155 research outputs found

    Bleeding related to disturbed fibrinolysis

    Get PDF
    The components and reactions of the fibrinolysis system are well understood. The pathway has fewer reactants and interactions than coagulation, but the generation of a complete quantitative model is complicated by the need to work at the solid‐liquid interface of fibrin. Diagnostic tools to detect disease states due to malfunctions in the fibrinolysis pathway are also not so well developed as is the case with coagulation. However, there are clearly a number of inherited or acquired pathologies where hyperfibrinolysis is a serious, potentially life‐threatening problem and a number of antifibrinolytc drugs are available to treat hyperfibrinolysis. These topics will be covered in the following review

    Multicenter Evaluation of Independent High-Throughput and RT-qPCR Technologies for the Development of Analytical Workflows for Circulating miRNA Analysis.

    Full text link
    BACKGROUND:Among emerging circulating biomarkers, miRNA has the potential to detect lung cancer and follow the course of the disease. However, miRNA analysis deserves further standardization before implementation into clinical trials or practice. Here, we performed international ring experiments to explore (pre)-analytical factors relevant to the outcome of miRNA blood tests in the context of the EU network CANCER-ID. METHODS:Cell-free (cfmiRNA) and extracellular vesicle-derived miRNA (EVmiRNA) were extracted using the miRNeasy Serum/Plasma Advanced, and the ExoRNeasy Maxi kit, respectively, in a plasma cohort of 27 NSCLC patients and 20 healthy individuals. Extracted miRNA was investigated using small RNA sequencing and hybridization platforms. Validation of the identified miRNA candidates was performed using quantitative PCR. RESULTS:We demonstrate the highest read counts in healthy individuals and NSCLC patients using QIAseq. Moreover, QIAseq showed 15.9% and 162.9% more cfmiRNA and EVmiRNA miRNA counts, respectively, in NSCLC patients compared to healthy control samples. However, a systematic comparison of selected miRNAs revealed little agreement between high-throughput platforms, thus some miRNAs are detected with one technology, but not with the other. Adding to this, 35% (9 of 26) of selected miRNAs in the cfmiRNA and 42% (11 of 26) in the EVmiRNA fraction were differentially expressed by at least one qPCR platform; about half of the miRNAs (54%) were concordant for both platforms. CONCLUSIONS:Changing of (pre)-analytical methods of miRNA analysis has a significant impact on blood test results and is therefore a major confounding factor. In addition, to confirm miRNA biomarker candidates screening studies should be followed by targeted validation using an independent platform or technology

    Detection and Monitoring of Tumor-Derived Mutations in Circulating Tumor DNA Using the UltraSEEK Lung Panel on the MassARRAY System in Metastatic Non-Small Cell Lung Cancer Patients

    Get PDF
    Analysis of circulating tumor DNA (ctDNA) is a potential minimally invasive molecular tool to guide treatment decision-making and disease monitoring. A suitable diagnostic-grade platform is required for the detection of tumor-specific mutations with high sensitivity in the circulating cell-free DNA (ccfDNA) of cancer patients. In this multicenter study, the ccfDNA of 72 patients treated for advanced-stage non-small cell lung cancer (NSCLC) was evaluated using the UltraSEEK ® Lung Panel on the MassARRAY ® System, covering 73 hotspot mutations in EGFR, KRAS, BRAF, ERBB2, and PIK3CA against mutation-specific droplet digital PCR (ddPCR) and routine tumor tissue NGS. Variant detection accuracy at primary diagnosis and during disease progression, and ctDNA dynamics as a marker of treatment efficacy, were analyzed. A multicenter evaluation using reference material demonstrated an overall detection rate of over 90% for variant allele frequencies (VAFs) &gt; 0.5%, irrespective of ccfDNA input. A comparison of UltraSEEK ® and ddPCR analyses revealed a 90% concordance. An 80% concordance between therapeutically targetable mutations detected in tumor tissue NGS and ccfDNA UltraSEEK ® analysis at baseline was observed. Nine of 84 (11%) tumor tissue mutations were not covered by UltraSEEK ®. A decrease in ctDNA levels at 4-6 weeks after treatment initiation detected with UltraSEEK ® correlated with prolonged median PFS (46 vs. 6 weeks; p &lt; 0.05) and OS (145 vs. 30 weeks; p &lt; 0.01). Using plasma-derived ccfDNA, the UltraSEEK ® Lung Panel with a mid-density set of the most common predictive markers for NSCLC is an alternative tool to detect mutations both at diagnosis and during disease progression and to monitor treatment response. </p

    Interplay between phosphorylation and palmitoylation mediates plasma membrane targeting and sorting of GAP43.

    Get PDF
    Phosphorylation and lipidation provide posttranslational mechanisms that contribute to the distribution of cytosolic proteins in growing nerve cells. The growth-associated protein GAP43 is susceptible to both phosphorylation and S-palmitoylation and is enriched in the tips of extending neurites. However, how phosphorylation and lipidation interplay to mediate sorting of GAP43 is unclear. Using a combination of biochemical, genetic, and imaging approaches, we show that palmitoylation is required for membrane association and that phosphorylation at Ser-41 directs palmitoylated GAP43 to the plasma membrane. Plasma membrane association decreased the diffusion constant fourfold in neuritic shafts. Sorting to the neuritic tip required palmitoylation and active transport and was increased by phosphorylation-mediated plasma membrane interaction. Vesicle tracking revealed transient association of a fraction of GAP43 with exocytic vesicles and motion at a fast axonal transport rate. Simulations confirmed that a combination of diffusion, dynamic plasma membrane interaction and active transport of a small fraction of GAP43 suffices for efficient sorting to growth cones. Our data demonstrate a complex interplay between phosphorylation and lipidation in mediating the localization of GAP43 in neuronal cells. Palmitoylation tags GAP43 for global sorting by piggybacking on exocytic vesicles, whereas phosphorylation locally regulates protein mobility and plasma membrane targeting of palmitoylated GAP43

    Propagation of Tau aggregates.

    Get PDF
    Since 2009, evidence has accumulated to suggest that Tau aggregates form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of Tau aggregates is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighbouring cells. In mice, the intracerebral injection of Tau inclusions induced the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Short fibrils constituted the major species of seed-competent Tau. The existence of several human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist
    corecore