2,691 research outputs found
Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation
International audienceDecreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge–Sb–Se–based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge–Sb–Se–I glasses can reach up to 80% with an effective transmission window between 0.94 μm to 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers
Data Augmentation for Time-Series Classification: An Extensive Empirical Study and Comprehensive Survey
Data Augmentation (DA) has emerged as an indispensable strategy in Time
Series Classification (TSC), primarily due to its capacity to amplify training
samples, thereby bolstering model robustness, diversifying datasets, and
curtailing overfitting. However, the current landscape of DA in TSC is plagued
with fragmented literature reviews, nebulous methodological taxonomies,
inadequate evaluative measures, and a dearth of accessible, user-oriented
tools. In light of these challenges, this study embarks on an exhaustive
dissection of DA methodologies within the TSC realm. Our initial approach
involved an extensive literature review spanning a decade, revealing that
contemporary surveys scarcely capture the breadth of advancements in DA for
TSC, prompting us to meticulously analyze over 100 scholarly articles to
distill more than 60 unique DA techniques. This rigorous analysis precipitated
the formulation of a novel taxonomy, purpose-built for the intricacies of DA in
TSC, categorizing techniques into five principal echelons:
Transformation-Based, Pattern-Based, Generative, Decomposition-Based, and
Automated Data Augmentation. Our taxonomy promises to serve as a robust
navigational aid for scholars, offering clarity and direction in method
selection. Addressing the conspicuous absence of holistic evaluations for
prevalent DA techniques, we executed an all-encompassing empirical assessment,
wherein upwards of 15 DA strategies were subjected to scrutiny across 8 UCR
time-series datasets, employing ResNet and a multi-faceted evaluation paradigm
encompassing Accuracy, Method Ranking, and Residual Analysis, yielding a
benchmark accuracy of 88.94 +- 11.83%. Our investigation underscored the
inconsistent efficacies of DA techniques, with..
Fabrication and characterization of Ge–Sb–Se–I glasses and fibers
International audienceChalcogenide glasses of the Ge20Sb5Se75−x I x (x = 0, 5, 10, 15, 20 at.%) system were prepared. This study was performed to examine some Ge–Sb–Se–I glass physical and optical properties, the structural evolution of the glass network, and the optical properties of the infrared glass fibers based on our previous studies. The variation process of the glass physical properties, such as transition temperature, glass density, and refractive index, was investigated from the glass of Ge20Sb5Se75 to the Ge20Sb5Se75−x I x glass series. The structural evolutions of these glasses were examined by Raman spectroscopy. The Ge20Sb5Se55I20 composition was selected for the preparation of the IR fiber. The Ge20Sb5Se55I20 glass was purified through distillation, and the intensity of the impurity absorption peaks caused by Ge–O, H2O, and Se–H was reduced or eliminated in the purified glasses. Then, Ge20Sb5Se55I20 chalcogenide glass fiber for mid-infrared transmission was fabricated using high-purity materials. The transmission loss of the Ge20Sb5Se55I20 fiber was greatly reduced compared with that of the Ge20Sb5Se75 glass fiber. The lowest losses obtained were 3.5 dB/m at 3.3 μm for Ge20Sb5Se75I20 fiber, which was remarkably improved compared with 48 dB/m of the unpurified Ge20Sb5Se75 fiber
ROSfs: A User-Level File System for ROS
We present ROSfs, a novel user-level file system for the Robot Operating
System (ROS). ROSfs interprets a robot file as a group of sub-files, with each
having a distinct label. ROSfs applies a time index structure to enhance the
flexible data query while the data file is under modification. It provides
multi-robot systems (MRS) with prompt cross-robot data acquisition and
collaboration. We implemented a ROSfs prototype and integrated it into a
mainstream ROS platform. We then applied and evaluated ROSfs on real-world UAVs
and data servers. Evaluation results show that compared with traditional ROS
storage methods, ROSfs improves the offline query performance by up to 129x and
reduces inter-robot online data query latency under a wireless network by up to
7x
Polydopamine-based biofunctional substrate coating promotes mesenchymal stem cell migration
Rapid migration of mesenchymal stem cells (MSCs) on device surfaces could support in vivo tissue integration and might facilitate in vitro organoid formation. Here, polydopamine (PDA) is explored as a biofunctional coating to effectively promote MSC motility. It is hypothesized that PDA stimulates fibronectin deposition and in this way enhances integrin-mediated migration capability. The random and directional cell migration was investigated by time-lapse microscopy and gap closure assay respectively, and analysed with softwares as computational tools. A higher amount of deposited fibronectin was observed on PDA substrate, compared to the non-coated substrate. The integrin β1 activation and focal adhesion kinase (FAK) phosphorylation at Y397 were enhanced on PDA substrate, but the F-actin cytoskeleton was not altered, suggesting MSC migration on PDA was regulated by integrin initiated FAK signalling. This study strengthens the biofunctionality of PDA coating for regulating stem cells and offering a way of facilitating tissue integration of devices
Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model
Organic matter (OM) degradation in marine sediments is largely controlled by its reactivity and profoundly affects the global carbon cycle. Yet, there is currently no general framework that can constrain OM reactivity on a global scale. In this study, we propose a reactive continuum model based on a lognormal distribution (l-RCM), where OM reactivity is fully described by parameters μ (the mean reactivity of the initial OM bulk mixture) and σ (the variance of OM components around the mean reactivity). We use the l-RCM to inversely determine μ and σ at 123 sites across the global ocean. The results show that the apparent OM reactivity (〈k〉=μ⋅exp(σ2/2)) decreases with decreasing sedimentation rate (ω) and that OM reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. Despite the general global trends, higher than expected OM reactivity is observed in certain ocean regions characterized by great water depth or pronounced oxygen minimum zones, such as the eastern–western coastal equatorial Pacific and the Arabian Sea, emphasizing the complex control of the depositional environment (e.g., OM flux, oxygen content in the water column) on benthic OM reactivity. Notably, the l-RCM can also highlight the variability in OM reactivity in these regions. Based on inverse modeling results in our dataset, we establish the significant statistical relationships between 〈k〉 and ω and further map the global OM reactivity distribution. The novelty of this study lies in its unifying view but also in contributing a new framework that allows predicting OM reactivity in data-poor areas based on readily available (or more easily obtainable) information. Such a framework is currently lacking and limits our abilities to constrain OM reactivity in global biogeochemical or Earth system models
- …
