2 research outputs found

    A Chemiluminescent Metal–Organic Framework

    No full text
    The synthesis and characterization of a chemiluminescent metal–organic framework with high porosity is reported. It consists of Zr6O6(OH)4 nodes connected by 4,4′‐(anthracene‐9,10‐diyl)dibenzoate as the linker and luminophore. It shows the topology known for UiO‐66 and is therefore denoted PAP‐UiO. The MOF was not only obtained as bulk material but also as a thin film. Exposure of PAP‐UiO as bulk or film to a mixture of bis‐(2,4,6‐trichlorophenyl) oxalate, hydrogen peroxide, and sodium salicylate in a mixture of dimethyl and dibutyl phthalate evoked strong and long lasting chemiluminescence of the PAP‐UiO crystals. Time dependent fluorescence spectroscopy on bulk PAP‐UiO and, for comparison, on dimethyl 4,4′‐(anthracene‐9,10‐diyl)dibenzoate provided evidence that the chemiluminescence originates from luminophores being part of the PAP‐UiO, including the luminophores inside the crystals

    Characterization of tumor-directed cellular immune responses in humans

    No full text
    Understanding tumor/host immune interactions may help to fight cancer. Growing knowledge about T cell responses and increasing success of immunotherapeutic approaches have created the need for methods to characterize tumor-directed cellular immune responses. The spectrum of methods reaches from protein-based methods, including tetramers or intracellular flow cytometry, to genetic assays, such as TCR analysis or microarray techniques, further on to functional assays analysing proliferation and microtoxicity. Here, we describe these and further methods and explain their respective application in human tumor immunology
    corecore