43 research outputs found

    Absolute Calibration of a 200 MeV Proton Polarimeter for Use with the Brookhaven Linac

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Transverse-spin dependence of the p-p total cross section ΔσT from 0.8 to 2.5 GeV/c

    Get PDF
    The difference ΔσT=σ(↓↑)-σ(↑↑) between the proton-proton total cross sections for protons in pure transverse-spin states, was measured at incident momenta 0.8 to 2.5 GeV/c in experiments performed at the Los Alamos Clinton P. Anderson Meson Physics Facility and the Argonne Zero Gradient Synchrotron. In agreement with other data, peaks were observed at center-of-mass energies of 2.14 and 2.43 GeV/c2, where 1D2 and 1G4 dibaryon resonances have been proposed

    Measurement of the imaginary part of the I=1 N-barN S-wave scattering length

    Get PDF
    The survival time spectrum of slow antineutrons produced in a liquid-hydrogen target has been measured. From these data the imaginary part of the I=1 spin-averaged S-wave antineutron proton scattering length has been deduced to be Ima1=-0.83±0.07 fm. The result lies within the range of values calculated from current potential models. In addition, by combining a1 with the antiproton-proton scattering length deduced from antiprotonic atoms, the imaginary part of the I=0 spin-averaged N¯N scattering length was calculated to be Ima0=-1.07±0.16 fm

    Characterization of Profilin Polymorphism in Pollen with a Focus on Multifunctionality

    Get PDF
    Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future
    corecore