17 research outputs found

    Thermal stability of titanium nitride for shallow junction solar cell contacts

    Get PDF
    To demonstrate the thermal stability of titanium nitride as a high-temperature diffusion barrier, the TiN-Ti-Ag metallization scheme has been tested on shallow-junction (~2000 Å) Si solar cells. Electrical measurements on reference samples with the Ti-Ag metallization scheme show serious degradation after a 600 °C, 10-min annealing. With the TiN-Ti-Ag scheme, no degradation of cell performance is observed after the same heat treatment if the TiN layer is >~1700 Å. The glass encapsulation of cells by electrostatic bonding requires such a heat treatment

    Dust Destruction in the High-Velocity Shocks Driven by Supernovae in the Early Universe

    Full text link
    We investigate the destruction of dust grains by sputtering in the high-velocity interstellar shocks driven by supernovae (SNe) in the early universe to reveal the dependence of the time-scale of dust destruction on the gas density nH,0n_{{\rm H}, 0} in the interstellar medium (ISM) as well as on the progenitor mass MprM_{\rm pr} and explosion energy E51E_{\rm 51} of SN. The sputtering yields for the combinations of dust and ion species of interest to us are evaluated by applying the so-called universal relation with a slight modification. The dynamics of dust grains and their destruction by sputtering in shock are calculated by taking into account the size distribution of each dust species, together with the time evolution of temperature and density of gas in spherically symmetric shocks. The results of calculations show that the efficiency of dust destruction depends not only on the sputtering yield but also on the initial size distribution of each grain species. The efficiency of dust destruction increases with increasing E51E_{\rm 51} and/or increasing nH,0n_{{\rm H}, 0}, but is almost independent of MprM_{\rm pr} as long as E51E_{\rm 51} is the same. The mass of gas swept up by shock is the increasing function of E51E_{\rm 51} and the decreasing function of nH,0n_{{\rm H}, 0}. Combining these results, we present the approximation formula for the time-scale of destruction for each grain species in the early universe as a function of E51E_{\rm 51} and nH,0n_{{\rm H}, 0}. This formula is applicable for investigating the evolution of dust grains at the early epoch of the universe with the metallicity of Z \la 10^{-3} ZZ_\odot. The effects of the cooling processes of gas on the destruction of dust are briefly discussed.Comment: 49 pages including 7 tables and 25 figures, accepted for publication in Ap
    corecore