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The momentum spectrum of a periodic network (quantum graph) has a band-gap structure. We
investigate the relative density of the bands or, equivalently, the probability that a randomly chosen
momentum belongs to the spectrum of the periodic network. We show that this probability exhibits
universal properties. More precisely, the probability to be in the spectrum does not depend on
the edge lengths (as long as they are generic) and is also invariant within some classes of graph
topologies.
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The spectrum of Schrödinger operator in periodic
medium is calculated using the Floquet–Bloch procedure
[1]: the periodic medium is replaced with its fundamen-
tal domain endowed with parameter-dependent quasi-
periodic boundary conditions. The resulting parameter-
dependent spectrum is called the dispersion relation, and
the range of the dispersion relation is precisely the spec-
trum of the original structure. The spectrum has a band-
gap structure and knowing the band location and sizes is
of utmost importance in the theories of condensed matter
and of dielectric and acoustic media [2–6]. Of particular
recent interest is understanding the spectrum of quantum
graphs [7, 8], motivated by their application to solid state
[9, 10], photonic crystals [11], carbon nano-structures [12]
as well as their use as models for quantum chaos, both
in theoretical [13–18] and experimental [19, 20] studies.

In the present Letter we explore the relative size of
bands and gaps and discover a curious universality. To
be more precise, we ask the following question: what is
the probability ps that a randomly and uniformly chosen
momentum belongs to the spectrum of the graph? For
example, consider the Z1-periodic graphs of Fig. 1. How
does pσ change if we change the lengths in the fundamen-
tal cell of the graph, from Fig. 1(b) to Fig. 1(c)? How
does pσ change if we change the topological structure to
Fig. 1(d) or 1(e)?

Denote by pσ (K) the probability of a uniformly cho-
sen momentum k ∈ [0,K] to be in the spectrum and let
pσ := limK→∞ pσ (K). We find that the probability pσ is
well-defined and is independent of many features of the
fundamental cell. In particular, all choices in Fig. 1(b)
to (d) lead to the same value of pσ (assuming a generic
choice of edge lengths). This is illustrated by a numerical
simulation in Fig. 2. We will derive the limiting value
analytically below. Note that the value of pσ for the cell
in Fig. 1(e) turns out to be different from the others and
will also be calculated.

Let us put the discussion onto a more formal footing.
We consider a Zd-periodic network of quantum wires on
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Figure 1: (a) An example of a Z1-periodic graph and (b) its
fundamental cell; (c)-(e) are other examples of the fundamen-
tal cell.
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Figure 2: (color online) Numerical simulation of the conver-
gence of pσ (K) is shown for the three periodic graphs from
Fig. 1(b)-(d). The limiting value, pσ, is shown as a dashed
line. The graph lengths are normalized such that K equals
the average number of spectral bands.

which we are solving the spectral problem

− d2ψ

dx2
= k2ψ, (1)

subject to the Kirchhoff–Neumann vertex conditionsψ(x) is continuous at v,∑
e∈Ev

dψ
dxe

(v) = 0,
(2)
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where the sum is over the edges Ev emanating from the
vertex v and the derivatives are taken into the edge. We
denote by σ the set of k values for which there is a so-
lution to (1)-(2); this is the momentum spectrum of the
graph. Now, the definition of pσ can be formally written
as

pσ = lim
K→∞

pσ (K) = lim
K→∞

1

K

∣∣∣σ ∩ [0,K]
∣∣∣. (3)

In this Letter we establish several properties of the
probability pσ. First of all, the above limit always exists.
In addition, if there is at least one gap in the spectrum,
there are infinitely many gaps and pσ < 1. Similarly, if
there is at least one non-flat band, there are infinitely
many and pσ > 0. Finally, and perhaps most strikingly,
provided the lengths of edges in the fundamental set are
generic, the value of pσ is independent of their precise
value. We also find that the value of pσ is independent
of some details of the cell’s topology.

Secular equation and dispersion relation. In the
Floquet–Bloch procedure for quantum graphs (see, e.g.,
[7]) we identify a set of J generators of the lattice of pe-
riods and assign to each a quasi-momentum variable αj ,
j = 1, . . . , J . If the vertices v+ and v− of the fundamen-
tal cell are identified by the action of the j-th generator,
we impose the quasi-periodic conditions

ψ(v+) = eiαjψ(v−), ψ′(v+) = −eiαjψ′(v−). (4)

We remind the reader that we use the convention of al-
ways taking the derivatives into the edge, which explains
the minus sign in conditions (4). For example, in the fun-
damental cell of Fig. 1(b) the empty circles denote the
vertices connected through the condition of the above
type. Identifying these periodically related vertices cre-
ates new cycles, Cj , j = 1, . . . , J , on the graph and the
resulting problem is equivalent to a graph with magnetic
fluxes αj through the corresponding cycles. For exam-
ple, the result of the Floquet–Bloch procedure for the
fundamental cell in Fig. 1(d) is equivalent to the mag-
netic graph in Fig. 3(a). We denote by E the number of
edges of the resulting magnetic graph.

Expanding the solutions to (1) in the basis of e±ikx and
applying the vertex conditions leads, after some linear
algebra (see [13]), to the secular equation

F (k; ~α) := det
(
1− ei(A+kL)S

)
= 0, (5)

where all matrices act in the space of coefficients on di-
rected edges; each edge gives rise to two directed edges of
equal length, therefore all matrices have degree 2E. The
diagonal matrix L is the matrix of lengths of the directed
edges. The diagonal matrix A contains the magnetic
fluxes αj that are put upon the edges created by vertex
identifications. The magnetic fluxes change sign when re-
versing the direction of the corresponding edge. Finally,

α
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Figure 3: (a) A graph consisting of a loop pierced by a mag-
netic flux and a decoration (b) Similar graph, but with a single
edge decoration

the unitary matrix S contains directed edge-to-edge scat-
tering coefficients, which, for scattering at a Neumann-
Kirchhoff vertex of degree d, is equal to −1 + 2/d for
back-scattering and 2/d for forward scattering. Most im-
portantly, for our vertex conditions the matrix S is inde-
pendent of k. See (10)–(11), which show these matrices
for a specific graph.

Next we apply a clever trick originally due to Barra and
Gaspard [21] (see also [22]): we introduce a new function
Φ(~κ; ~α) such that

Φ(κ1 = kl1, . . . , κE = klE ; ~α) := F (k; ~α), (6)

where l1, . . . , lE are the graph edge lengths. A cursory
look at equation (5) reveals that the variables κe, e =
1, . . . , E need only be known modulo 2π. For a fixed ~α,
define Σ~α to be the set of solutions of

Φ(~κ; ~α) = 0, (7)

on the torus TE := [0, 2π)
E . Then the roots kn of the

equation F (k; ~α) = 0 can be interpreted as the times (k
values) of piercing of the set Σ~α by the flow

~κ (k) = k · (l1, l2, . . . , lE) mod 2π. (8)

We now conclude that k belongs to the spectrum, σ, of
the periodic graph if the corresponding point ~κ(k) be-
longs to the set Σ~α for some value of ~α (which itself
belongs to a J-dimensional torus). For future purposes
we define

Σ =
⋃

~α∈[0,2π)J

Σ~α. (9)

We will now compute the set Σ in a simple but important
example and then proceed to discuss how the questions
about the band probability pσ can be related to the prop-
erties of the set Σ.

Loop with an edge. We now compute the set Σ for a
graph which consists of a loop pierced by magnetic field
with flux α and a single edge attached, see Fig. 3(b).

The numbering of the directed edges is given in
Fig. 3(b). According to this numbering the matrices A,
L and S are given by

A = diag(α, 0,−α, 0), L = diag(l1, l2, l1, l2). (10)
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Figure 4: (color online) (a) The zero sets, Σα, of Φ (κ1, κ2; α)
are shown for a range of values α ∈ [0, π] using a blue (α = 0)
- red (α = π) color scale. (b) The set Σ =

⋃
α∈[0,2π) Σα

is shaded, its blue boundaries are the zeros of Φ (·, ·; α = 0)
and the red boundaries are the zeros of Φ (·, ·; α = π). A flow
~κ (k) = k · (l1, l2) on the torus is indicated. The bands of the
spectrum σ are the solid black segments of the flow line; the
gaps are drawn in light gray.

and

S =

(
2/3 2/3 −1/3 0
0 0 0 1
−1/3 2/3 2/3 0
2/3 −1/3 2/3 0

)
(11)

The secular function Φ evaluates to (up to some non-
zero factors)

Φ = 2 cos(κ2) (cos(κ1)− cos(α))

− sin(κ1) sin(κ2). (12)

The zero sets Σα for a range of values of the parameter α
are shown on Fig. 4(a). Note that it is enough to consider
the values α ∈ [0, π] as Σ−α = Σα (see (12)).

Probability to be in the spectrum. From the discussion
above we conclude that the probability pσ for a random k
to be in the spectrum σ is equal to the proportion of time
the flow defined by (8) spends in the set Σ. Depending
on the commensurability properties of the set of the edge
lengths, {le}Ee=1, the flow covers densely the entire torus
or is restricted to a flat submanifold

L := span (k · (l1, l2, . . .) modTE : k ∈ R)

=
{
x ∈ RE : Mx = 0

}
modTE ,

whereM is a matrix with rational coefficients (it gives the
rational dependencies in the length sequence (l1, . . . , lE)).
In the latter case, the flow is ergodic on the submanifold
L. The probability pσ is therefore the relative volume

pσ =
volL (L ∩ Σ)

volL(L)
, (13)

where the subscript L indicates that the volume should
be taken in the appropriate dimension (equal to E minus
the rank of the matrix M). Formula (13) remains valid

in the case of rationally independent lengths, when we
simply take L to be the entire torus. This immediately
implies that the probability pσ remains the same as long
as the edge lengths are rationally independent.

Returning to our example, we calculate pσ explicitly.
Using symmetry we compute the area of 1/8-th of the
set Σ, the part in the lower left corner. It is bounded by
the coordinate axes and the set Σπ, which from (12) we
re-parameterize as

tan(κ2) = 2 cot(κ1/2). (14)

Therefore the ratio in (13) evaluates to

pσ =
2

π2

ˆ π

0

tan−1 (2 cot (κ/2)) dκ ≈ 0.64. (15)

We can further prove that this universality of pσ ex-
tends to a certain class of decoration structures. These
are the decorations that attach to the base line by means
of a single edge, as in Fig. 1(a) to (d). Proving the univer-
sality is done by reducing the influence of the decoration
on the secular equation to a single scattering reflection
phase located at the degree one vertex of the graph in
figure 3(b). The phase enter the matrix S as follows,

S =

( 2/3 2/3 −1/3 0
0 0 0 Θ(κ3,...,κE)
−1/3 2/3 2/3 0
2/3 −1/3 2/3 0

)
. (16)

While the precise form of the phase Θ (κ3, . . . , κE) may
be complicated, its effect on the function Φ gets averaged
out by ergodicity. More precisely, we now assume that
the rational relations (if any) defining the submanifold L
do not involve κ1 and κ2. In other words, the lengths
of the edges 1 and 2 are rationally independent of each
other and of the lengths of the decoration’s edges. We
need not assume anything about the lengths of edges of
the decoration.

One can now easily read from the de-
terminant (see (5),(6)) that the function
Φ has the form Φ (κ1, κ2, . . . , κE ; α) =
Φ (κ1, κ2 + 1/2Θ (κ3, . . . , κE) ; α), where Φ (·, ·; α) in
the RHS is as in (12). Introducing the change of
variables

κ̂2 = κ2 +
1

2
Θ (κ3, . . . , κE) , (17)

the integrals in (13) factorize. Namely, denote by T2 the
torus with respect to κ1 and κ̂2 and by TE−2 the torus
with respect to the other variables. Note that the set Σ
depends only on the variables κ1 and κ̂2 (and is cylindri-
cal with respect to the other variables). The submanifold
L, on the other hand, is cylindrical with respect to κ1 and
κ̂2. Therefore

pσ =
volT2

(T2 ∩ Σ) volTE−2
(TE−2 ∩ L)

volT2 (T2) volTE−2
(TE−2 ∩ L)

, (18)
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reducing to the expression in (13), where L there is identi-
fied as T2 in (18). We thus proved that for all decorations
of the type discussed above the probability to be in the
spectrum is given by (15).

To give a final example of a different nature, for the
fundamental cell depicted in Fig. 1(e), the secular equa-
tion can be shown to be equivalent to

sin(κ1 + κ2 + κ3)− 1

2
sinκ1 sinκ2 sinκ3

= sinκ1 + cosα(sinκ2 + sinκ3), (19)

and the corresponding value of pσ was calculated numer-
ically to be 0.43.

Conclusions. The arguments presented above apply
to all graphs and result in three general conclusions.
First, given a Zd-periodic graph with an arbitrary fun-
damental cell, the probability pσ is independent of the
specific edge lengths, as long as there are no rational de-
pendencies between some of them. Even if such depen-
dencies exist, an appropriate ergodicity argument shows
that the limit (3) which defines pσ exists and its exact
value depends on the nature of the edge lengths rational
dependencies (as well as the graph’s topology). Secondly,
we have shown that pσ is robust even within some topo-
logical modifications of the graph - attaching a prescribed
class of decorations. Thirdly, if there exists at least one
non-flat band (resp. gap) in the spectrum, it must arise
from an open set on the torus which is a subset of Σ
(corresp. T\Σ). The ergodic flow on the torus will pass
through this set infinitely many times, resulting in an infi-
nite number of non-flat bands (resp. gaps) of comparable
size. From equation (13) we can immediately conclude
that pσ > 0 (resp. pσ < 1).

Our setup calls for comparison with periodic poten-
tials on the line, in particular the singular potentials δ
and δ′ [23]. Note that we measure our band and gap
sizes in terms of the momentum variable k, not energy
(which scales as k2). For smooth periodic potentials and
δ potentials, the gaps sizes decrease as k → ∞, while
the band lengths converge to a constant, resulting in
pσ = 1 [24, 25]. The δ′ potential has an opposite behav-
ior, asymptotically equivalent to disconnecting the graph:
the band lengths decrease and the gaps approach a con-
stant size, resulting in pσ = 0 [25]. Our results show
that a typical non-trivial periodic graph has intermedi-
ate behavior with 0 < pσ < 1, as long as there is at least
one gap and at least one band. One explanation of this
phenomenon is that the graph of Fig. 1(a) (for example)
can be viewed as a line with periodic δ-potential (the
so-called Kronig-Penney model) whose strength is mo-
mentum dependent. In such an analogue, the strength of
the δ-potential oscillates between infinity and zero, which
in effect alternates between disconnecting the graph and
having a perfect transmission, resulting with the inter-
mediate values 0 < pσ < 1. We refer the reader to [9, 26]
for similar discussions.

One can also consider dressing the network with a
bounded periodic potential and/or changing the vertex
conditions from the ones we considered. This should
not affect our results qualitatively, as the influence of a
potential or vertex conditions decreases in the k → ∞
limit. However, this case is technically more difficult
since the k-dependence in equation (5) would become
more involved. To overcome these difficulties, methods
developed in [27, 28] might prove useful.

Some further interesting spectral questions are now
within reach. One may obtain bounds on possible sizes
of bands (gaps) and deduce the specific edge lengths for
which they are attained. Furthermore, the gap open-
ing mechanism, a well studied subject on its own right
[29, 30], can be better understood by examining the sub-
domains of the torus which do not intersect Σ. In ad-
dition, the topological meaning of pσ should be further
investigated — does it relate to some other graph invari-
ants or does it provide a brand new piece of information
on the underlying graph?

Finally, we make another step forward by extending
the discussion to eigenfunction properties. The number
of zeros of an eigenfunction was recently found to be con-
nected with the stability of the corresponding eigenvalue
with respect to magnetic perturbations [31–33]. The sta-
bility is described by the Morse index of the eigenvalue
and most strikingly, this Morse index can be shown to
be a well defined function on the torus, not depending
on the direction of the flow (i.e., on graph edge lengths)
[34]. This leads to new and exciting findings on the dis-
tribution of number of zeros of graph eigenfunctions [35].
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