247 research outputs found

    Leiomyosarcoma of the vulva: a case report

    Get PDF
    Sarcomas represent only 1% to 3% of vulvar malignancies. Leiomyosarcoma is a rare malignant tumor of the vulva; it can be mistaken for a benign tumor, which can lead to misdiagnosis and incorrect or delayed treatment. We report the case of a 51-year-old woman with leiomyosarcoma of the vulva. The patient presented to her primary gynecologist with a vulvar mass that she had first noticed 20 years prior. The tumor was suspected to be aggressive angiomyxoma, and biopsy of the mass and treatment with gonadotrophin-releasing hormone agonist (GnRHa) therapy were recommended. The patient declined treatment and opted instead for observation; however, the tumor grew rapidly in the following year and the patient was referred to our hospital. She underwent tumor resection, and pathology revealed leiomyosarcoma. The patient declined adjuvant chemo- and radiotherapy but has had no recurrence for 32 months

    Low phase noise THz generation from a fiber-referenced Kerr microresonator soliton comb

    Get PDF
    THz oscillators generated via frequency-multiplication of microwaves are facing difficulty in achieving low phase noise. Photonics-based techniques, in which optical two tones are translated to a THz wave through opto-electronic conversion, are promising if the relative phase noise between the two tones is well suppressed. Here, a THz (≈560 GHz) wave with a low phase noise is provided by a frequency-stabilized, dissipative Kerr microresonator soliton comb. The repetition frequency of the comb is stabilized to a long fiber in a two-wavelength delayed self-heterodyne interferometer, significantly reducing the phase noise of the THz wave. A measurement technique to characterize the phase noise of the THz wave beyond the limit of a frequency-multiplied microwave is also demonstrated, showing the superior phase noise of the THz wave to any other photonic THz oscillators (>300 GHz)

    Low phase noise THz generation from a fiber-referenced Kerr microresonator soliton comb

    Get PDF
    THz oscillators generated via frequency-multiplication of microwaves are facing difficulty in achieving low phase noise. Photonics-based techniques, in which optical two tones are translated to a THz wave through opto-electronic conversion, are promising if the relative phase noise between the two tones is well suppressed. Here, a THz (\approx 560 GHz) wave with an unprecedented phase noise is provided by a frequency-stabilized, dissipative Kerr microresonator soliton comb. The repetition frequency of the comb is stabilized to a long fiber in a two-wavelength delayed self-heterodyne interferometer, significantly reducing the phase noise of the THz wave. A new measurement technique to characterize the phase noise of the THz wave beyond the limit of a frequency-multiplied microwave is also demonstrated, showing the superior phase noise of the THz wave to any other THz oscillators (> 300 GHz)

    Open Channel Block of HERG K ϩ Channels by Vesnarinone

    Get PDF
    ABSTRACT Vesnarinone, a cardiotonic agent, blocks I Kr and, unlike other I Kr blockers, produces a frequency-dependent prolongation of action potential duration (APD). To elucidate the mechanisms, we studied the effects of vesnarinone on HERG, the cloned human I Kr channel, heterologously expressed in Xenopus laevis oocytes. Vesnarinone caused a concentration-dependent inhibition of HERG currents with an IC 50 value of 17.7 Ϯ 2.5 M at 0 mV (n ϭ 6). When HERG was coexpressed with the ␤-subunit MiRP1, a similar potency for block was measured (IC 50 : 15.0 Ϯ 3.0 M at 0 mV, n ϭ 5). Tonic block of the HERG channel current was minimal (Ͻ5% at 30 M, n ϭ 5). The rate of onset of block and the steady-state value for block of current were not significantly different for test potentials ranging from Ϫ40 to ϩ40 mV [time constant () ϭ 372 Ϯ 76 ms at ϩ40 mV, n ϭ 4]. Recovery from block at Ϫ60, Ϫ90, and Ϫ120 mV was not significantly different ( ϭ 8.5 Ϯ 1.5 s at Ϫ90 mV, n ϭ 4). Vesnarinone produced similar effects on inactivation-removed mutant (G628C/S631C) HERG channels. The IC 50 value was 10.7 Ϯ 3.7 M at 0 mV (n ϭ 5), and the onset and recovery from block of current findings were similar to those of wild-type HERG. Amino acids important for the binding of vesnarinone were identified using alanine-scanning mutagenesis of residues believed to line the inner cavity of the HERG channel. Six important residues were identified, including G648, F656, and V659 located in the S6 domain and T623, S624, and V625 located at the base of the pore helix. These residues are similar but not identical to those determined previously for MK-499, an antiarrhythmic drug. In conclusion, vesnarinone preferentially blocks open HERG channels, with little effect on channels in the rested or inactivated state. These actions may contribute to the favorable frequency-dependent prolongation in APD

    Terahertz wireless communication at 560-GHz band using Kerr micro-resonator soliton comb

    Full text link
    Terahertz (THz) waves have attracted attention as carrier waves for next-generation wireless communications (6G). Electronic THz emitters are widely used in current mobile communications; however, they may face technical limitations in 6G with upper-frequency limits. We demonstrate wireless communication in a 560-GHz band by using a photonic THz emitter based on photomixing of a 560-GHz-spacing soliton microcomb in a uni-travelling carrier photodiode together with a THz receiver of Schottky barrier diode. The on-off keying data transfer with 2-Gbit/s achieves a Q-factor of 3.4, thus, satisfying the limit of forward error correction.Comment: 17 pages, 4 figur
    corecore