180 research outputs found

    Economic Valuation of Power and Energy Losses in Distribution Networks

    Get PDF
    This paper presents a framework for determining the price of power and energy at each node in distribution network as well as the price of energy losses in their elements. The proposed framework is based on the concept of the radial structure network and gives one approach to solving the pricing problem that is based on purchase price of power and energy at the network supply point. In this way it is possible to determine the economic value of energy losses whether in the network as a whole or in particular voltage levels. The model has been successfully tested and results from test studies are reported

    Application of Component Criticality Importance Measures in Design Scheme of Power Plants

    Get PDF
    This paper presents application of component criticality importance measures in phase of preparation and design of power plants. These measures provide a numerical rank to determine which components are more important for power plant reliability improvement or more critical for power plant failure. Identifying critical components for power plant reliability provides an important input for decision-making and guidance throughout the development project. The study on several schematic design options of conventional thermal power plant show that the importance measures can be used as an effective tool to assess component criticality in the project phase of new production capacities

    New dose-response model and SARS-CoV-2 quanta emission rates for calculating the long-range airborne infection risk

    Get PDF
    Predictive models for airborne infection risk have been extensively used during the pandemic, but there is yet still no consensus on a common approach, which may create misinterpretation of results among public health experts and engineers designing building ventilation. In this study we applied the latest data on viral load, aerosol droplet sizes and removal mechanisms to improve the Wells Riley model by introducing the following novelties i) a new model to calculate the total volume of respiratory fluid exhaled per unit time ii) developing a novel viral dose-based generation rate model for dehydrated droplets after expiration iii) deriving a novel quanta-RNA relationship for various strains of SARS-CoV-2 iv) proposing a method to account for the incomplete mixing conditions. These new approaches considerably changed previous estimates and allowed to determine more accurate average quanta emission rates including omicron variant. These quanta values for the original strain of 0.13 and 3.8 quanta/h for breathing and speaking and the virus variant multipliers may be used for simple hand calculations of probability of infection or with developed model operating with six size ranges of aerosol droplets to calculate the effect of ventilation and other removal mechanisms. The model developed is made available as an open-source tool

    Comparative Evaluation of Four RANS Turbulence Models for Aerosol Dispersion from a Cough

    Get PDF
    The study of aerosol dispersion in indoor environments is essential to understanding and mitigating airborne virus transmission, such as SARS-CoV-2. Computational Fluid Dynamics (CFD) has emerged as a valuable tool for investigating aerosol dispersion, providing an alternative to costly experimental methods. In this study, we investigated the performance of four (4) Reynolds-averaged Navier-Stokes (RANS) turbulence models in predicting aerosol dispersion from a human body coughing in a small, ventilated indoor environment. We compared the Standard, RNG, Realizable k-ϵ models and the SST k- ω model using the same boundary conditions. We initially observed that the horizontal distance of the coughed aerosols after 10.2s dispersion time was substantially shorter with the standard k-ϵ turbulence compared to the other three turbulence models compared to the SST k-ω model, the RNG, and realizable k-ϵ models exhibit a high degree of similarity in their dispersion patterns. Specifically, we observed that the aerosols dispersed horizontally faster with the RNG and Realizable k-ϵ models. In conclusion, when compared to qualitative data from the literature, our observations exclude the standard k-ϵ turbulence. However, to select the most appropriate turbulence model for capturing the cough flow and aerosol dispersion dynamics, further detailed validation against both quantitative and qualitative data is needed

    Experimental study on the exposure level of surgical staff to SARS-CoV-2 in operating rooms with mixing ventilation under negative pressure

    Get PDF
    The purpose of this study was to reveal the exposure level of surgical staff to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the patient's nose and wound during operations on COVID-19 patients. The tracer gas N2O is used to simulate SARS-CoV-2 from the patient's nose and wound. In this study, concentration levels of tracer gas were measured in the breathing zones of these surgical staff in the operating room under three pressure difference conditions: −5 pa–15 pa and −25 pa compared to the adjunction room. These influencing factors on exposure level are analyzed in terms of ventilation efficiency and the thermal plume distribution characteristics of the patient. The results show that the assistant surgeon faces 4 to 12 times higher levels of exposure to SARS-CoV-2 than other surgical staff. Increasing the pressure difference between the OR lab and adjunction room can reduce the level of exposure for the main surgeon and assistant surgeon. Turning on the cooling fan of the endoscope imager may result in a higher exposure level for the assistant surgeon. Surgical nurses outside of the surgical microenvironment are exposed to similar contaminant concentration levels in the breathing zone as in the exhaust. However, the ventilation efficiency is not constant near the surgical patient or in the rest of the room and will vary with a change in pressure difference. This may suggest that the air may not be fully mixed in the surgical microenvironment

    Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    Get PDF
    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of similar to 10(6) CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at similar to 80 degrees C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125 degrees C caused no reduction of spores. A reduction of 3.5 log(10)CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150 degrees C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.China Scholarship Council (CSC)/20140635012

    Zonal modeling of air distribution impact on the long-range airborne transmission risk of SARS-CoV-2

    Get PDF
    A widely used analytical model to quantitatively assess airborne infection risk is the Wells-Riley model which is limited to complete air mixing in a single zone. However, this assumption tends not to be feasible (or reality) for many situations. This study aimed to extend the Wells-Riley model so that the infection risk can be calculated in spaces where complete mixing is not present. Some more advanced ventilation concepts create either two horizontally divided air zones in spaces as displacement ventilation or the space may be divided into two vertical zones by downward plane jet as in protective-zone ventilation systems. This is done by evaluating the time-dependent distribution of infectious quanta in each zone and by solving the coupled system of differential equations based on the zonal quanta concentrations. This model introduces a novel approach by estimating the interzonal mixing factor based on previous experimental data for three types of ventilation systems: incomplete mixing ventilation, displacement ventilation, and protective zone ventilation. The modeling approach is applied to a room with one infected and one susceptible person present. The results show that using the Wells-Riley model based on the assumption of completely air mixing may considerably overestimate or underestimate the long-range airborne infection risk in rooms where air distribution is different than complete mixing, such as displacement ventilation, protected zone ventilation, warm air supplied from the ceiling, etc. Therefore, in spaces with non-uniform air distribution, a zonal modeling approach should be preferred in analytical models compared to the conventional single-zone Wells-Riley models when assessing long-range airborne transmission risk of infectious respiratory diseases

    Applying the response surface methodology to predict the energy retrofit performance of the TABULA residential building stock

    Get PDF
    Recent advances in computing software have enabled the development of calibrated building energy simulations tools that allow retrofit-related analysis including optimization and energy-efficient building design. However, to create a national energy and climate plan, using these tools may imply a great deal of effort (time, cost, and human resources) to carry out simulations for the full set of different building types, construction, geometries, design parameters, and retrofit scenarios. Because of this, simplified approaches that can reliably estimate the impact of energy-efficiency retrofit alternatives based on averaged building stock characteristics could offer a significant advantage, especially in middle-income countries such as Bosnia and Herzegovina. This study aims to explore the energy reduction potential of a representative building from the national residential building stock by utilizing the response surface methodology (RSM). In this study, RSM is combined with the energy simulation tools EnergyPlus and DesignBuilder to model the energy savings associated with energy-efficient retrofit measures for a residential building from the national TABULA registry in Bosnia and Herzegovina. This study introduces a novel energy consumption model that can be applied to optimize energy-efficient retrofit design solutions for reducing the energy consumption for heating and cooling in the residential building sector. Moreover, the model developed was validated by using the results of a national survey on energy consumption in Bosnia and Herzegovina. Therefore, the use of the model developed is versatile and suitable for rapid prediction of energy-efficient retrofit-related energy consumption and energy savings of the residential building stock

    Estimating the impact of indoor relative humidity on SARS-CoV-2 airborne transmission risk using a new modification of the Wells-Riley model

    Get PDF
    A novel modified version of the Wells-Riley model was used to estimate the impact of relative humidity (RH) on the removal of respiratory droplets containing the SARS-CoV-2 virus by deposition through gravitational settling and its inactivation by biological decay; the effect of RH on susceptibility to SARS-CoV-2 was not considered. These effects were compared with the removal achieved by increased ventilation rate with outdoor air. Modeling was performed assuming that the infected person talked continuously for 60 and 120 min. The results of modeling showed that the relative impact of RH on the infection risk depended on the ventilation rate and the size range of virus-laden droplets. A ventilation rate of 0.5 ACH, the change of RH between 20% and 53% was predicted to have a small effect on the infection risk, while at a ventilation rate of 6 ACH this change had nearly no effect. On the contrary, increasing the ventilation rate from 0.5 ACH to 6 ACH was predicted to decrease the infection risk by half which is remarkably larger effect compared with that predicted for RH. It is thus concluded that increasing the ventilation rate is more beneficial for reducing the airborne levels of SARS-CoV-2 than changing indoor RH. Practical implications: The present results show that humidification to moderate levels of 40%–60% RH should not be expected to provide a significant reduction in infection risk caused by SARS-CoV-2, hence installing and running humidifiers may not be an efficient solution to reduce the risk of COVID-19 disease in indoor spaces. The results do however confirm that ventilation has a key role in controlling SARS-CoV-2 virus concentration in the air providing considerably higher benefits. The modified model developed in the present work can be used by public health experts, engineers, and epidemiologists when selecting different measures to reduce the infection risk from SARS-CoV-2 indoors allowing informed decisions concerning indoor environmental control
    corecore