17 research outputs found

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs

    New species and stratigraphic data on Lower Bajocian (Middle Jurassic) lytoceratids (Ammonoidea) from Lókút, Bakony Mts, Hungary

    No full text
    From exceptionally rich and mostly well-preserved Lower Bajocian ammonite assemblages, eight lytoceratid species are described and discussed in detail. They belong to four genera (Lytoceras, Megalytoceras, Alocolytoceras and Nannolytoceras) and include some stratigraphically important forms. Thus the material yielded the hitherto known youngest (Lower Bajocian Otoites sauzei Zone) representative of genus Alocolytoceras (A. isztimeri n. sp.). On the basis of here-identified forms,the range of Lytoceras subfrancisci could be extended up into the Otoites sauzei Zone. A new species (Nannolytoceras gibbosum n. sp.) from the Witchellia laeviuscula/Otoites sauzei zonal boundary interval suggests that the origin of Nannolytoceras could have been earlier than previously recorded. The faunal compositions of the assemblages reflect a typical Tethyan character, with lytoceratids representing only the third most numerous ammonite group behind Phylloceratina and Ammonitina

    Perforocycloides nathalieae new genus and species, an unusual Silurian cyclocystoid (Echinodermata) from Anticosti Island, Québec, Canada

    Get PDF
    Cyclocystoids are a poorly known, rare, extinct class of bi-facially flattened, disc shaped echinoderms, ranging from the Middle Ordovician to the Early Carboniferous. Articulated cyclocystoids are relatively common in the Ordovician but are rarer in younger strata. Here we describe Perforocycloides nathaliae new genus and species, from the early Silurian of Anticosti Island, Québec, Canada, the first articulated cyclocystoid from the Silurian of North America. This taxon is distinguished from other cyclocystoids by the number of variably sized marginal ossicles, the lack of interseptal plates, and the novelty of pores located in the distal part of the sutures between adjacent marginals on the dorsal surface. These dorsal intermarginal sutural pores led to canals which penetrated the contiguous area of the lateral surface of the marginals and emerged on the ventral surface between the cupules of adjacent marginals. These dorsal intermarginal sutural pores/canals appear to be unique to Perforocycloides and whilst their function is speculative, they provided some form of communication between the dorsal disc and the distal side of the ventral marginals/cupules. Perforocycloides most closely resembles the Ordovician–Silurian genus Zygocycloides, suggesting that this genus may have diversified more widely during the Silurian than previously reported. A review of global Silurian cyclocystoid distribution suggests taxa were geographically confined and that greatest diversity appears to have been located within Baltica. However, it also demonstrates our current limited knowledge. No specimens have been recorded from Gondwana (e.g. Africa, Australia, South America), Siberia, and North and South China, nor are any specimens known confidently anywhere from Přidolí strata.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made

    Literature relating to fossil coelacanths

    No full text

    Mollistephaninae and Frebolditinae, new subfamilies of Middle Jurassic stephanoceratid Ammonoidea

    No full text
    corecore