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Abstract. In this paper we study similarity measures for moving curves
which can, for example, model changing coastlines or glacier termini.
Points on a moving curve have two parameters, namely the position
along the curve as well as time. We therefore focus on similarity measures
for surfaces, specifically the Fréchet distance between surfaces. While
the Fréchet distance between surfaces is not even known to be computable,
we show for variants arising in the context of moving curves that they
are polynomial-time solvable or NP-complete depending on the restric-
tions imposed on how the moving curves are matched. We achieve the
polynomial-time solutions by a novel approach for computing a surface
in the so-called free-space diagram based on max-flow min-cut duality.

1 Introduction

Over the past years the availability of devices that can be used to track moving
objects has increased dramatically, leading to an explosive growth in movement
data. Naturally the goal is not only to track objects but also to extract information
from the resulting data. Consequently recent years have seen a significant increase
in the development of methods extracting knowledge from moving object data.

Tracking an object gives rise to data describing its movement. Often the scale
at which the tracking takes place is such that the tracked objects can be viewed
as point objects. Cars driving on a highway, birds foraging for food, or humans
walking in a pedestrian zone: for many analysis tasks it is sufficient to consider
them as moving points. Hence the most common data sets used in movement
data processing are so-called trajectories: sequences of time-stamped points.

However, not all moving objects can be reasonably represented as points. A
hurricane can be represented by the position of its eye, but a more accurate
description is as a 2-dimensional region which represents the hurricanes extent.
When studying shifting coastlines, reducing the coastline to a point is obviously
unwanted: one is actually interested in how the whole coast line moves and
changes shape over time. The same holds true when studying the terminus of a
glacier. In such cases, the moving object is best represented as a polyline rather
than by a single point. In this paper we hence go beyond the basic setting of
moving point objects and study moving complex, non-point objects. Specifically,
we focus on similarity measures for moving curves, based on the Fréchet distance.



Definitions and Notation. The Fréchet distance is a well-studied distance
measure for shapes, and is commonly used to determine the similarity between two
curves A and B : [0, 1]→ Rn. A natural generalization to more complex shapes
uses the definition of Equation 1 where the shapes A and B have type X → Rn.

Dfd(A,B) = inf
µ:X→X

sup
x∈X
‖A(x)−B(µ(x))‖ (1)

A

t

p

B ◦ µ
t

p

µ

Fig. 1. A matching µ between sur-
faces A and B drawn as a homeomor-
phism between their parameter spaces.

Here, ‖ · ‖ : Rn → R is a norm
such as the Euclidean norm (L2) or the
Manhattan norm (L1). The matching µ
ranges over orientation-preserving homeo-
morphisms (possibly with additional con-
straints) between the parameter spaces of
the shapes compared; as such, it defines a
correspondence between the points of the
compared shapes. A matching between sur-
faces with parameters p and t is illustrated
in Figure 1. Given one such matching we
obtain a distance between A and B by tak-
ing the largest distance between any two corresponding points of A and B. The
Fréchet distance is the infimum of these distances taken over all possible match-
ings. For moving points or static curves, we have as parameter space X = [0, 1]
and for moving curves or static surfaces, we have X = [0, 1]2. We can define
various similarity measures between shapes by imposing further restrictions on µ.

In practice a curve is generally represented by a sequence of P + 1 points.
Assuming a linear interpolation between consecutive points, this results in a
polyline with P segments. Analogously, a moving curve is a sequence of T + 1
polylines, each of P segments. We also interpolate the polylines linearly, yielding
a bilinear interpolation, or a quadrilateral mesh of P × T quadrilaterals.

Related Work. The Fréchet distance or related measures are frequently used to
evaluate the similarity between point trajectories [8, 7, 13]. The Fréchet distance
is also used to match point trajectories to a street network [2, 5]. The Fréchet
distance between polygonal curves can be computed in near-quadratic time [3, 6,
9, 17], and approximation algorithms [4, 15] have been studied.

The natural generalization to moving (parameterized) curves is to interpret
the curves as surfaces parameterized over time and over the curve parameter.
The Fréchet distance between surfaces is NP-hard [16], even for terrains [10]. In
terms of positive algorithmic results for general surfaces the Fréchet distance is
only known to be semi-computable [1, 12]. Polynomial-time algorithms have been
given for the so called weak Fréchet distance [1] and for the Fréchet distance
between simple polygons [11] and so called folded polygons [14].

When interpreting moving curves as surfaces it is important to take the
different roles of the two parameters into account: the first is inherently linked
to time and the other to space. This naturally leads to restricted versions of
the Fréchet distance of surfaces. For curves, restricted versions of the Fréchet
distance were considered [7, 18]. For surfaces we are not aware of similar results.
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1.1 Results

We refine the Fréchet distance between surfaces to meaningfully compare moving
curves. To do so, we restrict matchings to be one of several suitable classes.
Representative matchings for the considered classes together with the running
times of our results are illustrated in Figure 2.

Identity Synchronous Constant Synchronous Dynamic
O(PT ) O(P 2T log(PT )) O(P 3T logP log(PT ))

Asynchronous Constant Asynchronous Dynamic Orientation-Preserving
NP-complete NP-hard NP-hard

Fig. 2. The time complexities of the considered classes of matchings.

The simplest class of matchings consists of a single predefined identity match-
ing µ(p, t) = (p, t). Hence, to compute the identity Fréchet distance, we need only
determine a pair of matched points that are furthest apart. It turns out that one
of the points of a furthest pair is a vertex of a moving curve (i.e. quadrilateral
mesh), allowing computation in O(PT ) time. See the full paper for more details.

We also discuss the synchronous constant Fréchet distance in the full paper.
Here we assume that the matching of timestamps is known in advance, and the
matching of positions is the same for each timestamp, so it remains constant. Our
algorithm computes the positional matching that minimizes the Fréchet distance.

The synchronous dynamic Fréchet distance considered in Section 2 also
assumes a predefined matching of timestamps, but does not have the constraint
of the synchronous constant class that the matching of positions remains constant
over time. Instead, the positional matching may change continuously over time.

Finally, in Section 3, we consider several cases where neither positional nor
temporal matchings are predefined. The three considered cases are the asyn-
chronous constant, asynchronous dynamic, and orientation-preserving Fréchet
distance. The asynchronous constant class of matchings consists of a constant
(but not predefined) matching of positions, as well as timestamps whereas in
the asynchronous dynamic class of matchings, the positional matching may change
continuously. In the orientation-preserving class (see the full paper), matchings
range over orientation preserving homeomorphisms between the parameter spaces,
given that the corners of the parameter space are aligned.

The last three classes are quite complex, and we give constructions proving
that approximating the Fréchet distance within a factor 1.5 is NP-hard under
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these classes. For the asynchronous constant and asynchronous dynamic classes
of matchings, this result holds even for moving curves embedded in R1 whereas
the result for the orientation-preserving case holds for embeddings in R2.

Although we do not discuss classes where positional matchings are known
in advance, these symmetric variants can be obtained by interchanging the
time and position parameters for the discussed classes. Deciding which variant
is appropriate for comparing two moving curves depends largely on how the
data is obtained, as well as the use case for the comparison. For instance, the
synchronous constant variant may be used on a sequence of satellite images
which have associated timestamps. The synchronous dynamic Fréchet distance is
better suited for sensors with different sampling frequencies, placed on curve-like
moving objects.

2 Synchronous Dynamic Matchings

Synchronous dynamic matchings align timestamps under the
identity matching, but the matching of positions may change
continuously over time. Specifically, the matching is defined
as µ(p, t) = (πt(p), t). Here, µ(p, t) : [0, P ]× [0, T ]→ [0, P ]× [0, T ]
is continuous, and for any t the matching πt : [0, P ] → [0, P ]
between the two curves at that time is a nondecreasing surjection.

2.1 Freespace Partitions in 2D

Fig. 3. A matching (green) in
the 2D freespace (white).

The freespace diagram Fε is the set pairs of points
that are within distance ε of each other.

(x, y) ∈ Fε ⇔ ‖A(x)−B(y)‖ ≤ ε

If A and B are curves with parameter space [0, P ],
then their freespace diagram is two-dimensional,
and the Fréchet distance is the minimum value of ε
for which an xy-monotone path (representing µ)
from (0, 0) to (P, P ) through the freespace exists.

We use a variant of the max-flow min-cut dual-
ity to determine whether a matching through the
freespace exists. Before we present the 3D variant
for moving curves with synchronized timestamps,
we illustrate the idea in the fictional 2D freespace
of Figure 3. Here, any matching—such as the green path—must be an x- and y-
monotone path from the bottom left to the top right corner and this matching
must avoid all obstacles (i.e. all points not in Fe). Therefore each such matching
divides the obstacles in two sets: those above, and those below the matching.

Suppose we now draw a directed edge from an obstacle a to an obstacle b if
and only if any matching that goes over a must necessarily go over b. The key
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observation is that a matching exists unless such edges can form a path from the
lower-right boundary to the upper-left boundary of the freespace. In the example,
a few trivial edges are drawn in black and gray. If all obstacles were slightly
larger, an edge could connect a blue obstacle with a red obstacle, connecting the
two boundaries by the edges drawn in black.

2.2 Freespace Partitions in 3D

In contrast to the 2D freespace where the matching is a path, matchings of the
form µ(p, t) = (πt(p), t) form surfaces in the 3D freespace F3D

ε (see Equation 2).
Such a surface again divides the obstacles in the freespace in two sets and can be
punctured by a path connecting two boundaries. We formalize this concept for
the 3D freespace and give an algorithm for deciding the existence of a matching.

(x, y, t) ∈ F3D
ε if and only if ‖A(x, t)−B(y, t)‖ ≤ ε (2)

For x, y, t ∈ N, the cell Cx,y,t of the 3D freespace is the set F3D
ε ∩ ([x, x+ 1]×

[y, y + 1]× [t, t+ 1]). The property of Lemma 1 holds for all such cells.

Lemma 1. A cell Cx,y,t of the freespace has a convex intersection with any line
parallel to the xy-plane or the t-axis.

u

µ

dx
y

t

Fig. 4. µ separates u and d.

We divide the set of points not in F3D
ε into a

set O of so-called obstacles, such that each indi-
vidual obstacle is a connected point set. Let u be
the open set of points representing the left and top
boundary of F3D

ε . Symmetrically, let d represent the
bottom and right boundary, see Figure 4. Denote
by O′ ⊂ O the obstacles between the boundaries.

O = {u, d}∪O′ with
⋃
O′ = ([0, P ]2×[0, T ])\F3D

ε ;
u = {(x, y, t) | (x < 0∧ y > 0)∨ (x < P ∧ y > P )};
d = {(x, y, t) | (x > 0∧ y < 0)∨ (x > P ∧ y < P )}.

Given a matching µ, let D ⊆ O be the set of
obstacles below it, then u /∈ D and d ∈ D. Here,
we use axes (x, y, t) and say that a point is below some other point if it has
a smaller y-coordinate. Because each obstacle is a connected set and µ cannot
intersect obstacles, a single obstacle cannot lie on both sides of the same matching.
Because all matchings have u /∈ D and d ∈ D, a matching exists if and only if
¬(d ∈ D ⇒ u ∈ D).

We compute a relation . of elementary dependencies between obstacles, such
that its transitive closure e. has d e. u if and only if d ∈ D ⇒ u ∈ D. Let a.b if and
only if a ∪ b is connected (a touches b) or there exists some point (xa, ya, ta) ∈ a
and (xb, yb, tb) ∈ b with xa ≤ xb, ya ≥ yb and ta = tb. We prove in Lemmas 2
and 3 that this choice of . satisfies the required properties and in Theorem 4
that we can use the transitive closure e. of . to solve the decision problem of
the Fréchet distance.
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Lemma 2. If a e. b, then a ∈ D ⇒ b ∈ D.

Proof. Assume that a . b, then either a touches b and no matching can separate
them, or there exists some (xa, ya, t) ∈ a and (xb, yb, t) ∈ b with xa ≤ xb, ya ≥ yb.
If there were some matching µ with a ∈ D, then (xa, yµ, t) ∈ µ for some yµ > ya.
Similarly, if b /∈ D, then (xb, y

′
µ, t) ∈ µ for some y′µ < yb. We can further deduce

from xa ≤ xb and monotonicity of µ that we can pick y′µ such that ya < yµ ≤
y′µ < yb. However, this contradicts ya ≥ yb, so such a matching does not exist.
Hence, a ∈ D ⇒ b ∈ D whenever a . b and therefore whenever a e. b. ut

Lemma 3. If d ∈ D ⇒ u ∈ D, then d e. u.

Proof. Suppose d ∈ D ⇒ u ∈ D but not d e. u. Then no matching exists,
and no path from d to u exists in the directed graph G = (O, .). Pick as D
the set of obstacles reachable from d in G, then D does not contain u. Pick
the tightest matching µ such that D lies below it, we define µ in terms of
matchings πt ⊆ R2 × {t} in the plane at each timestamp t.

(x, y, t) ∈ πt if and only if (x′ > x ∧ y′ < y)⇒ ¬m(x′, y′, t) ∧m(x, y, t) where

m(x, y, t) if and only if {(x′, y′, t) | x′ ≤ x ∧ y′ ≥ y} ∩
⋃
D = ∅

Because u /∈ D, this defines a monotone path πt from (0, 0) to (P, P ) at each
timestamp t. Suppose that πt properly intersects some o ∈ O, such that some point
of (xo, yo, t) ∈ o lies below πt. It follows from the definition of . and ¬m(xo, yo, t)
that d . o for some d ∈ D. However, such obstacle o cannot exist because D
satisfies .. As a result, no path πt intersects any obstacle and we can connect the
paths πt to obtain a continuous matching µ without intersecting any obstacles.
So µ does not intersect obstacles in O \D, contradicting d ∈ D ⇒ u ∈ D. ut

Theorem 4. The Fréchet distance is greater than ε if and only if d e. u for ε.

Proof. We have for every matching that u /∈ D and d ∈ D. Therefore it follows
from Lemma 2 that no matching exists if d e. u for ε. In that case, the Fréchet
distance is greater than ε. Conversely, if ¬(d e. u) there is a set D satisfying e.
with u /∈ D and d ∈ D. In that case, a matching exists by Lemma 3, and the
Fréchet distance is less than ε. ut

We choose the set of obstacles O′ such that
⋃
O′ = ([0, P ]2 × [0, T ]) \ Fε and

the relation . is easily computable. Note that due to Lemma 1, each connected
component contains a corner of a cell, so any cell in the freespace contains
constantly many (up to eight) components of

⋃
O′. Moreover, we can index each

obstacle in O′ by a grid point (x, y, t) ∈ N3.
Let ox,y,t ⊆ ([0, P ]2×[0, T ])∩([x−1, x+1]×[y−1, y+1]×[t−1, t+1])\Fε be the

maximal connected subset of the cells adjacent to (x, y, t), such that ox,y,t contains
(x, y, t). Now, the obstacle ox,y,t is not well-defined if (x, y, t) ∈ Fε, in which case
we define ox,y,t to be an empty (dummy) obstacle. We have O′ =

⋃
(x,y,t){ox,y,t}

and we remark that obstacles are not necessarily disjoint.
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Each of the O(P 2T ) obstacles is now defined by a constant number of vertices.
We therefore assume that for each pair of obstacles (a, b) ∈ O2, we can decide
in constant time whether a . b; even though this decision procedure depends
on the chosen distance metric. For each obstacle a = ox,y,t, there are O(P 2)
obstacles b = ox′,y′,t′ for which a . b, namely because t− 2 ≤ t′ ≤ t+ 2 if a . b.
Furthermore, u and d contribute to O(P 2T ) elements of the relation. Therefore
we can compute the relation . in O(P 4T ) time.

Testing whether d e. u is equivalent to testing whether a path from d to u
exists in the directed graph (O, .), which can be decided using a depth first search.
So we can solve the decision problem for the Fréchet distance in O(P 2T + | . |) =
O(P 4T ) time. However, the relation . may yield many unnecessary edges. In
Section 2.4 we show that a smaller set E of size O(P 3T ) with the same transitive
closure e. is computable in O(P 3T logP ) time, so the decision algorithm takes
only O(P 3T logP ) time.

2.3 Parametric Search

x

y

t

Fig. 5. [0, 2]3 \ F3D
ε

To give an idea of what the 3D freespace looks
like, we have drawn the obstacles of the eight cells
of the freespace between two quadrilateral meshes
of size P × T = 2 × 2 in Figure 5. Cells of the
3D freespace lie within cubes, having six faces and
twelve edges. We call such edges x-, y- or t-edges,
depending on the axis to which they are parallel.

We are looking for the minimum value of ε for
which a matching exists. When increasing the value
of ε, the relation . becomes sparser since obstacles
shrink. Critical values of ε occur when . changes.
Due to Lemma 1, all critical values involve an edge
or an xt-face or yt-face of a cell, but never the
internal volume, so the following critical values cover all cases.

a) The minimal ε such that (0, 0, t) ∈ F3D
ε and (P, P, t) ∈ F3D

ε for all t.

b) An edge of Cx,y,t becomes nonempty.

c) Endpoints of y-edges of Cx,y,t and Cx+i,y,t align in y-coordinate, or endpoints
of x-edges of Cx,y,t and Cx,y−j,t align in x-coordinate.

d) Endpoints of a t-edge of Cx,y,t and a t-edge of Cx+i,y−j,t align in t-coordinate.

e) An obstacle in Cx,y,t stops overlapping with an obstacle in Cx+i,y,t or Cx,y−j,t
when projected along the x- or y-axis.

The endpoints involved in the critical values of type a), b), c) and d) can be
captured in O(P 2T ) functions. We apply a parametric search for the minimum
critical value εabcd of type a), b), c) or d) for which a matching exists. This
takes O((P 2T + timedec) log(PT )) time.
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Fig. 6. a . b and a . c

We illustrate the need for critical values of type e) in
Figure 6, here obstacle a overlaps with both obstacles b
and c while the overlap in edges does not contribute
to .. It is unclear how critical values of type e) can be
incorporated in the parametric search directly. Instead,
we enumerate and sort the O(P 3T ) critical values of
type e) in O(P 3T log(PT )) time. Using O(log(PT ))
calls to the decision algorithm, we apply a binary search
to find the minimum critical value εe of type e) for which
a matching exists. Finding the critical value εe then
takes O((P 3T + timedec) log(PT )) time.

The synchronous dynamic Fréchet distance is then the minimum of εabcd
and εe. This results in the following running time.

Theorem 5. The synchronous dynamic Fréchet distance can be computed in
O((P 3T + timedec) log(PT )) time.

Before stating the final running time, we present a faster algorithm for the
decision algorithm.

2.4 A Faster Decision Algorithm

To speed up the decision procedure we distinguish the cases for which two
obstacles may be related by ., these cases correspond to the five types of critical
values of Section 2.3. Critical values of type a) and b) depend on obstacles in
single cells, so there are at most O(P 2T ) elements of . arising from type a)
and b). Critical values of type c) and e) arise from pairs of obstacles in cells in
the same row or column, so there are at most O(P 3T ) of them. In fact, we can
enumerate the edges of type a), b), c), and e) of . in O(P 3T ) time. On the other
hand, edges of type d) arise between two cells with the same value of t, so there
can be O(P 4T ) of them.

We compute a smaller directed graph (V,E) with |E| = O(P 3T ) that has a
path from d to u if and only if d e. u. Let V = O = {u, d} ∪O′ be the vertices as
before (we will include dummy obstacles for grid points in that lie in the freespace)
and transfer the edges in . except those of type d) to the smaller set of edges E.
We must still induce edges of type d) in E, but instead of adding O(P 4T ) edges,
we use only O(P 3T ) edges. The edges of type d) can actually be captured in the
transitive closure of E using only O(P ) edges per obstacle in E.

Using an edge from ox,y,t to ox+1,y,t and to ox,y−1,t, we construct a path
from ox,y,t to any obstacle ox+i,y−j,t. The sole purpose of the dummy obstacles
is to construct these paths effectively. For obstacles whose gridpoints have the
same t-coordinates, it then takes a total of O(P 2T ) edges to include the obstacles
overlapping in t-coordinate related by type d), this is valid because (x, y, t) ∈ ox,y,t
for non-dummy obstacles.

Denote by Ed
k the edges of type d) of the form (a, b) = (ox,y,ta , ox+i,y−j,tb)

where tb = ta+k, then the set Ed
0 of O(P 2T ) edges is the one we just constructed.

Now it remains to induce paths with ta 6= tb, that still overlap in t-coordinates,

8



i.e. the sets Ed
−2, Ed

−1, Ed
1 and Ed

2 . Denote by t−(a) and t+(a) the minimum
and maximum t-coordinate over points in an obstacle a. For each obstacle, both
the t−(a) and the t+(a) coordinates are an endpoint of a t-edge in a cell defining
the obstacle due to Lemma 1, and therefore computable in constant time.

Our savings arise from the fact that if ox,y,t . ox+i,y−j,t+k and ox,y,t .
ox+i′,y−j′,t+k with i ≤ i′ and j ≤ j′, then Ed

0 induces a path from ox+i,y−j,t+k
to ox+i′,y−j′,t+k, so we do not need an additional edge to induce a path to the
latter obstacle. To avoid degenerate cases, we start by exhaustively enumerating
edges of Ed

k (k ∈ {−2,−1, 1, 2}) for which i ≤ 1 or j ≤ 1 in O(P 3T ) time so we
need only consider edges with i ≥ 2 ∧ j ≥ 2.

3 1 2 4 3

2 3 3 1 3

4 4 4 3 4

2 4 2 3 2

3 3 3 1 4

2

x

y

Fig. 7. Two edges (green) cover (red)
all four obstacles b (green) within
the query rectangle (blue) with val-
ues t−(b) ≤ t+(a) = 2.

For these remaining cases, we have a . b
if and only if t+(a) ≥ t−(b) ∧ tb = ta + k,
and t−(a) ≤ t+(b)∧ tb = ta−k for positive k.
From this we can derive the edges of Ed

k .
Although for each a, there may be O(P 2)
obstacles b such that a . b with tb = ta +
k, the Pareto frontier of those obstacles b
contains only O(P ) obstacles, see the grid
of fictional values t−(b) in Figure 7. In the
full paper, we show how to find these Pareto
frontiers in O(P logP ) time per obstacle a,
using only O(P 2T ) preprocessing time for
the complete freespace.

As a result, we can compute all O(P 3T )
edges of Ed

k in O(P 3T logP ) time. By The-
orem 6, the decision problem for the syn-
chronous dynamic Fréchet distance is solv-
able in O(P 3T logP ) time.

Theorem 6. The decision problem for the synchronous dynamic Fréchet distance
is solvable in O(P 3T logP ) time.

Proof. The edges E of types other than d) are enumerated in O(P 3T ) time, and
using constantly many Pareto frontier queries for each obstacle, O(P 3T ) edges
of type d) in E are computed in O(P 3T logP ) time. Given the set E of edges,
deciding whether a path between two vertices exists takes O(|E|) = O(P 3T )
time. The transitive closure of E equals e., so a path from d to u exists in E
if and only if there was such a path in .. Since we compute E in O(P 3T logP )
time, the decision problem is solved in O(P 3T logP ) time. ut

The following immediately follows from Theorems 5 and 6.

Corollary 7. The synchronous dynamic Fréchet distance can be computed in
O(P 3T logP log(PT )) time.
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3 Hardness

We extend the synchronous constant and syn-
chronous dynamic classes of matchings to asyn-
chronous ones. For this, we allow realignments of
timestamps, giving rise to the asynchronous con-
stant and asynchronous dynamic classes of match-
ings. The asynchronous constant class ranges over

matchings of the form µ(p, t) = (π(p), τ(t)) where the π and τ are matchings of
positions and timestamps. The asynchronous dynamic class of matchings has
the form µ(p, t) = (πt(p), τ(t)) for which the positional matching πt changes over
time. We first prove that the asynchronous constant Fréchet distance is in NP.

Theorem 8. Computing the Fréchet distance is in NP for the asynchronous
constant class of matchings.

Proof. Given any matching µ(p, t) = (π(p), τ(t)) with a Fréchet distance of ε, we
can derive—due to Lemma 1—a piecewise-linear matching τ∗ in O(T ) time, such
that a matching µ∗(p, t) = (π∗(p), τ∗(t)) with Fréchet distance at most ε exists.
We can realign the quadrilateral meshes A and B under τ∗ to obtain meshes A∗

and B∗ of polynomial size. Now the polynomial-time decision algorithm for
synchronous constant matchings (see full paper) is applicable to A∗ and B∗. ut

Due to critical values of type e), it is unclear whether each asynchronous dynamic
matching admits a piecewise-linear matching τ∗ of polynomial size, which would
mean that the asynchronous dynamic Fréchet distance is also in NP.

We show that computing the Fréchet distance is NP-hard for both classes by
a reduction from 3-SAT. The idea behind the construction is illustrated in the
two height maps of Figure 8. These represent quadrilateral meshes embedded
in R1 and correspond to a single clause of a 3-CNF formula of four variables.

We distinguish valleys (dark), peaks (white on A, yellow on B) and ridges
(denoted Xi, Fi and Ti). An important observation is that in order to obtain a
low Fréchet distance of ε < 3, the n-th valley of A must be matched with the n-th
valley of B. Moreover, each ridge Xi must be matched with Fi or Ti and each
peak of A must be matched to a peak of B. Note that even for asynchronous

0

T/2

p

t
X1 X2 X3 X4A

0

T/4

p

t
F1 T1 F2 T2 F3 T3 F4 T4B

Fig. 8. Two quadrilateral meshes A and B embedded in R1 (indicated by color and
isolines). Their Fréchet distance is 2 isolines if the clause (X2∨¬X3∨¬X4) is satisfiable
and 3 isolines otherwise. The freespace Fε=2 of (A,B) at times (T/2, T/4) on the right.
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dynamic matchings, if Xi is matched to Fi, it cannot be matched to Ti and
vice-versa because the (red) valley separating Fi and Ti has distance 3 from Xi.

The aforementioned properties are reflected more clearly in the 2D freespace
between the curves at aligned timestamps t and τ(t). In Figure 8, we give a 2D
slice (at tA = T/2, tB = T/4) of the 4D-freespace diagram with ε = 2 for the
shown quadrilateral meshes. In this diagram with ε = 2, only 23 monotone paths
exist (up to directed homotopy) whereas for ε = 3 there would be 24 monotone
paths (one for each assignment of variables). For ε = 2, the peak of X2 cannot
be matched to F2 at t = T/4 of B, corresponding to an assignment of X2 = true.

Consider a 3-CNF formula with n variables and m clauses, then A and B con-
sist of m clauses along the t-axis and n variables (X1 . . . Xn and F1, T1 . . . Fn, Tn)
along the p-axis. The k-th clause of A is matched to the k-th clause of B due to
the elevation pattern on the far left (p = 0). This means that the peaks of A are
matched with peaks of the same clause on B and all these peaks have the same
timestamp because τ(t) is constant (independent of p).

For each clause, there are three rows (timestamps) of B with peaks on the
ridges. On each such timestamp, exactly one ridge (depending on the disjuncts
of the clause) does not have a peak. Specifically, if a clause has Xi or ¬Xi as
its k-th disjunct, then the k-th row of that clause has no peak on ridge Fi or Ti,
respectively. We use these properties in Theorem 11 where we prove that it is
NP-hard to approximate the Fréchet distance within a factor 1.5.

Lemma 9. The Fréchet distance between two such moving curves is at least 3 if
the corresponding 3-CNF formula is unsatisfiable.

Proof. Consider a matching yielding a Fréchet distance smaller than 3 given
an unsatisfiable formula, then the peaks of A (of the k-th clause) are matched
with peaks of B (of a single row of the k-th clause). Assign the value true to
variable Xi if ridge Xi is matched with Ti and false if it is matched with Fi. Then
for every clause (Vi∨Vj∨Vk) with Vi ∈ {Xi,¬Xi}, there is a peak at π(Xi), π(Xj)
or π(Xk) for that clause. Such a matching cannot exist because then the 3-CNF
formula would be satisfiable, so the Fréchet distance is at least 3. ut

Lemma 10. The Fréchet distance between two such moving curves is at most 2
if the corresponding 3-CNF formula is satisfiable.

Proof. Consider a satisfying assignment to the 3-CNF formula. Match Xi with
the center of Fi or Ti, if Xi is false or true, respectively. For every clause, the
timestamp with peaks of A can be matched with a row of peaks on B. As was
already hinted at by Figure 8, the remaining parts of the curves can be matched
with ε = 2. Therefore this yields a Fréchet distance of at most 2. ut

Theorem 11. It is NP-hard to approximate the asynchronous constant or asyn-
chronous dynamic Fréchet distance for moving curves in R1 within a factor 1.5.

Proof. By Lemmas 9 and 10, the asynchronous constant or asynchronous dy-
namic Fréchet distance between two quadrilateral meshes embedded in R1 is at
least 3 or at most 2, depending on whether a 3-CNF formula is satisfiable. ut
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realistic curves in near linear time. Discrete Comput. Geom., 48(1):94–127, 2012.

16. M. Godau. On the complexity of measuring the similarity between geometric objects
in higher dimensions. PhD thesis, Berlin, Freie Universität Berlin, Diss., 1998, 1999.
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