28 research outputs found

    Steric effects and quantum interference in the inelastic scattering of NO(X) + Ar

    Get PDF
    Rotationally inelastic collisions of NO(X) with Ar are investigated in unprecedented detail using state-to-state, crossed molecular beam experiments. The NO(X) molecules are selected in the Ω = 0.5, j = 0.5, f state and then oriented such that either the 'N' or 'O' end of the molecule is directed towards the incoming Ar atom. Velocity map ion imaging is then used to probe the scattered NO molecules in well-defined quantum states. We show that the fully quantum state-resolved differential steric asymmetry, which quantifies how the relative efficiency for scattering off the 'O' and the 'N' ends of the molecule varies with scattering angle, is strongly affected by quantum interference. Significant changes in both integral and differential cross sections are found depending on whether collisions occur with the N or O ends of the molecule. The results are well accounted for by rigorous quantum mechanical calculations, in contrast to both classical trajectory calculations and more simplistic models that provide, at best, an incomplete picture of the dynamics

    Differences in the signaling pathways of α1A- and α1B-adrenoceptors are related to different endosomal targeting

    Get PDF
    Aims: To compare the constitutive and agonist-dependent endosomal trafficking of α1A- and α1B-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype. Methods: Using CypHer5 technology and VSV-G epitope tagged α1A- and α1B-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot). Results and Conclusions: Constitutive as well as agonist-induced trafficking of α1A and α1B ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α1A-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α1B-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin

    Shoc2 Is Targeted to Late Endosomes and Required for Erk1/2 Activation in EGF-Stimulated Cells

    Get PDF
    Shoc2 is the putative scaffold protein that interacts with RAS and RAF, and positively regulates signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). To elucidate the mechanism by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor (EGF) receptor (EGFR), we studied subcellular localization of Shoc2. Upon EGFR activation, endogenous Shoc2 and red fluorescent protein tagged Shoc2 were translocated from the cytosol to a subset of late endosomes containing Rab7. The endosomal recruitment of Shoc2 was blocked by overexpression of a GDP-bound H-RAS (N17S) mutant and RNAi knockdown of clathrin, suggesting the requirement of RAS activity and clathrin-dependent endocytosis. RNAi depletion of Shoc2 strongly inhibited activation of ERK1/2 by low, physiological EGF concentrations, which was rescued by expression of wild-type recombinant Shoc2. In contrast, the Shoc2 (S2G) mutant, that is myristoylated and found in patients with the Noonan-like syndrome, did not rescue ERK1/2 activation in Shoc2-depleted cells. Shoc2 (S2G) was not located in late endosomes but was present on the plasma membrane and early endosomes. These data suggest that targeting of Shoc2 to late endosomes may facilitate EGFR-induced ERK activation under physiological conditions of cell stimulation by EGF, and therefore, may be involved in the spatiotemporal regulation of signaling through the RAS-RAF module

    Cross sections for energetic heavy-ion impact on protonated water clusters

    No full text
    Energetic impact of multiple ionized oxygen on protonated water clusters in the range of eight to twenty-one water molecules is investigated on the ZERNIKE-LEIF facility. The target water clusters are stored in a Paul trap and thermalized by cold buffer gas. This well-controlled approach allows for a direct measurement of the total inelastic cross section leading to trap-loss processes of the target ions
    corecore