58 research outputs found

    Numerical simulation of a rare winter hailstorm event over Delhi, India on 17 January 2013

    Get PDF
    This study analyzes the cause of the rare occurrence of a winter hailstorm over New Delhi/NCR (National Capital Region), India. The absence of increased surface temperature or low level of moisture incursion during winter cannot generate the deep convection required for sustaining a hailstorm. Consequently, NCR shows very few cases of hailstorms in the months of December-January-February, making the winter hail formation a question of interest. For this study, a recent winter hailstorm event on 17 January 2013 (16:00–18:00 UTC) occurring over NCR is investigated. The storm is simulated using the Weather Research and Forecasting (WRF) model with the Goddard Cumulus Ensemble (GCE) microphysics scheme with two different options: hail and graupel. The aim of the study is to understand and describe the cause of hailstorm event during over NCR with a comparative analysis of the two options of GCE microphysics. Upon evaluating the model simulations, it is observed that the hail option shows a more similar precipitation intensity with the Tropical Rainfall Measuring Mission (TRMM) observation than the graupel option does, and it is able to simulate hail precipitation. Using the model-simulated output with the hail option; detailed investigation on understanding the dynamics of hailstorm is performed. The analysis based on a numerical simulation suggests that the deep instability in the atmospheric column led to the formation of hailstones as the cloud formation reached up to the glaciated zone promoting ice nucleation. In winters, such instability conditions rarely form due to low level available potential energy and moisture incursion along with upper level baroclinic instability due to the presence of a western disturbance (WD). Such rare positioning is found to be lowering the tropopause with increased temperature gradient, leading to winter hailstorm formation

    Climate change over Leh (Ladakh), India

    Get PDF
    Mountains over the world are considered as the indicators of climate change. The Himalayas are comprised of five ranges, viz., Pir Panjal, Great Himalayas, Zanskar, Ladhak, and Karakorum. The Ladakh region lies in the northernmost state of India, Jammu and Kashmir, in the Ladhak range. It has a unique cold-arid climate and lies immediately south of the Karakorum range. With scarce water resources, such regions show high sensitivity and vulnerability to the change in climate and need urgent attention. The objective of this study is to understand the climate of the Ladakh region and to characterize its changing climate. Using different temperature and precipitation datasets over Leh and surrounding regions, we statistically analyze the current trends of climatic patterns over the region. The study shows that the climate over Leh shows a warming trend with reduced precipitation in the current decade. The reduced average seasonal precipitation might also be associated with some indications of reducing number of days with higher precipitation amounts over the region

    Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31

    Get PDF
    We assess the effect of increasing horizontal resolution on simulated precipitation over South America in a climate model. We use atmosphere-only simulations, performed with HadGEM3-GC31 at three horizontal resolutions: N96 (∼130 km; 1.88∘×1.25∘), N216 (∼60 km; 0.83∘×0.56∘), and N512 (∼25 km; 0.35∘×0.23∘). We show that all simulations have systematic biases in annual mean and seasonal mean precipitation over South America (e.g. too wet over the Amazon and too dry in the northeast). Increasing horizontal resolution improves simulated precipitation over the Andes and northeast Brazil. Over the Andes, improvements from horizontal resolution continue to ∼25 km, while over northeast Brazil, there are no improvements beyond ∼60 km resolution. These changes are primarily related to changes in atmospheric dynamics and moisture flux convergence. Over the Amazon Basin, precipitation variability increases at higher resolution. We show that some spatial and temporal features of daily South American precipitation are improved at high resolution, including the intensity spectra of rainfall. Spatial scales of daily precipitation features are also better simulated, suggesting that higher resolution may improve the representation of South American mesoscale convective systems

    Predictability of South China Sea summer monsoon onset

    Get PDF
    Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill in predicting year to year variations in South China Sea summer monsoon onset at up to 3 months lead time using the GloSea5 seasonal forecasting system. The main source of predictability comes from skilful prediction of Pacific sea surface temperatures associated with El Niño and La Niña. The South China Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent development of rainfall across East Asia is influenced by sub-seasonal variability and synoptic events that reduce predictability, but interannual variability in the broadscale monsoon onset for East Asian summer monsoon still provides potentially useful information for users about possible delays or early occurrence of the onset of rainfall over East Asia

    Object storage: how chunky would you like your data?

    Get PDF
    In this study we examine object storage, a cutting-edge cloud-native technology specifically designed for efficiently managing large datasets. While object storage offers significant cost-effectiveness compared to disk storage, it requires data to be appropriately adapted to fully realise its benefits. Data retrieval from object storage is over HTTP in complete "objects," which are either entire files or file chunks. As this is relatively new technology, there is a clear lack of established tools and best-practice for converting various file types for optimal use with object storage, particularly for large gridded and N-dimensional datasets used in environmental and climate science. The performance and speed of object storage are contingent upon the data's structure, chunking, and the specific analysis requirements of the user. Consequently, a better understanding of these interactions is essential before widespread adoption. To address this need, our study conducted a series of experiments using gridded data with different chunking strategies, aiming to identify the most efficient approach for utilizing and accessing data stored in an object store. Our findings highlight the need for comprehensive understanding of object storage before its widespread adoption, and serve as a valuable resource for guiding future users in utilizing object storage effectively

    Moisture sources for East Asian precipitation: mean seasonal cycle and interannual variability

    Get PDF
    This study investigates the moisture sources that supply East Asian (EA) precipitation and their interannual variability. Moisture sources are tracked using theWater Accounting Model-2layers (WAM-2layers), based on the Eulerian framework. WAM-2layers is applied to five subregions over EA, driven by the ERA-Interim reanalysis from 1979 to 2015. Due to differences in regional atmospheric circulation and in hydrological and topographic features, the mean moisture sources vary among EA subregions. The tropical oceanic source dominates southeastern EA, while the extratropical continental source dominates other EA subregions. The moisture sources experience large seasonal variations, due to the seasonal cycle of the EA monsoon, the freeze-thaw cycle of the Eurasian continent and local moisture recycling over the Tibetan Plateau. The interannual variability of moisture sources is linked to interannual modes of the coupled ocean-atmosphere system. The negative phase of the North Atlantic Oscillation increases moisture transport to northwestern EA in winter by driving a southward shift in the mid-latitude westerly jet over theMediterranean Sea, the Black Sea and the Caspian Sea. Atmospheric moisture lifetime is also reduced due to the enhanced westerlies. In summers following El Ni ˜nos, an anti-cyclonic anomaly over the western North Pacific increases moisture supplied from the South China Sea to the southeastern EA and shortens the travelling distance. A stronger Somali Jet in summer increases moisture to the Tibetan Plateau and therefore increases precipitation over the eastern Tibetan Plateau. The methods and findings in this study can be used to evaluate hydrological features in climate simulations

    Cloudbursts in Indian Himalayas: a review

    Get PDF
    Cloudbursts in and around the southern rim of the Indian Himalayas are elusive in terms of their position and time of occurrences. Most of the reported cloudbursts are in the interior of the Himalayas and hence their observation itself is limited. Most of these events are reported once their affect in terms of loss to life and property is experienced in the downstream habitats. In addition, they are mostly associated with flash floods as an impact of the torrential precipitation. The principal understanding of the cloudburst is associated with sudden heavy deluge of precipitation in very less time interval over a very small area. Except this understanding and India Meteorology Department (IMD) definition of > 100 mm/h precipitation over a geographical region of approximately 20–30 km2, nothing much else is known about these events. There are a very few studies carried out on understanding of these events. Present paper synthesizes the available information and research on cloudburst events and tries to define it based on associated dynamics, thermodynamics and physical processes leading to a cloudburst event. Thus in the present work, characterizations and impacts of cloudburst leading from precipitation to dynamical to thermodynamical to large scale forcings to orographical forcings to followed geomorphology to impacts are intertwined to present comprehensive portray of it. Most of the cloudburst events are seen occurring in the elevation range of 1000 m to 2500 m within the valley folds of the southern rim of the Indian Himalayas. Apart from some of the large scale flow shown by few of the studies, it is found that cloudburst events are convectively triggered followed by orographically locked systems. These intertwined mechanisms lead cloudburst events to form. Amiss of any one of these mechanisms will not lead the cloudburst mechanism to form. These interactions in the present paper established the vagaries associated with the cloudburst events

    Projected changes in the East Asian hydrological cycle for different levels of future global warming

    Get PDF
    Recent decades have shown significant changes to the hydrological cycle over East Asia (EA), and further changes are expected due to future global warming. This study evaluates projected seasonal changes in the EA hydrological cycle using simulations that are 1.5 °C, 2.0 °C and 3.0 ∘C warmer than pre-industrial, from the Met Office Unified Model (MetUM) Global Ocean Mixed Layer model version 2.0 (GOML2.0), compared against present-day conditions. The moisture sources of the warming-induced precipitation changes are identified over five hydrologically unique regions within EA. Precipitation over EA increases with warming (except over southeastern EA in the spring and autumn) due to the intensified hydrological cycle. The projected seasonal changes in the hydrological cycle are usually nonlinear, with the rate of change between 1.5 ∘C and 2.0 ∘C larger than the rate of change between 2.0 ∘C and 3.0 ∘C of warming. The warming-induced precipitation increases are mainly associated with an increase in remote moisture convergence rather than local moisture recycling, except over the Tibetan Plateau. Decomposition of the changes in moisture sources by direction and flux component indicate that changes from the west are dominated by changes to moisture and changes from the north are more circulation driven. The changes from the south are moisture driven over southern EA and driven by moisture and circulation change over northern EA. Our results highlight the regionally and seasonally diverse projected changes to the EA hydrological cycle due to global warming, which will be useful for region-specific climate mitigation policies and the implementation of seasonally varying adaptation methods

    Improving global hydrological simulations through bias-correction and multi-model blending

    Get PDF
    There is an immediate need to develop accurate and reliable global hydrological forecasts in light of the future vulnerability to hydrological hazards and water scarcity under a changing climate. As a part of the World Meteorological Organization's (WMO) Global Hydrological Status and Outlook System (HydroSOS) initiative, we investigated different approaches to blending multi-model simulations for developing holistic operational global forecasts. The ULYSSES (mULti-model hYdrological SeaSonal prEdictionS system) dataset, to be published as “Global seasonal forecasts and reforecasts of river discharge and related hydrological variables ensemble from four state-of-the-art land surface and hydrological models” is used in this study. The first step for improving these forecasts is to investigate ways to improve the model simulations, as global models are not calibrated for local conditions. The analysis was performed over 119 different catchments worldwide for the baseline period of 1981–2019 for three variables: evapotranspiration, surface soil moisture and streamflow. This study evaluated blending approaches with a performance metric based (weighted) averaging of the multi-model simulations, using the catchment's Kling-Gupta Efficiency (KGE) for the variable to define the weight. Hydrological model simulations were also bias-corrected to improve the multi-model blending output. Weighted blending in conjunction with bias-correction provided the best improvement in performance for the catchments investigated. Applying modelled weights during blending original simulations improved performance over ungauged catchments. The results indicate that there is potential to successfully and easily implement the bias-corrected weighted blending approach to improve operational forecasts globally. This work can be used to improve water resources management and hydrological hazard mitigation, especially in data-sparse regions

    The Indian Easterly Jet During the pre-monsoon season in India

    Get PDF
    We identify for the first time an Indian Easterly Jet (IEJ) in the mid-troposphere during the pre-monsoon using reanalysis data. The IEJ is weaker and smaller than the African Easterly Jet over West Africa, with a climatological location of 10°N, 60–90°E, 700 hPa, and strength 6–7 m s−1 during March–May. The IEJ is a thermal wind associated with low-level meridional gradients in temperature (positive) and moisture (negative), resulting from equatorward moist convection and poleward dry convection. The IEJ is associated with a negative meridional potential vorticity gradient, therefore satisfying the Charney-Stern necessary condition for instability. However, no wave activity is detected, suggesting that the potential for combined barotropic-baroclinic instability is not often realized. IEJ strong (weak) years feature increased (reduced) near-surface temperatures and drier (wetter) conditions over India. This study provides an introduction to the IEJ's role in pre-monsoon dynamics, and a platform for further research
    corecore