134 research outputs found

    Segregated Runge–Kutta time integration of convection-stabilized mixed finite element schemes for wall-unresolved LES of incompressible flows

    Get PDF
    In this work, we develop a high-performance numerical framework for the large eddy simulation (LES) of incompressible flows. The spatial discretization of the nonlinear system is carried out using mixed finite element (FE) schemes supplemented with symmetric projection stabilization of the convective term and a penalty term for the divergence constraint. These additional terms introduced at the discrete level have been proved to act as implicit LES models. In order to perform meaningful wall-unresolved simulations, we consider a weak imposition of the boundary conditions using a Nitsche’s-type scheme, where the tangential component penalty term is designed to act as a wall law. Next, segregated Runge–Kutta (SRK) schemes (recently proposed by the authors for laminar flow problems) are applied to the LES simulation of turbulent flows. By the introduction of a penalty term on the trace of the acceleration, these methods exhibit excellent stability properties for both implicit and explicit treatment of the convective terms. SRK schemes are excellent for large-scale simulations, since they reduce the computational cost of the linear system solves by splitting velocity and pressure computations at the time integration level, leading to two uncoupled systems. The pressure system is a Darcy-type problem that can easily be preconditioned using a traditional block-preconditioning scheme that only requires a Poisson solver. At the end, only coercive systems have to be solved, which can be effectively preconditioned by multilevel domain decomposition schemes, which are both optimal and scalable. The framework is applied to the Taylor–Green and turbulent channel flow benchmarks in order to prove the accuracy of the convection-stabilized mixed FEs as LES models and SRK time integrators. The scalability of the preconditioning techniques (in space only) has also been proven for one step of the SRK scheme for the Taylor–Green flow using uniform meshes. Moreover, a turbulent flow around a NACA profile is solved to show the applicability of the proposed algorithms for a realistic problem.Peer ReviewedPostprint (author's final draft

    Implications of the Klein tunneling times on high frequency graphene devices using Bohmian trajectories

    Full text link
    Because of its large Fermi velocity, leading to a great mobility, graphene is expected to play an important role in (small signal) radio frequency electronics. Among other, graphene devices based on Klein tunneling phenomena are already envisioned. The connection between the Klein tunneling times of electrons and cut-off frequencies of graphene devices is not obvious. We argue in this paper that the trajectory-based Bohmian approach gives a very natural framework to quantify Klein tunneling times in linear band graphene devices because of its ability to distinguish, not only between transmitted and reflected electrons, but also between reflected electrons that spend time in the barrier and those that do not. Without such distinction, typical expressions found in the literature to compute dwell times can give unphysical results when applied to predict cut-off frequencies. In particular, we study Klein tunneling times for electrons in a two-terminal graphene device constituted by a potential barrier between two metallic contacts. We show that for a zero incident angle (and positive or negative kinetic energy), the transmission coefficient is equal to one, and the dwell time is roughly equal to the barrier distance divided by the Fermi velocity. For electrons incident with a non-zero angle smaller than the critical angle, the transmission coefficient decreases and dwell time can still be easily predicted in the Bohmian framework. The main conclusion of this work is that, contrary to tunneling devices with parabolic bands, the high graphene mobility is roughly independent of the presence of Klein tunneling phenomena in the active device region

    Large scale finite element solvers for the large eddy simulation of incompressible turbulent flows

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit d’Enginyeria CivilIn this thesis we have developed a path towards large scale Finite Element simulations of turbulent incompressible flows. We have assessed the performance of residual-based variational multiscale (VMS) methods for the large eddy simulation (LES) of turbulent incompressible flows. We consider VMS models obtained by different subgrid scale approximations which include either static or dynamic subscales, linear or nonlinear multiscale splitting, and different choices of the subscale space. We show that VMS thought as an implicit LES model can be an alternative to the widely used physical-based models. This method is traditionally combined with equal-order velocity-pressure pairs, since it provides pressure stabilization. In this work, we also consider a different approach, based on inf-sup stable elements and convection-only stabilization. In order to do so, we define a symmetric projection stabilization of the convective term using an orthogonal subscale decomposition. The accuracy and efficiency of this method compared with residual-based algebraic subgrid scales and orthogonal subscales methods for equal-order interpolation is also assessed in this thesis. Furthermore, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both velocities and pressures. Precisely, the symmetric projection stabilization approach is suitable for segregated Runge-Kutta time integration schemes. This combination, together with the use of block-preconditioning techniques, lead to elasticity-type and Laplacian-type problems that can be optimally preconditioned using the balancing domain decomposition by constraints preconditioners. The weak scalability of this formulation have been demonstrated in this document. Additionally, we also contemplate the weak imposition of the Dirichlet boundary conditions for wall-bounded turbulent flows. Four well known problems have been mainly considered for the numerical experiments: the decay of homogeneous isotropic turbulence, the Taylor-Green vortex problem, the turbulent flow in a channel and the turbulent flow around an airfoil.En aquesta tesi s'han desenvolupat diferents algoritmes per la simulació a gran escala de fluxos turbulents incompressibles mitjançant el mètode dels Elements Finits. En primer lloc s'ha avaluat el comportament dels mètodes de multiescala variacional (VMS) basats en el residu, per la simulació de grans vòrtexs (LES) de fluxos turbulents. S'han considerat diferents models VMS tenint en compte diferents aproximacions de les subescales, que inclouen tant subescales estàtiques o dinàmiques, una definicó lineal o nolineal, i diferents seleccions de l'espai de les subescales. S'ha demostrat que els mètodes VMS pensats com a models LES poden ser una alternativa als models basats en la física del problema. Aquest tipus de mètode normalment es combina amb l'ús de parelles de velocitat i pressió amb igual ordre d'interpolació. En aquest treball, també s'ha considerat un enfocament diferent, basat en l'ús d'elements inf-sup estables conjuntament amb estabilització del terme convectiu. Amb aquest objectiu, s'ha definit un mètode d'estabilització amb projecció simètrica del terme convectiu mitjançant una descomposició ortogonal de les subescales. En aquesta tesi també s'ha valorat la precisió i eficiència d'aquest mètode comparat amb mètodes basats en el residu fent servir interpolacions amb igual ordre per velocitats i pressions. A més, s'ha proposat un esquema d'integració en temps basat en els mètodes de Runge-Kutta que té dues propietats destacables. En primer lloc, el càlcul de la velocitat i la pressió es segrega al nivell de la integració temporal, sense la necessitat d'introduir tècniques de fraccionament del pas de temps. En segon lloc, els esquemes segregats de Runge-Kutta proposats, mantenen el mateix ordre de precisió tant per les velocitats com per les pressions. Precisament, els mètodes d'estabilització amb projecció simètrica són adequats per ser integrats en temps mitjançant esquemes segregats de Runge-Kutta. Aquesta combinació, juntament amb l'ús de tècniques de precondicionament en blocs, dóna lloc a problemes tipus elasticitat i Laplacià que poden ser òptimament precondicionats fent servir els anomenats \textit{balancing domain decomposition by constraints preconditioners}. La escalabilitat dèbil d'aquesta formulació s'ha demostrat en aquest document. Adicionalment, també s'ha contemplat la imposició de forma dèbil de les condicions de contorn de Dirichlet en problemes de fluxos turbulents delimitats per parets. En aquesta tesi principalment s'han considerat quatre problemes ben coneguts per fer els experiments numèrics: el decaïment de turbulència isotròpica i homogènia, el problema del vòrtex de Taylor-Green, el flux turbulent en un canal i el flux turbulent al voltant d'una ala.Award-winningPostprint (published version

    Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations

    Get PDF
    In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both velocities and pressures. The segregated Runge-Kutta methods are motivated as an implicit-explicit Runge-Kutta time integration of the projected Navier-Stokes system onto the discrete divergence-free space, and its re-statement in a velocity-pressure setting using a discrete pressure Poisson equation. We have analysed the preservation of the discrete divergence constraint for segregated Runge-Kutta methods and their relation (in their fully explicit version) with existing half-explicit methods. We have performed a detailed numerical experimentation for a wide set of schemes (from first to third order), including implicit and IMEX integration of viscous and convective terms, for incompressible laminar and turbulent flows. Further, segregated Runge-Kutta schemes with adaptive time stepping are propose
    • …
    corecore