as in the
standard scheme. In this scheme, prior to the integra-
tion, at each neighborhoodHxi , themain field variables
are approximated in terms of the nodal values of a set
of nodes, called collocation nodes and denoted by Ci ,
that are a subset of the family nodes (i.e., Ci ⊆ Fi ).
Figure 3 (left) illustrates a generic PD neighborhood
discretized by the standard scheme. Inspired by Sho-
jaei et al. (2022), an auxiliary grid of nodes, centered at
the source node xi and with a Cartesian pattern shown
in Fig. 3 (center), is considered. The auxiliary grid
indicates the approximate positions of the collocation
nodes (i.e., the quadrature points of integration in the
collocation scheme). Likewise, to each auxiliary node,
the nearest family node in Fi is associated and thus
added to the set of collocation nodes Ci ; see Fig. 3
(right). The approximation is performed via a weighted
least squares (WLS) procedure which uses monomi-
als as the basis functions. According to Shojaei et al.
(2022), the number of collocation nodes nc depends on
the order of approximation. To make the calculations
efficient, the least possible bases are taken; for instance,
in three dimensions:

p(x) =
(
1, x, y, z, x2, xy, xz, y2, yz, z2

)
, (21)

wherep(x) is a vector containing n p monomial basis
functions, and, in this case, it represents a complete
set of monomials up to the second-order. Having the
field variables approximated, at nodeswith a full neigh-
borhood, within which the governing equation can be
described by a linear PD model (cf. (7)), the corre-
sponding integrals can be calculated analytically in
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Fig. 3 Schematic representation of the neighborhood associated
to node xi with (left) the family nodes with their corresponding
integration cells in the standard scheme, (center) the family nodes

surrounded by a Cartesian auxiliary grid, and (right) the selected
collocation nodes in the collocation scheme

terms of the nodal values of the collocation nodes. This
results in the following equation of motion at node xi :

ρi üni ≈ L̄Q̄i Ūn
i + bni , (22)

where Ūn
i = (

Un
i ,V

n
i ,W

n
i

)T collects the displace-
ments, along the x−, y−, and z−directions, at time
instant tn :

Un
i =

⎛
⎜⎜⎜⎜⎝

uni
...

unj
...

⎞
⎟⎟⎟⎟⎠ , Vn

i =

⎛
⎜⎜⎜⎜⎝

vni
...

vnj
...

⎞
⎟⎟⎟⎟⎠ ,

Wn
i =

⎛
⎜⎜⎜⎜⎝

wn
i
...

wn
j

...

⎞
⎟⎟⎟⎟⎠ , ∀x j ∈ Ci . (23)

In (22), the term L̄Q̄i gives rise to the weights of
quadrature; L̄ is a matrix as (Shojaei et al. 2022):

L̄ = [
Lu Lv Lw

]
, (24)

where:

Lu=πcδ4

5

⎡
⎣0 0 0 0 1 0 0 1

3 0 1
3

0 0 0 0 0 1
3 0 0 0 0

0 0 0 0 0 0 1
3 0 0 0

⎤
⎦ ,

Lv=πcδ4

5

⎡
⎣0 0 0 0 0 1

3 0 0 0 0
0 0 0 0 1

3 0 0 1 0 1
3

0 0 0 0 0 0 0 0 1
3 0

⎤
⎦ ,

Lw=πcδ4

5

⎡
⎣0 0 0 0 0 0 1

3 0 0 0
0 0 0 0 0 0 0 0 1

3 0
0 0 0 0 1

3 0 0 1
3 0 1

⎤
⎦ ,

(25)

and Q̄i is a matrix as:

Q̄i =
⎡
⎣Qi 0 0

0 Qi 0
0 0 Qi

⎤
⎦ , (26)

where Qi is obtained by:

Qi = A−1
i Bi , (27)

in which Ai and Bi are two matrices required to obtain
the moment matrix in theWLS approximation as (Sho-
jaei et al. 2017, 2016):

Ai=
∑
j∈Ci

ω̄
(
x j−xi

)
pT

(
xi−x j

)
p
(
xi−x j

)
, (28)

and:

Bi=
[
ω̄ (xi−xi )pT (xi−xi ) · · · ω̄

(
x j−xi

)
p (

x j−xi
) · · · ] ,

j ∈ Ci . (29)
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In (28) and (29), ω̄ is a weight function that influ-
ences the contribution of each collocation node with
respect to its distance from the source node, and is taken
here as (Shojaei et al. 2017; Mossaiby et al. 2020; Sho-
jaei et al. 2016):

ω̄(x − xi ) =
1 − exp

(
64 − 16 ‖x−xi‖2

r̄2

)

1 − exp(64)
, (30)

where r̄ indicates the largest possible distance of a col-
location node from the source node. A similar strategy
can be employed for the discretization of the diffusion
equation in (11), which leads to the following equation
for the approximation withinHxi :

Ċn
i ≈ LCQiCn

i + Sni , (31)

where Cn
i collects the concentration values of the col-

location nodes at time instant tn :

Cn
i =

⎛
⎜⎜⎜⎜⎝

Cn
i
...

Cn
j

...

⎞
⎟⎟⎟⎟⎠ , ∀x j ∈ Ci , (32)

and LC denotes a vector obtained as follows:

LC = 4πκδ5−q

−3q + 15

(
0 0 0 0 1 0 0 1 0 1

)
. (33)

Therefore, the collocation scheme does not require any
calculation of partial volumes and performs the inte-
gration over fewer nodes compared with the standard
scheme. The reader may refer to Shojaei et al. (2022)
to get an insight into the convergence and accuracy of
the collocation scheme.

3.3 The multi-adaptive scheme

As mentioned in Sect. 1, the use of the hybrid dis-
cretization introduced in Shojaei et al. (2022) is here
integrated with the implementation of the multi-grid
method developed in Shojaei et al. (2018) with the
aim of maximizing the numerical performance of PD
models. In the following sections, the implementa-
tion of the resulting framework, referred to as multi-
adaptive scheme, is therefore outlined, with a focus
on the description of the multi-grid approach devel-
oped to couple grids with different grid size (Sho-
jaei et al. 2018) and of the switching strategy imple-
mented to adaptively track the evolution of the critical
regions (Shojaei et al. 2016).

3.3.1 Coupling grids with different grid size

Themulti-adaptive scheme can be presented by consid-
ering a generic PD domain � containing one or more
discontinuities, which may propagate, branch, or coa-
lesce due to a deformation process. In the proposed
framework, boundaries and critical regions surround-
ing the discontinuities are discretized using the stan-
dard scheme and a fine grid, whereas the remaining
part of the domain is discretized through the colloca-
tion scheme and a coarser grid (see Sect. 1).

Coarse and fine portions of the domain, which are
respectively referred to as �+ and �−, need to be cou-
pled to ensure that the material points near the bor-
ders of critical regions and boundaries have a complete
neighborhood.

The idea behind the multi-grid approach introduced
in Shojaei et al. (2018) is to consider a series of ficti-
tious material points, both in the �+ and �− portions,
where the material points near the borders of the crit-
ical regions and the boundaries expect for a complete
neighborhood.

It is important to highlight that the fictitious material
points serve the function of completing the neighbor-
hood of other material points, thus making the coarse
and fine grids independent.

As depicted in Fig. 4, the independence of the grids
is achieved by considering two similar but distinct
domains, one for the PD model discretized through the
standard scheme and the fine grid, and the other for the
PD model represented by the collocation scheme and
discretized with the coarse grid.

With reference to Fig. 4, x is amaterial point belong-
ing to the domain �−, i.e., to the domain discretized
with a fine grid spacing, while x′ is a fictitious material
point in the fine grid which corresponds to a missing
neighbor for x.

The interaction between x and x′ is established fol-
lowing the calculation of the quantities (e.g., displace-
ment, velocity, acceleration) associated with x′. Given
that these data are only available in the domain�+ (see
Fig. 4), they are computed by interpolating the values
of the required quantities at thematerial points adjacent
to x′ in �+. The quantities associated to the fictitious
material points in the coarse grid are likewise com-
puted by interpolating the values of the corresponding
quantities at the adjacent material points in �−.

This results in the domains being constrained to each
other, since the solution of the portion of �− outside
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Fig. 4 Schematic
representation of fictitious
material points in the
proximity of a critical
region and computation of
the corresponding data from
the counterpart active
domain

Fig. 5 Schematic
representation of the
domain; (left) fine grid,
(right) coarse grid. For
clarity reasons,
m− = δ/�x− = 2 is
adopted in the fine region of
the domain, whereas
m+ = δ/�x+ = 1 is
considered in the coarse
portion of the domain,
where δ is the horizon. Note
that here �x+ = 2�x−
only as an example

the critical region in Fig. 4 is bound to its corresponding
region in �+, while the solution in correspondence of
the critical region in�+ is constrained to its counterpart
in �−.

As shown in Fig. 4, the domains are characterized by
active and inactive regions, where the inactive regions
represent the constrained parts of the solution which
are no longer needed, and thus not taken into account
in the computation. The advantages of such a config-
uration are represented by the possibility of conserv-
ing the total mass of the system and of discretizing
each domain independently and in advance, such that
to increase the efficiency of the adaptive refinement
procedure implemented to follow the evolution of the

critical regions. The discretized form of the multi-grid
scheme can be easily introduced by considering the
same portion of the domain � in proximity of the bor-
der of the critical region depicted in Fig. 4 in both the
�− and �+ domains, as schematically represented in
Fig. 5. In the following, �x− and �x+ represent the
grid spacings employed to discretize the �− and �+
domains, respectively. Four different types of nodes are
identified within the discretized domains, i.e., active
and fictitious nodes in the fine grid and active and ficti-
tious nodes in the coarse grid. As depicted in Fig. 5, the
neighbors of an active node ‘a’ in the fine grid are com-
posed of both active and fictitious nodes, respectively
represented by ‘a j ’ and ‘ak’. Similarly, the neighbors
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of an active node ‘B’ in the coarse grid are composed
of both active and fictitious nodes, respectively marked
as ‘B j ’ and ‘Bk’.

In the following, the time marching scheme for a
general active node ‘a’ in the fine grid is outlined in the
elasticity problem, such that:

un+1
a = una + �t u̇na + �t2

2
üna , (34a)

ün+1
a = 1

ρ

[
f
(
un+1
a j − un+1

a , xa j − xa
)

β
(
xa j − xa

)
Va j + · · ·

+ f
(
un+1
ak − un+1

a , xak − xa
)

β
(
xak − xa

)
Vak + · · · + bn+1

a

]
, (34b)

u̇n+1
a = u̇na + �t

2

(
üna + ün+1

a

)
, (34c)

and in the diffusion problem, such that:

Cn+1
a = Cn

a + �tĊn
a , (35a)

Ċn+1
a = J

(
Cn+1
a j − Cn+1

a , xa j − xa
)

β
(
xa j − xa

)
Va j + · · ·

+ J
(
Cn+1
ak − Cn+1

a , xak − xa
)

β
(
xak − xa

)
Vak + · · · + Sn+1

a . (35b)

In (34b) and (35b), the dots on the right-hand side indi-
cate the contribution of other active and fictitious nodes
in the neighborhood of the active node ‘a’, similar to
the ones already provided for ‘a j ’ and ‘ak’.

Likewise, the time marching scheme for a general
active node ‘B’ in the coarse grid is defined in the elas-
ticity problem, such that:

un+1
B = unB + �t u̇nB + �t2

2
ünB, (36a)

ün+1
B = 1

ρ

[
f
(
un+1
B j

− un+1
B , xB j − xB

)

β
(
xB j − xB

)
VB j + · · ·

+ f
(
un+1
Bk

− un+1
B , xBk − xB

)

β
(
xBk − xB

)
VBk + · · · + bn+1

B

]
, (36b)

u̇n+1
B = u̇nB + �t

2

(
ünB + ün+1

B

)
, (36c)

and in the diffusion problem, such that:

Cn+1
B = Cn

B + �tĊn
B, (37a)

Ċn+1
B = J

(
Cn+1
B j

− Cn+1
B , xB j − xB

)

β
(
xB j − xB

)
VB j + · · ·

+ J
(
Cn+1
Bk

− Cn+1
B , xBk − xB

)

β
(
xBk − xB

)
VBk + · · · + Sn+1

B . (37b)

In (36b) and (37b), the dots on the right-hand side indi-
cate the contribution of other active and fictitious nodes
in the neighborhood of the active node ‘B’, similar to
the ones already provided for ‘B j ’ and ‘Bk’.

Following the definition of the time marching
scheme, the interpolation scheme for evaluating the
quantities associated with the fictitious nodes in the
coarse and fine grids is then presented in both the elas-
ticity and diffusion problems. As schematically repre-
sented in Fig. 5, ‘Bk’ represents a fictitious node in the
coarse grid, whose associated values (e.g., displace-
ment, velocity, and acceleration) are derived from a
simple interpolation, based on inverse distance weight-
ing, over the corresponding values of its surrounding
active nodes in the fine grid ‘b1’ to ‘b4’, such as:

un+1
Bk

=
∑4

j=1
1

‖xBk−xb j ‖u
n+1
b j∑4

j=1
1

‖xBk−xb j ‖
, (38a)

u̇n+1
Bk

=
∑4

j=1
1

‖xBk−xb j ‖ u̇
n+1
b j∑4

j=1
1

‖xBk−xb j ‖
, (38b)

in the elasticity problem, and such as:

Cn+1
Bk

=
∑4

j=1
1

‖xBk−xb j ‖C
n+1
b j∑4

j=1
1

‖xBk−xb j ‖
, (39)

in the diffusion problem.
Correspondingly, as depicted in Fig. 5, ‘ak’ repre-

sents a fictitious node in the fine grid, whose required
values are derived from a simple interpolation, based
on inverse distance weighting, over the corresponding
values of its surrounding active nodes in the coarse grid
‘A1’ to ‘A4’, such as:

un+1
ak =

∑4
j=1

1
‖xak−xA j ‖u

n+1
A j∑4

j=1
1

‖xak−xA j ‖
, (40a)
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Fig. 6 Schematic
representation of the
implementation of the
switching strategy in
correspondence of a critical
region; configuration of �−
and �+ at (top) time instant
tn and (bottom) time instant
tn+1

u̇n+1
ak =

∑4
j=1

1
‖xak−xA j ‖ u̇

n+1
A j∑4

j=1
1

‖xak−xA j ‖
, (40b)

in the elasticity problem, and such as:

Cn+1
ak =

∑4
j=1

1
‖xak−xA j ‖C

n+1
A j∑4

j=1
1

‖xak−xA j ‖
, (41)

in the diffusion problem.

3.3.2 The switching strategy

In the present study, the use of computational resources
is optimized by implementing an adaptive algorithm
capable of tracking the evolution of critical regions
(e.g., the morphology of damage in time) by dynami-
cally replacing regions represented by the collocation
scheme and discretized with a coarse grid with regions
described by the standard scheme and discretized with

a fine grid. Recalling the domains �+ and �− intro-
duced in the previous section, the main purpose of the
strategy is to adaptively switch the configuration at
active regions of �+ where discontinuities may coa-
lesce or propagate, so as to ensure that coalescence
and propagation of discontinuities take place within
active regions of the �− domain. The adaptive switch-
ing is therefore performed by deactivating nodes in�+
and consequently activating nodes in �− accordingly,
while identifying appropriate fictitious nodes in both
domains (see Fig. 6). The identification of the criti-
cal zones, whose configuration needs to be switched,
requires the definition of a suitable criterion for the
triggering of the adaptive algorithm. Inspired by Sho-
jaei et al. (2016), Shojaei et al. (2022), Mossaiby
et al. (2022), Sheikhbahaei et al. (2023), the criterion
employed in the present work is based on the status
of the stretch at each bond. Recalling the definition of
bond stretch in (6) and considering two generic neigh-
boring nodes xi and x j in the initial or reference con-
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figuration of the system, at a time instant tn , the linking
bond between the two nodes is considered to be criti-
cal if the value of its stretch falls within the following
range:

χs0 ≤

∥∥∥∥
(
x j + unj

)
− (

xi + uni
) ∥∥∥∥

‖x j − xi‖ − 1 ≤ s0, (42)

where 0 < χ < 1 is a factor which indicates how con-
servative the switching criterion is and which is usually
selected to be around 0.9 (Mossaiby et al. 2022), while
s0 is the critical stretch, as defined in Sect. 2.1. If the
bond connecting nodes xi and x j is identified as criti-
cal, the union of their neighborhoods is considered as a
critical zone and, consequently, both the discretization
scheme and the grid spacing employed to describe this
region are respectively switched to the standard scheme
and fine grid spacing.

The discretized form of the switching strategy is
illustrated in Fig. 6 to give a clearer view of how the
algorithmworks. The configuration of�− and�+ near
a critical region of a generic domain at time instant tn is
depicted at the top of Fig. 6. In this framework, once the
adaptive algorithm identifies the linking bond between
a pair of nodes x1 and x2 in the coarse grid as critical
(cf. (42)), before proceeding to the next time instant
tn+1, the configuration of both �− and �+ needs to be
updated. As schematically represented in Fig. 6, this is
performed by deactivating the nodes located within the
switching area in �+, i.e., within the area formed by
the union of the neighborhoods of nodes x1 and x2, and
accordingly, by activating some nodes within the same
area in �−.

Activation and deactivation of nodes is followed by
the identification of appropriate fictitious nodes in both
domains. The updated configuration of both �− and
�+ at time instant tn+1 is showed at the bottom of
Fig. 6. Further details regarding the implementation of
the adaptive algorithm are provided in Mossaiby et al.
(2022).

It is important to highlight that, even if the switching
strategy restricts the application of the standard scheme
and the fine grid spacing only to localized regions of
the domain, the implementation of the adaptive algo-
rithm is more convenient for problems involving fast
anduncertain evolutionof discontinuities, such as in the
case of dynamic crack propagation, than for problems
where the evolution of the critical regions is slower and
more predictable, such as in the case of bio-degradation

processes. This is due to the fact that the triggering of
the algorithm adds a certain overhead to the model. In
light of this, in the numerical examples presented in
Sect. 4, the switching strategy is implemented only in
the dynamic brittle fracture case study, whereas, in the
corrosion problem, the�− and�+ domains are defined
a priori and remain unchanged during the simulation.
Beyond that, in corrosion problems, the introduction of
a finer grid in correspondence of the phase boundaries,
either in a fixed or adaptive configuration, is necessary
and of key importance for an accurate simulation of the
volume loss in the vicinity of the corrosion layer.

4 Numerical examples

In this section, the performance of the proposed multi-
adaptive scheme is examined by means of two real-
world examples about dynamic crack propagation and
corrosion. In the first example, i.e., the Kalthoff–
Winkler experiment, the solution of the proposed
scheme, referred to as (adaptive, hybrid), with grid
spacing �x equal to �x− within the critical region
and equal to �x+ for the remaining, is compared with
those of three other approaches: (uniform, coarse) that
applies the standard scheme to a uniform discretiza-
tion with grid spacing equal to �x+, (uniform, fine)
that applies the standard scheme to a uniform grid with
grid spacing equal to �x−, and (adaptive, standard)
which is based on the multi-grid approach introduced
in Shojaei et al. (2018) and applies the standard scheme
to a non-uniform discretization similar to that of the
proposed approach.

After validating the capabilities of the (adaptive,
hybrid) scheme compared to the other approaches, in
the second example, i.e., the three-dimensional corro-
sion problem, the solution of the proposed approach is
compared only with that of the (uniform, fine) model.

The solution of the (uniform, fine) approach is in
fact considered here as the reference one since, thanks
to the high level of refinement of the grid employed for
the discretization, it is the model that most accurately
reproduces the physics of the problems.

In this work, high values of m have been chosen
(particularly in the first example) to prove the capa-
bility and effectiveness of the proposed multi-adaptive
approach in dealingwith problems inwhich the charac-
teristic length scale of the material or the phenomena
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under investigation is large, i.e., the horizon δ takes
large values, and the required resolution is also high.

All the approaches are implemented through an in-
house code developed using theC++ programming lan-
guage. Inspired by the study in Mossaiby et al. (2022,
2017) and the PD codes byMossaiby et al. inMossaiby
(2017, 2022), the developed code is massively paral-
lelized. All the simulations are performed on a compu-
tational node of an in-house high performance comput-
ing (HPC) cluster including two sockets with a 24-core
2.1 GHz Intel Xeon Scalabe Platinum 8160 proces-
sor. By employing OpenMP directives, a shared mem-
ory multiprocessing parallelism on up to 48 cores is
achieved. The comparison of the run times of the differ-
ent solutions is carried out by excluding I/O times from
the total timing. To study the influence of parallelism
on the speed up achieved by the proposed approach,
in the first example, the run times are reported for two
scenarios regarding parallelism on 12 and 48 cores. In
the second example, the run times are instead reported
only for the case of parallelism on 48 cores.

4.1 Example 1: Kalthoff–Winkler experiment

The problem considered in the first example is the
Kalthoff–Winkler experiment (Kalthoff 2000), a well-
known problem which has been the subject of numer-
ous studies concerning dynamic fracture modeling of
brittle materials, also in the PD framework (Shojaei
et al. 2018; Zaccariotto et al. 2018; Dipasquale et al.
2014; Ren et al. 2017, 2019; Islam and Shaw 2020;
Ning et al. 2022). Figure 7 (left) schematically repre-
sents the geometry of the problem, which consists of a
rectangular steel plate with two parallel pre-cracks sub-
jected to an impact load from a rigid projectile which
laterally hits the plate at a boundary region between the
pre-cracks. As comprehensively described in Kalthoff
(2000), it is experimentally observed that the fracture
type depends on the impact speed. If the plate ismade of
steel 18Ni1900, as in this case study, an impact speed
of 32 × 103 mm/s causes a brittle fracture mainly in
mode I. In fact, once the impact takes place, cracks
start to propagate from the pre-cracks tips and grow
almost straightly, at an angle of approximately 68◦ with
respect to the horizontal direction, until they approach
the plate boundaries.

The values of the main problem parameters are sim-
ilar to the ones reported in Dipasquale et al. (2014),

Fig. 7 Schematic representation of (left) the problem domain in
Example 1, and (right) the initial configuration of the adaptive
approaches

i.e., E = 190 × 103 N/mm2 (Young’s modulus),
ρ = 8000 × 10−9 Kg/mm3 (mass density), G0 =
22170 × 10−6 J/mm2 (fracture energy), and ν = 1/4
(Poisson’s ratio) since plane strain conditions are con-
sidered. The impact load is simulated by imposing an
initial speed of v0 = 16.5 × 103 mm/s on the nodes
located along the portion of the left side of the plate
between the two pre-cracks. The imposed speed is ori-
ented along the horizontal direction and is kept con-
stant throughout the entire simulation. The problem
is studied by employing the four different approaches
previously introduced in this section and by assum-
ing �x+ = 2�x− = 0.333 mm and δ = 4 mm
(i.e., m+ = δ/�x+ = 12, m− = δ/�x− = 24,
where m+ is the ratio used in the coarse portion of
the domain, whereas m− is the ratio employed in the
fine portion of the domain). The time integration is
performed by exploiting the velocity-Verlet algorithm,
as mentioned in Sect. 3.1. The problem is solved for
a total time duration of 87.5 μs and by taking a time
step of �t = 2 × 10−3 μs. For the proposed multi-
adaptive scheme, i.e., the (adaptive, hybrid) approach,
in the portion of the domain discretized using the col-
location scheme, the monomial basis functions used to
perform the calculations are taken up to the second-
order (cf. (21)) which, in two dimensions, leads to the
following specifications in terms of number of mono-
mials and number of collocation nodes, i.e., n p = 6
and nc = 49, respectively. Figure 8 illustrates the
PD neighborhood obtained considering the different
discretization schemes employed for the solution of
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Fig. 8 Representation of the PD neighborhood with different
discretization schemes employed in Example 1. The calculation
in the standard scheme runs over 1793 and 441 nodes for neigh-

borhoods within the fine and coarse grids. However, in the hybrid
discretization the calculation runs over only 49 collocation nodes
for the neighborhoods within the coarse grid

Example 1. The figure clearly demonstrates the advan-
tage of using the proposed scheme over the standard
one since, when considering the standard scheme, PD
neighborhoods within the fine and coarse grids con-
sist of 1793 and 441 nodes, respectively, whereas in
the proposed approach, PD neighborhoods within the
coarse grid include only 49 collocation nodes. The
configuration of the (adaptive, hybrid) and (adaptive,
standard) approaches at the beginning of the simula-
tion is schematically represented in Fig. 7 (right). The
black color is used to represent the �− domain, which
includes the pre-cracks and the boundaries. As afore-
mentioned, in the (adaptive, hybrid) approach, �− and
�+ are discretized using the standard and collocation
schemes, respectively, whereas, in the (adaptive, stan-
dard) approach, both domains are discretized through
the standard scheme. As for the adaptive algorithm to
be exploited in the adaptive approaches, the factor χ

(cf. (42)) is set to be equal to 0.95.
Figure 9 illustrates the crack pattern obtained by the

four models considered in the study and the evolving
configuration of the �− domain for the two adaptive
approaches at four different time instants. Similar dam-
age contour plots are obtained for all models except
the (uniform, coarse) one since, in this case, both the
crack propagation angle and speed are slightly dif-
ferent from those simulated by the other approaches.
Moreover, in this case, a secondary fracture originates
at the side of the plate opposite to the impacted one.
This type of phenomenon is instead not reported by

the other models. The solution obtained by the (adap-
tive, hybrid) approach is therefore in excellent agree-
ment with those of the (uniform, fine) and (adaptive,
standard) approaches, thus confirming the applicability
of the proposed multi-adaptive scheme to the study of
dynamic crack propagation problems. To further val-
idate the proposed scheme, the contour plots of the
velocity field along the vertical direction obtained by
the four different models at the same time instants con-
sidered in Fig. 9 are depicted in Fig. 10. Also in this
case, it is demonstrated that the result obtained by the
(adaptive, hybrid) scheme is in very good agreement
with those of the (uniform, fine) and (adaptive, stan-
dard) approaches. The discrepancies in the solution
obtained by the (uniform, coarse) model with respect
to the other approaches are also reflected in the velocity
field.

The numerical efficiency of the (adaptive, hybrid)
model is highlighted by comparing its computational
cost with those of the (uniform, fine) and (adaptive,
standard) approaches. Table 1 reports the number of
active nodes in each domain (i.e., �+ and �− for the
adaptive approaches) at the beginning and at the end of
the simulation and the run times of the three aforemen-
tioned models. To get a better view of the performance
of the proposed multi-adaptive scheme, the speed ups
are also presented. Run times and relative speed ups
for two different configurations of parallelism, i.e., on
12 and 48 cores, are reported in order to investigate the
level of influence that the parallelism has on the speed
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Fig. 9 The crack pattern obtained by different models in Exam-
ple 1; the evolution of the�− domain for the (adaptive, standard)
and (adaptive, hybrid) approaches is also included

Fig. 10 Contour plots of the velocity field along the vertical
direction, at four time instants, obtained by the four approaches:
(uniform, coarse), (uniform, fine), (adaptive, standard), and
(adaptive, hybrid) in Example 1; the unit is [mm/s]

up achievable by the adaptive approaches over the (uni-
form, fine) model. As shown in Table 1, when running
the simulations on 12 cores, both adaptive schemes
turn out to be 1.86 times faster than the (uniform, fine)
approach, whereas, when the simulations run on 48
cores, the (adaptive, hybrid) scheme is the most com-
putationally efficient approach, since it is 1.19 times
faster than the (uniform, fine) model and almost 1.09
times faster than the (adaptive, standard) scheme. Even
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Table 1 Run times for Example 1. (2�x− = �x+ = 0.333 mm)

no. of active nodes

uniform, fine adaptive, standard adaptive, hybrid

�+ �− �+ �−

t = 0 µs 721801 150625 117000 150625 117000

t = 87.5 µs 126859 212568 120681 237447

run time (12 cores) 3796.6 s 2042.9 s 2037.1 s

run time (48 cores) 1190.4 s 1096.0 s 1003.8 s

speed up (12 cores; over uniform, fine) 1 1.86 1.86

speed up (48 cores; over uniform, fine) 1 1.09 1.19

Fig. 11 Comparison of the energy content of the system, within
a circular region with radius equal to 10mm centered at the
upper pre-crack tip, for the four approaches: (uniform, coarse),
(uniform, fine), (adaptive, standard), and (adaptive, hybrid) in
Example 1

though the optimization of the computational resources
related to the use of the two adaptive approaches ismore
evident when the simulations are performed exploiting
12 cores, the use of more cores highlights the higher
efficiency of the proposed scheme in comparison to
the adaptive strategy based on the standard scheme.
Considering the results reported inTable 1 and recalling
Figs. 9 and 10, it is possible to conclude that the multi-
adaptive scheme is able to accurately reproduce the
reference solution, i.e., the solution of the (uniform,
fine) approach, at a remarkably lower computational
cost.

To further validate the performance of the multi-
adaptive approach, Fig. 11 illustrates the variation in
the energy content of the system throughout the entire
duration of the simulation for the four different models
considered in the study. For each approach, the energy
content is computed within a circular region located at
the tip of the upper pre-crack. As can be inferred from
Fig. 11, the result obtained by the (adaptive, hybrid)

model is in very good agreement with those of the
(uniform, fine) and (adaptive, standard) approaches,
thus indicating that the proposed scheme is capable
of modeling crack nucleation and crack propagation
speed with the same accuracy as the aforementioned
models but, as shown in Table 1, outperforming them
in terms of computational efficiency.

4.2 Example 2: Three-dimensional corrosion problem

The second example presented in this work concerns
the bio-degradation of a magnesium bone implant
screw. Over the last decades, this problem has attracted
rapidly increasing attention, sincemagnesium implants
combine bone-like mechanical and osteoconductive
propertieswith a favourable bio-compatibility (Negrescu
et al. 2020). Moreover, as they naturally degrade in
the living organisms due to bio-corrosion, they can be
used as temporary mechanical supports that don’t need
to be removed in a second surgical intervention after
healing of the surrounding tissue but that naturally dis-
solve over time. Unfortunately, to date, the progress
in the development of such implants is still greatly
impeded by the high complexity of their application,
where chemical, mechanical, and biological factors
interact, and by the considerable cost associated with
related experimental studies. Numerical modeling is
therefore increasingly seen as the most promising tool
to overcome these limitations (Gartzke et al. 2020; Ma
et al. 2018). Despite the successful developments based
on classical local methods, PD diffusion solvers are
more suitable for modeling the bio-degradation pro-
cess since, in these corrosion problems, the concentra-
tion field in correspondence of the corrosion front is
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Fig. 12 Schematic representation of the problem domain and
initial configuration in Example 2

in fact affected by a high level of discontinuity, thus
making it difficult for classical local diffusion models
to adequately treat this kind of phenomena. PD mod-
els can instead conveniently capture the evolution of
phase boundaries (e.g., corrosion interfaces) as a nat-
ural outcome of their solution (Hermann et al. 2022).
Even though the application of the proposed approach
is here restricted to the modeling of uniform corrosion
(see Jafarzadeh et al. (2019b) for a different approach to
uniform corrosion modeling), in the last decade PD has
been extensively employed to model different types of
corrosive phenomena, such as pitting corrosion (Chen
and Bobaru 2015a; Jafarzadeh et al. 2019a; Wang et al.
2023), pitting corrosion with lacy covers (Jafarzadeh
et al. 2019c), intergranular corrosion (Jafarzadeh et al.
2018), galvanic corrosion (Zhao et al. 2021), crevice
corrosion (Jafarzadeh et al. 2022), stress-assisted cor-
rosion (Jafarzadeh et al. 2019b; Fan et al. 2022), and
stress-corrosion cracking (Chen et al. 2021). The exten-
sion of the proposed approach to the simulation of other
corrosion processes and damage problems is foreseen
for the future.

The three-dimensional problem considered in this
example consists of a metallic specimen, i.e., the Mg-
10Gd implant screw depicted in Fig. 12, immersed in
a sphere filled with a liquid electrolyte. The implant
screw is characterized by a radius of 1 mm, a height of
4 mm, and a 0.5 × 0.5 mm slotted head. The radius of

the sphere is taken here equal to 6 mm, the radius and
height of the cylindrical �− domain are 2.1 mm and
6.2mm, respectively,whereas the initial concentrations
of the solid (i.e., the intact metal) and liquid (i.e., the
electrolyte) phases are Csol = 6.26 × 10−5 mol/mm3

and Cliq = 0 mol/mm3, respectively. Due to the corro-
sion process induced by the electrolyte on the metal,
the solid phase reduces and the dissolved material
gradually diffuses into the liquid phase through the
so-called dissolution flux. To make the PD diffusion
model (see Sect. 2.2) suitable for the simulation of
the corrosion process, it is necessary to introduce two
micro-diffusivity parameters, i.e., κliq and the micro-
dissolvability κint, which correspond to the bonds con-
necting pairs of material points belonging to the liquid
phase and to the interfacial bonds connecting material
points in the solid phase with material points in the
liquid phase, respectively. In the solid phase, no flux
between pairs of material points is considered. Another
input parameter employed for the modeling of the cor-
rosion process is represented by the threshold concen-
tration Csat. This parameter is exploited to determine
the concentration of the solid phase throughout the dis-
solution process. To be more specific, once the con-
centration in correspondence of a material point in the
solid phase becomes lower than this threshold value,
the phase of that material point is changed from solid
to liquid. Thanks to this phase-changing mechanism,
the corrosion front can autonomously evolve during
the simulation.

The values of the main problem parameters are
κliq = 7.98 × 10−5 s−1mm−2, κint = 2.81 ×
10−6 s−1mm−2, Csat = 6.26 × 10−10 mol/mm3, and
q = 1 (cf. (12)). Dirichlet-type boundary conditions
are enforced by assuming a constrained concentration
equal to 0 mol/mm3 at all nodes located within a finite
distance from the surface of the sphere, here consid-
ered equal to the horizon (see Sect. 2.2). The prob-
lem is studied by employing two of the previously
introduced approaches, i.e., the (uniform, fine) and
(adaptive, hybrid) models, and by assuming �x+ =
2�x− = 0.075 mm and δ = 0.45 mm (i.e., m+ =
δ/�x+ = 6, m− = δ/�x− = 12, where m+ is the
ratio used in the coarse portion of the domain, whereas
m− is the ratio employed in the fine portion of the
domain). To be consistent with the discussion carried
out in the Example 1 presented in Sect. 4.1, the pro-
posed multi-adaptive scheme is also here referred to
as (adaptive, hybrid), although in this case, as already
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Fig. 13 Representation of
the PD neighborhood with
different discretization
schemes employed in
Example 2. The calculation
in the standard scheme runs
over 7153 nodes for
neighborhoods within the
fine grid. In the hybrid
approach, the calculation
runs over only 123
collocation nodes for the
neighborhoods within the
coarse grid

mentioned, the adaptive algorithm is not triggered dur-
ing the simulation of the corrosion process. In the pro-
posed approach, the configuration of the �− and �+
domains represented in Fig. 12 is in fact defined a pri-
ori and remains fixed throughout the entire simulation.
The �− domain, which is discretized through the stan-
dard scheme, is set in order to cover only the portion of
the domain where the concentration field is discontin-
uous, i.e., the area in correspondence of which diffu-
sion between nodes characterized by a different phase
takes place (phase boundaries). In the portion of the
domain discretized using the collocation scheme (i.e.,
the �+ domain), the monomial basis functions used to
perform the calculations are taken up to the second-
order (cf. (21)) which, in three dimensions, leads to the
following specifications in terms of number of mono-
mials and number of collocation nodes, i.e., n p = 10
and nc = 123, respectively. Figure 13 represents the
PD neighborhood obtained considering the different
discretization schemes employed for the solution of
Example 2. The figure clearly demonstrates the advan-
tage of using the proposed approach over the (uniform,
fine) one since, when considering the standard scheme,
PD neighborhoods within the fine grid consist of 7153
nodes, whereas in the proposed approach, PD neigh-
borhoods within the coarse grid include only 123 col-
location nodes. The time integration is performed by
exploiting the explicit forward Euler algorithm recalled
in Sect. 3.1 (cf. (17)). The problem is solved for a total
time duration of 14 days and by considering a time step
of �t = 90 s.

The results of the PD corrosion simulation for the
Mg-10Gd implant screw over 14 days of immersion

in the liquid electrolyte are illustrated in Fig. 14. The
figure shows the concentration profile of both the solid
metal and dissolved material diffused within the liq-
uid phase obtained by the two models considered in
the study at two different time instants. For the sake
of clarity, solid and liquid phases are represented sepa-
rately, and only half of the liquid sphere is shown. The
reported results demonstrate that the solution obtained
by the (adaptive, hybrid) scheme is in excellent agree-
ment with the reference one, since both the corrosion
patterns discernible in the solid phase and the dissolved
material diffusion within the liquid phase almost per-
fectly match the ones simulated by the (uniform, fine)
approach. The results therefore confirm the applicabil-
ity of the proposed multi-adaptive scheme to the mod-
eling of the corrosion process in large-scale, geomet-
rically complex problems. To further validate the pro-
posed approach, Fig. 15 shows the results obtained in
terms of relative volume loss of the solid phase over
time for the two aforementioned models. For com-
putational cost issues, the solution of the (adaptive,
hybrid) scheme is validated by that of the (uniform,
fine) approach within the first 2 days of corrosion. It
can be inferred that the proposed approach recaptures
the reference corrosion rate. Nonetheless, the simula-
tion of the (adaptive, hybrid) scheme is continued for
14 days of bio-degradation. A glimpse into the results
reveals that more than 40% of the solid phase dissolves
after 14 days of corrosion.

The numerical efficiency of the (adaptive, hybrid)
scheme is highlighted by comparing its computational
cost with that of the (uniform, fine) approach. Table 2
reports the number of active nodes in each domain (i.e.,
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Fig. 14 Contour plots of the concentration field, at two time
instants, obtained by the two approaches: (uniform, fine) and
(adaptive, hybrid) in Example 2; the unit is [mol/mm3]. The
lighter color of the �+ domain in the (adaptive, hybrid) scheme

with respect to that of the same region in the (uniform, fine)
solution is just a visual effect related to the coarser grid spacing
employed to discretize that portion of the domain

�+ and�− for the adaptive approach) and the average
run times (per 100 time steps) of the two aforemen-
tioned models. To get a better view of the performance
of the proposed multi-adaptive scheme, the average
speed ups (per 100 time steps) are also presented. Run
times and relative speed ups are reported for the case of
parallelism on 48 cores. As shown in Table 2, the (adap-
tive, hybrid) scheme turns out to be 11.76 times faster
than the (uniform, fine) approach. Considering these

results and recalling Figs. 14 and 15, it is possible to
conclude that the proposed multi-adaptive scheme is
capable of accurately reproducing the solution of the
(uniform, fine) approach, at a considerably lower com-
putational cost.

The results reported in Tables 1 and 2 show that the
speed up achieved by the (adaptive, hybrid) scheme
for the three-dimensional corrosion example is much
larger than the ones obtained for the two-dimensional
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Fig. 15 Relative volume loss of the solid phase over time
obtained by the two approaches: (uniform, fine) and (adaptive,
hybrid) in Example 2

dynamic crack propagation example. This is related to
the fact that, in the corrosion problem, the overhead
related to the triggering of the adaptive algorithm is
not present, since the �− and �+ domains are defined
a priori and remain unchanged throughout the entire
simulation.

5 Conclusions

This paper presents a multi-adaptive approach to
enhance the numerical performance of PD models and
thus optimize the use of computational resources. In the
proposed framework, the application of the standard
scheme, a particle-based method commonly exploited
to implement PD models, is restricted to localized
regions affected by the presence of discontinuities or
with complex geometrical details (i.e., critical regions)
and boundaries, while a recently proposed collocation
scheme is instead employed for the remaining part of
the domain.

The reason behind the implementation of this hybrid
discretization is that, despite the advantages of the col-
location scheme in terms of computational cost and
computation of spatial integrals, this scheme may be
affected by a loss of accuracy in the proximity of critical
regions and close to the boundary of the body, where,
instead, the standard scheme is known to perform bet-
ter due to its capability to conveniently calculate the
required integral terms in regions described by a non-
linear PDmodel, and thus to handlematerial separation.

With the aim of maximizing the numerical effi-
ciency of PDmodels, this hybrid discretization scheme
is implemented here in conjunction with a multi-grid
method in which grids with different spacings are cou-
pled within the same domain, thus limiting the applica-
tion of a fine grid spacing only to the small portions of
the domain in which it is required (e.g., critical regions
and boundaries). The advantages of both the hybrid
discretization scheme and the multi-grid approach are
therefore combinedwithin the proposedmulti-adaptive
framework,whose capabilities in dealingwith dynamic
brittle fracture and corrosion problems in two and
three dimensions are assessed through two real-world
numerical examples. In the examples provided, which
consist of modeling the Kalthoff–Winkler experiment
and the bio-degradation of a magnesium bone implant
screw, it is proved that, for given accuracy require-
ments, the proposed multi-adaptive scheme is capable
of reproducing the solution obtained by a PD model,
discretized using the standard scheme and with a very
fine grid spacing, at a significantly lower computational
cost. It is also demonstrated that the efficiency of the
developed scheme is even more pronounced in large-
scale, geometrically complex, three-dimensional prob-
lems involving millions of degrees of freedom.

Table 2 Run times for
Example 2.
(2�x− = �x+ = 0.075
mm)

uniform, fine adaptive, hybrid

�+ �−

no. of active nodes 17155295 2032496 2816295

avg. run time per 100 time
steps (48 cores)

13406.3 s 1140.15 s

avg. speed up per 100 time
steps (48 cores; over uniform,
fine)

1 11.76
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