85 research outputs found

    Pattog a tƱz...

    Get PDF

    A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate estimation of the divergence time of the extant eukaryotes is a fundamentally important but extremely difficult problem owing primarily to gross violations of the molecular clock at long evolutionary distances and the lack of appropriate calibration points close to the date of interest. These difficulties are intrinsic to the dating of ancient divergence events and are reflected in the large discrepancies between estimates obtained with different approaches. Estimates of the age of Last Eukaryotic Common Ancestor (LECA) vary approximately twofold, from ~1,100 million years ago (Mya) to ~2,300 Mya.</p> <p>Results</p> <p>We applied the genome-wide analysis of rare genomic changes associated with conserved amino acids (RGC_CAs) and used several independent techniques to obtain date estimates for the divergence of the major lineages of eukaryotes with calibration intervals for insects, land plants and vertebrates. The results suggest an early divergence of monocot and dicot plants, approximately 340 Mya, raising the possibility of plant-insect coevolution. The divergence of bilaterian animal phyla is estimated at ~400-700 Mya, a range of dates that is consistent with cladogenesis immediately preceding the Cambrian explosion. The origin of opisthokonts (the supergroup of eukaryotes that includes metazoa and fungi) is estimated at ~700-1,000 Mya, and the age of LECA at ~1,000-1,300 Mya. We separately analyzed the red algal calibration interval which is based on single fossil. This analysis produced time estimates that were systematically older compared to the other estimates. Nevertheless, the majority of the estimates for the age of the LECA using the red algal data fell within the 1,200-1,400 Mya interval.</p> <p>Conclusion</p> <p>The inference of a "young LECA" is compatible with the latest of previously estimated dates and has substantial biological implications. If these estimates are valid, the approximately 1 to 1.4 billion years of evolution of eukaryotes that is open to comparative-genomic study probably was preceded by hundreds of millions years of evolution that might have included extinct diversity inaccessible to comparative approaches.</p> <p>Reviewers</p> <p>This article was reviewed by William Martin, Herve Philippe (nominated by I. King Jordan), and Romain Derelle.</p

    Homoplasy in genome-wide analysis of rare amino acid replacements: the molecular-evolutionary basis for Vavilov's law of homologous series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rare genomic changes (RGCs) that are thought to comprise derived shared characters of individual clades are becoming an increasingly important class of markers in genome-wide phylogenetic studies. Recently, we proposed a new type of RGCs designated RGC_CAMs (after Conserved Amino acids-Multiple substitutions) that were inferred using genome-wide identification of amino acid replacements that were: i) located in unambiguously aligned regions of orthologous genes, ii) shared by two or more taxa in positions that contain a different, conserved amino acid in a much broader range of taxa, and iii) require two or three nucleotide substitutions. When applied to animal phylogeny, the RGC_CAM approach supported the coelomate clade that unites deuterostomes with arthropods as opposed to the ecdysozoan (molting animals) clade. However, a non-negligible level of homoplasy was detected.</p> <p>Results</p> <p>We provide a direct estimate of the level of homoplasy caused by parallel changes and reversals among the RGC_CAMs using 462 alignments of orthologous genes from 19 eukaryotic species. It is shown that the impact of parallel changes and reversals on the results of phylogenetic inference using RGC_CAMs cannot explain the observed support for the Coelomata clade. In contrast, the evidence in support of the Ecdysozoa clade, in large part, can be attributed to parallel changes. It is demonstrated that parallel changes are significantly more common in internal branches of different subtrees that are separated from the respective common ancestor by relatively short times than in terminal branches separated by longer time intervals. A similar but much weaker trend was detected for reversals. The observed evolutionary trend of parallel changes is explained in terms of the covarion model of molecular evolution. As the overlap between the covarion sets in orthologous genes from different lineages decreases with time after divergence, the likelihood of parallel changes decreases as well.</p> <p>Conclusion</p> <p>The level of homoplasy observed here appears to be low enough to justify the utility of RGC_CAMs and other types of RGCs for resolution of hard problems in phylogeny. Parallel changes, one of the major classes of events leading to homoplasy, occur much more often in relatively recently diverged lineages than in those separated from their last common ancestor by longer time intervals of time. This pattern seems to provide the molecular-evolutionary underpinning of Vavilov's law of homologous series and is readily interpreted within the framework of the covarion model of molecular evolution.</p> <p>Reviewers</p> <p>This article was reviewed by Alex Kondrashov, Nicolas Galtier, and Maximilian Telford and Robert Lanfear (nominated by Laurence Hurst).</p

    Encodings of Range Maximum-Sum Segment Queries and Applications

    Full text link
    Given an array A containing arbitrary (positive and negative) numbers, we consider the problem of supporting range maximum-sum segment queries on A: i.e., given an arbitrary range [i,j], return the subrange [i' ,j' ] \subseteq [i,j] such that the sum of the numbers in A[i'..j'] is maximized. Chen and Chao [Disc. App. Math. 2007] presented a data structure for this problem that occupies {\Theta}(n) words, can be constructed in {\Theta}(n) time, and supports queries in {\Theta}(1) time. Our first result is that if only the indices [i',j'] are desired (rather than the maximum sum achieved in that subrange), then it is possible to reduce the space to {\Theta}(n) bits, regardless the numbers stored in A, while retaining the same construction and query time. We also improve the best known space lower bound for any data structure that supports range maximum-sum segment queries from n bits to 1.89113n - {\Theta}(lg n) bits, for sufficiently large values of n. Finally, we provide a new application of this data structure which simplifies a previously known linear time algorithm for finding k-covers: i.e., given an array A of n numbers and a number k, find k disjoint subranges [i_1 ,j_1 ],...,[i_k ,j_k ], such that the total sum of all the numbers in the subranges is maximized.Comment: 19 pages + 2 page appendix, 4 figures. A shortened version of this paper will appear in CPM 201

    Intron Dynamics in Ribosomal Protein Genes

    Get PDF
    The role of spliceosomal introns in eukaryotic genomes remains obscure. A large scale analysis of intron presence/absence patterns in many gene families and species is a necessary step to clarify the role of these introns. In this analysis, we used a maximum likelihood method to reconstruct the evolution of 2,961 introns in a dataset of 76 ribosomal protein genes from 22 eukaryotes and validated the results by a maximum parsimony method. Our results show that the trends of intron gain and loss differed across species in a given kingdom but appeared to be consistent within subphyla. Most subphyla in the dataset diverged around 1 billion years ago, when the “Big Bang” radiation occurred. We speculate that spliceosomal introns may play a role in the explosion of many eukaryotes at the Big Bang radiation

    Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss

    Get PDF
    Motivation: Gene family evolution is driven by evolutionary events such as speciation, gene duplication, horizontal gene transfer and gene loss, and inferring these events in the evolutionary history of a given gene family is a fundamental problem in comparative and evolutionary genomics with numerous important applications. Solving this problem requires the use of a reconciliation framework, where the input consists of a gene family phylogeny and the corresponding species phylogeny, and the goal is to reconcile the two by postulating speciation, gene duplication, horizontal gene transfer and gene loss events. This reconciliation problem is referred to as duplication-transfer-loss (DTL) reconciliation and has been extensively studied in the literature. Yet, even the fastest existing algorithms for DTL reconciliation are too slow for reconciling large gene families and for use in more sophisticated applications such as gene tree or species tree reconstruction
    • 

    corecore