8 research outputs found

    Cataract in children and adolescents with type 1 diabetes. Insights from the German/Austrian DPV registry

    Get PDF
    Objective To study diabetic cataract in type 1 diabetes in a large pediatric cohort. Methods The 92,633 patients aged 0.5-21 years from German/Austrian multicenter diabetes registry (DPV) were analyzed. The 235 patients (0.25%) with diabetic cataract were found, 200 could be categorized: 67 with early cataract (3 months before diabetes onset - 12 months afterwards), 133 with late cataract (>12 months after diabetes onset). Regression models adjusted for age and gender were used to compare clinical parameters at diabetes onset. Regression models for patients with late cataract were implemented for the total documentation period and additionally adjusted for diabetes duration. Results Rate of cataract development shows a peak at diabetes onset and declines with longer diabetes duration. Patients with cataract showed strong female preponderance. Patients developing early cataract were older at diabetes onset (12.8 years [11.8/13.9] vs. 8.9 [8.9/9.0]; p < 0.001) and showed higher HbA1c than patients without cataract (9.0% [8.55/9.38] vs. 7.6% [7.60/7.61]; p < 0.001). They had lower height-SDS, (-0.22 [-0.48/0.04] vs. 0.25 [0.24/0.26]; p < 0.001), lower weight-SDS (-0.31 [-0.55/-0.08] vs. 0.21 [0.20/0.21]; p < 0.001) and lower BMI-SDS (-0.25 [-0.49/-0.02] vs. 0.12 [0.12/0.13); p = 0.002). Patients with late cataract showed higher HbA1c at diabetes onset (8.35% [8.08/8.62] vs. 8.04% [8.03/8.05]; p = 0.023) and higher mean HbA1c during total documentation period (8.00% [7.62/8.34] vs. 7.62% [7.61/7.63]; p = 0.048). Conclusions Our data confirm known demographic and clinical characteristics of patients developing early cataract. Hyperglycemia-induced osmotic damage to lens fibers at diabetes onset might be the main pathomechanism. Long term glycemic control is associated with cataract development

    Skin manifestations in rare types of diabetes and other endocrine conditions

    No full text
    : As the most visible and vulnerable organ of the human organism, the skin can provide an impression of its state of health. Rare forms of diabetes and endocrinopathies are often diagnosed late or primarily misinterpreted due to their rarity. Skin peculiarities associated with these rare diseases may be indicative of the underlying endocrinopathy or form of diabetes. At the same time, rare skin changes in diabetes or endocrinopathies can also be a major challenge for dermatologists, diabetologists and endocrinologists in optimal patient and therapy management. Active collaboration between these different specialist groups can therefore lead to increased patient safety, better therapeutic success and more targeted diagnostics

    SARS-CoV-2 Infection and Development of Islet Autoimmunity in Early Childhood

    No full text
    IMPORTANCE: The incidence of diabetes in childhood has increased during the COVID-19 pandemic. Elucidating whether SARS-CoV-2 infection is associated with islet autoimmunity, which precedes type 1 diabetes onset, is relevant to disease etiology and future childhood diabetes trends.OBJECTIVE: To determine whether there is a temporal relationship between SARS-CoV-2 infection and the development of islet autoimmunity in early childhood.DESIGN, SETTING, AND PARTICIPANTS: Between February 2018 and March 2021, the Primary Oral Insulin Trial, a European multicenter study, enrolled 1050 infants (517 girls) aged 4 to 7 months with a more than 10% genetically defined risk of type 1 diabetes. Children were followed up through September 2022.EXPOSURE: SARS-CoV-2 infection identified by SARS-CoV-2 antibody development in follow-up visits conducted at 2- to 6-month intervals until age 2 years from April 2018 through June 2022.MAIN OUTCOMES AND MEASURES: The development of multiple (≥2) islet autoantibodies in follow-up in consecutive samples or single islet antibodies and type 1 diabetes. Antibody incidence rates and risk of developing islet autoantibodies were analyzed.RESULTS: Consent was obtained for 885 (441 girls) children who were included in follow-up antibody measurements from age 6 months. SARS-CoV-2 antibodies developed in 170 children at a median age of 18 months (range, 6-25 months). Islet autoantibodies developed in 60 children. Six of these children tested positive for islet autoantibodies at the same time as they tested positive for SARS-CoV-2 antibodies and 6 at the visit after having tested positive for SARS-CoV-2 antibodies. The sex-, age-, and country-adjusted hazard ratio for developing islet autoantibodies when the children tested positive for SARS-CoV-2 antibodies was 3.5 (95% CI, 1.6-7.7; P = .002). The incidence rate of islet autoantibodies was 3.5 (95% CI, 2.2-5.1) per 100 person-years in children without SARS-CoV-2 antibodies and 7.8 (95% CI, 5.3-19.0) per 100 person-years in children with SARS-CoV-2 antibodies (P = .02). Islet autoantibody risk in children with SARS-CoV-2 antibodies was associated with younger age (<18 months) of SARS-CoV-2 antibody development (HR, 5.3; 95% CI, 1.5-18.3; P = .009).CONCLUSION AND RELEVANCE: In young children with high genetic risk of type 1 diabetes, SARS-CoV-2 infection was temporally associated with the development of islet autoantibodies

    Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials—GPPAD-02 study design and first results

    No full text
    Primary prevention of type 1 diabetes (T1D) requires intervention in genetically at-risk infants. The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) has established a screening program, GPPAD-02, that identifies infants with a genetic high risk of T1D, enrolls these into primary prevention trials, and follows the children for beta-cell autoantibodies and diabetes. Genetic testing is offered either at delivery, together with the regular newborn testing, or at a newborn health care visits before the age of 5 months in regions of Germany (Bavaria, Saxony, Lower Saxony), UK (Oxford), Poland (Warsaw), Belgium (Leuven), and Sweden (Region Skåne). Seven clinical centers will screen around 330 000 infants. Using a genetic score based on 46 T1D susceptibility single-nucleotide polymorphisms (SNPs) or three SNPS and a first-degree family history for T1D, infants with a high (>10%) genetic risk for developing multiple beta-cell autoantibodies by the age of 6 years are identified. Screening from October 2017 to December 2018 was performed in 50 669 infants. The prevalence of high genetic risk for T1D in these infants was 1.1%. Infants with high genetic risk for T1D are followed up and offered to participate in a randomized controlled trial aiming to prevent beta-cell autoimmunity and T1D by tolerance induction with oral insulin. The GPPAD-02 study provides a unique path to primary prevention of beta-cell autoimmunity in the general population. The eventual benefit to the community, if successful, will be a reduction in the number of children developing beta-cell autoimmunity and T1D

    Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials-GPPAD-02 study design and first results

    No full text
    Primary prevention of type 1 diabetes (T1D) requires intervention in genetically at-risk infants. The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) has established a screening program, GPPAD-02, that identifies infants with a genetic high risk of T1D, enrolls these into primary prevention trials, and follows the children for beta-cell autoantibodies and diabetes. Genetic testing is offered either at delivery, together with the regular newborn testing, or at a newborn health care visits before the age of 5 months in regions of Germany (Bavaria, Saxony, Lower Saxony), UK (Oxford), Poland (Warsaw), Belgium (Leuven), and Sweden (Region Skåne). Seven clinical centers will screen around 330 000 infants. Using a genetic score based on 46 T1D susceptibility single-nucleotide polymorphisms (SNPs) or three SNPS and a first-degree family history for T1D, infants with a high (>10%) genetic risk for developing multiple beta-cell autoantibodies by the age of 6 years are identified. Screening from October 2017 to December 2018 was performed in 50 669 infants. The prevalence of high genetic risk for T1D in these infants was 1.1%. Infants with high genetic risk for T1D are followed up and offered to participate in a randomized controlled trial aiming to prevent beta-cell autoimmunity and T1D by tolerance induction with oral insulin. The GPPAD-02 study provides a unique path to primary prevention of beta-cell autoimmunity in the general population. The eventual benefit to the community, if successful, will be a reduction in the number of children developing beta-cell autoimmunity and T1D.status: publishe
    corecore