25 research outputs found

    CITF1 Functions Downstream of SPL7 to Specifically Regulate Cu Uptake in Arabidopsis

    No full text
    Copper (Cu) is one of the most indispensable micronutrients, and proper Cu homeostasis is required for plants to maintain essential cellular functions. Plants activate the Cu uptake system during Cu limitation. Although SPL7 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 7) and CITF1 (Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1) are two transcription factors in Cu homeostasis, it remains unclear how SPL7 and CITF1 control the Cu uptake system. Here, we reveal that overexpression of CITF1 causes the enhanced tolerance to Cu deficiency and the elevated expression of Cu uptake genes COPT2, FRO4 and FRO5. Electrophoretic mobility shift assays (EMSA) and transient expression assays indicate that SPL7 directly binds to and activates the promoter of CITF1. The overexpression of CITF1 partially rescues the sensitivity of spl7-1 to Cu deficiency. Transcriptome data suggest that SPL7 and CITF1 coregulate the Cu-homeostasis-signaling network, and CITF1 has its own independent functions. Moreover, both SPL7 and CITF1 can directly bind to and activate the promoters of three Cu uptake genes COPT2, FRO4 and FRO5. This work shows the functions of CITF1 in the Cu-homeostasis-signaling network, providing insights into the complicated molecular mechanism underlying Cu homeostasis

    CITF1 Functions Downstream of SPL7 to Specifically Regulate Cu Uptake in <i>Arabidopsis</i>

    No full text
    Copper (Cu) is one of the most indispensable micronutrients, and proper Cu homeostasis is required for plants to maintain essential cellular functions. Plants activate the Cu uptake system during Cu limitation. Although SPL7 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 7) and CITF1 (Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1) are two transcription factors in Cu homeostasis, it remains unclear how SPL7 and CITF1 control the Cu uptake system. Here, we reveal that overexpression of CITF1 causes the enhanced tolerance to Cu deficiency and the elevated expression of Cu uptake genes COPT2, FRO4 and FRO5. Electrophoretic mobility shift assays (EMSA) and transient expression assays indicate that SPL7 directly binds to and activates the promoter of CITF1. The overexpression of CITF1 partially rescues the sensitivity of spl7-1 to Cu deficiency. Transcriptome data suggest that SPL7 and CITF1 coregulate the Cu-homeostasis-signaling network, and CITF1 has its own independent functions. Moreover, both SPL7 and CITF1 can directly bind to and activate the promoters of three Cu uptake genes COPT2, FRO4 and FRO5. This work shows the functions of CITF1 in the Cu-homeostasis-signaling network, providing insights into the complicated molecular mechanism underlying Cu homeostasis

    Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose

    Get PDF
    Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway. This suggests that alterations in carbon metabolism are an important part of rose petal abscission. Among these DTGs, approximately 150 genes putatively encoding transcription factors were identified in rose abscission zone. These included zinc finger, WRKY, ERF, and Aux/IAA gene families, suggesting that petal abscission involves complex transcriptional reprogramming. Approximately 108 DTGs were related to hormone pathways, of which auxin and ethylene related DTGs were the largest groups including 52 and 41 genes, respectively. These also included 12 DTGs related to gibberellin and 6 DTGs in jasmonic acid pathway. Surprisingly, no DTGs involved in the biosynthesis/signaling of abscisic acid, cytokinin, brassinosteroid, and salicylic acid pathways were detected. Moreover, among DTGs related to auxin, we identified an Aux/IAA gene RhIAA16 that was up-regulated in response to petal shedding. Down-regulation of RhIAA16 by virus-induced gene silencing in rose promoted petal abscission, suggesting that RhIAA16 plays an important role in rose petal abscission

    Atmospheric Density Response to a Severe Magnetic Storm Detected by the 520 km Altitude Spherical Satellite

    No full text
    The polar-orbiting spherical experimental satellite of China for atmospheric density detection with an altitude of ~520 km was successfully launched on 14 October 2021. Based on the dynamic inversion method for atmospheric density and the precise orbit determination data obtained by its GNSS, we inverted the orbital atmospheric density during the severe geomagnetic storm in early November 2021. In this paper, we compared the atmospheric density data obtained by the spherical satellite with the simulations of the MSISE00 and the DTM, evaluated their error distribution, and analyzed the response of the atmospheric density during the severe geomagnetic storm in the dawn–dusk orbit of 520 km altitude. The properties and the physical processes for the atmospheric density of the time evolutions in different latitudes and the global distributions during the severe geomagnetic storm were obtained. We found that the substantial disturbance enhancement and recovery of the atmospheric density of the dawn–dusk orbit have a close correlation with the geomagnetic indexes Kp and Dst. The elevation extends from the poles to the equator, and the relative variation in two hemispheres demonstrates a bimodal nearly symmetric growth structure. The maximum relative variation of the two hemispheres both occurred in the middle latitude, and, for this case, the enhancement of atmospheric density in the mid-latitude region accounted for a larger proportion. The asymmetry between the northern and southern hemispheres is demonstrated by the fact that the absolute value and absolute change in the southern hemisphere in summer are larger than those in the northern hemisphere, and the bimodal structure of the relative variation is inclined to the northern hemisphere

    Atmospheric Density Response to a Severe Magnetic Storm Detected by the 520 km Altitude Spherical Satellite

    No full text
    The polar-orbiting spherical experimental satellite of China for atmospheric density detection with an altitude of ~520 km was successfully launched on 14 October 2021. Based on the dynamic inversion method for atmospheric density and the precise orbit determination data obtained by its GNSS, we inverted the orbital atmospheric density during the severe geomagnetic storm in early November 2021. In this paper, we compared the atmospheric density data obtained by the spherical satellite with the simulations of the MSISE00 and the DTM, evaluated their error distribution, and analyzed the response of the atmospheric density during the severe geomagnetic storm in the dawn&ndash;dusk orbit of 520 km altitude. The properties and the physical processes for the atmospheric density of the time evolutions in different latitudes and the global distributions during the severe geomagnetic storm were obtained. We found that the substantial disturbance enhancement and recovery of the atmospheric density of the dawn&ndash;dusk orbit have a close correlation with the geomagnetic indexes Kp and Dst. The elevation extends from the poles to the equator, and the relative variation in two hemispheres demonstrates a bimodal nearly symmetric growth structure. The maximum relative variation of the two hemispheres both occurred in the middle latitude, and, for this case, the enhancement of atmospheric density in the mid-latitude region accounted for a larger proportion. The asymmetry between the northern and southern hemispheres is demonstrated by the fact that the absolute value and absolute change in the southern hemisphere in summer are larger than those in the northern hemisphere, and the bimodal structure of the relative variation is inclined to the northern hemisphere

    An Innovative Signal Processing Scheme for Spaceborne Integrated GNSS Remote Sensors

    No full text
    The vigorous development of the global navigation satellite system (GNSS) has led to a boom in GNSS radio occultation (GNSS RO) and GNSS reflectometry (GNSS-R) techniques. Consequently, we have proposed an innovative signal processing scheme for spaceborne integrated GNSS remote sensors (SIGRS), combining a GNSS RO and a GNSS-R module. In the SIGRS, the GNSS-R module shares one precise orbit determination (POD) module with the GNSS RO module, and the GNSS-R module first achieves compatibility with GPS, BDS, and Galileo. Moreover, the programmable non-uniform delay resolution was introduced and first used by the SIGRS to generate the output DDM, which achieves a high delay resolution in the DDM central region around the specular point to improve the accuracy of basic observables but requires fewer delay bins than the conventional DDM with uniform delay resolution. The SIGRS has been successfully used to design the GNOS II onboard the Chinese FY-3E satellite, and the results of in-orbit operation validate the performance of the SIGRS, which means the SIGRS is an economically and technically efficient design and has become the first successful signal processing scheme for spaceborne integrated GNSS remote sensors around the world

    Validation of Preliminary Results of Thermal Tropopause Derived from FY-3C GNOS Data

    No full text
    The state-of-art global navigation satellite system (GNSS) occultation sounder (GNOS) onboard the FengYun 3 series C satellite (FY-3C) has been in operation for more than five years. The accumulation of FY-3C GNOS atmospheric data makes it ready to be used in atmosphere and climate research fields. This work first introduces FY-3C GNOS into tropopause research and gives the error evaluation results of long-term FY-3C atmosphere profiles. We compare FY-3C results with Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) and radiosonde results and also present the FY-3C global seasonal tropopause patterns. The mean temperature deviation between FY-3C GNOS temperature profiles and COSMIC temperature profiles from January 2014 to December 2017 is globally less than 0.2 K, and the bias of tropopause height (TPH) and tropopause temperature (TPT) annual cycle derived from both collocated pairs are about 80&#8211;100 m and 1&#8211;2 K, respectively. Also, the correlation coefficients between FY-3C GNOS tropopause parameters and each radiosonde counterpart are generally larger than 0.9 and the corresponding regression coefficients are close to 1. Multiple climate phenomena shown in seasonal patterns coincide with results of other relevant studies. Our results demonstrate the long-term stability of FY-3C GNOS atmosphere profiles and utility of FY-3C GNOS data in the climate research field
    corecore