680 research outputs found

    Sediment Respiration Pulses in Intermittent Rivers and Ephemeral Streams

    Get PDF
    Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32-fold to 66-fold upon sediment rewetting. Structural equation modeling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use, and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2-0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting-drying cycles on respiration and CO2 emissions in stream network

    Thermal and electromagnetic properties of 166-Er and 167-Er

    Full text link
    The primary gamma-ray spectra of 166-Er and 167-Er are deduced from the (3-He,alpha gamma) and (3-He,3-He' gamma) reaction, respectively, enabling a simultaneous extraction of the level density and the gamma-ray strength function. Entropy, temperature and heat capacity are deduced from the level density within the micro-canonical and the canonical ensemble, displaying signals of a phase-like transition from the pair-correlated ground state to an uncorrelated state at Tc=0.5 MeV. The gamma-ray strength function displays a bump around E-gamma=3 MeV, interpreted as the pygmy resonance.Comment: 21 pages including 2 tables and 11 figure

    Level densities and Îł\gamma-strength functions in 148,149^{148,149}Sm

    Full text link
    The level densities and Îł\gamma-strength functions of the weakly deformed 148^{148}Sm and 149^{149}Sm nuclei have been extracted. The temperature versus excitation energy curve, derived within the framework of the micro canonical ensemble, shows structures, which we associate with the break up of Cooper pairs. The nuclear heat capacity is deduced within the framework of both the micro canonical and the canonical ensemble. We observe negative heat capacity in the micro canonical ensemble whereas the canonical heat capacity exhibits an S-shape as function of temperature, both signals of a phase transition. The structures in the Îł\gamma-strength functions are discussed in terms of the pygmy resonance and the scissors mode built on exited states. The samarium results are compared with data for the well deformed 161,162^{161,162}Dy, 166,167^{166,167}Er and 171,172^{171,172}Yb isotopes and with data from (n,Îł\gamma)-experiments and giant dipole resonance studies.Comment: 12 figure

    Consequences of an ecosystem state shift for nitrogen cycling in a desert stream

    Full text link
    Cessation of cattle grazing has resulted in the reestablishment of wetlands in some streams of the U.S. Southwest. Decades of cattle grazing prevented vascular plant growth in Sycamore Creek (Arizona, U.S.A.), resulting in stream reaches dominated by diatoms and filamentous green algae. Establishment of vascular plants can profoundly modify ecosystem processes; yet, the effects on nitrogen (N) cycling remain unexplored. We examined the consequences of this ecosystem state shift on N cycling in this N-limited desert stream. We compared results from whole-reach ammonium-N stable isotope (15NH4+) tracer additions conducted before (pre-wetland state) and 13 yr after (wetland state) free-range cattle removal from the watershed. Water column estimations showed that in-stream N uptake and storage were higher in the pre-wetland than in the wetland state. N turnover was also higher in the pre-wetland state, indicating that assimilated N was retained for shorter time in stream biomass. In addition, N uptake was mostly driven by assimilatory uptake regardless of the ecosystem state considered. Water column trends were mechanistically explained by the fact that the dominant primary uptake compartments in the pre-wetland state (i.e., algae and diatoms) had higher assimilatory uptake and turnover rates than those in the wetland state (i.e., vascular plants). Overall, results show that the shift in the composition and dominance of primary producers induced by the cessation of cattle grazing within the stream-riparian corridor changes in-stream N processing from a dominance of intense and fast N recycling to a prevalence of N retention in biomass of primary producers

    Preconditioning effects of intermittent stream flow on leaf litter decomposition

    Get PDF
    Autumnal input of leaf litter is a pivotal energy source in most headwater streams. In temporary streams, however, water stress may lead to a seasonal shift in leaf abscission. Leaves accumulate at the surface of the dry streambed or in residual pools and are subject to physicochemical preconditioning before decomposition starts after flow recovery. In this study, we experimentally tested the effect of photodegradation on sunlit streambeds and anaerobic fermentation in anoxic pools on leaf decomposition during the subsequent flowing phase. To mimic field preconditioning, we exposed Populus tremula leaves to UV-VIS irradiation and wet-anoxic conditions in the laboratory. Subsequently, we quantified leaf mass loss of preconditioned leaves and the associated decomposer community in five low-order temporary streams using coarse and fine mesh litter bags. On average, mass loss after approximately 45 days was 4 and 7% lower when leaves were preconditioned by irradiation and anoxic conditions, respectively. We found a lower chemical quality and lower ergosterol content (a proxy for living fungal biomass) in leaves from the anoxic preconditioning, but no effects on macroinvertebrate assemblages were detected for any preconditioning treatment. Overall, results from this study suggest a reduced processing efficiency of organic matter in temporary streams due to preconditioning during intermittence of flow leading to reduced substrate quality and repressed decomposer activity. These preconditioning effects may become more relevant in the future given the expected worldwide increase in the geographical extent of intermittent flow as a consequence of global change. © 2011 Springer Basel AG

    Finite-Size Bosonization of 2-Channel Kondo Model: a Bridge between Numerical Renormalization Group and Conformal Field Theory

    Full text link
    We generalize Emery and Kivelson's (EK) bosonization-refermionization treatment of the 2-channel Kondo model to finite system size and on the EK-line analytically construct its exact eigenstates and finite-size spectrum. The latter crosses over to conformal field theory's (CFT) universal non-Fermi-liquid spectrum (and yields the most-relevant operators' dimensions), and further to a Fermi-liquid spectrum in a finite magnetic field. Our approach elucidates the relation between bosonization, scaling techniques, the numerical renormalization group (NRG) and CFT. All CFT's Green's functions are recovered with remarkable ease from the model's scattering states.Comment: 4 pages, 1 figure, Revte

    Length-weight relationships of demersal fishes from the Gulf of Salamanca, Colombia: [part 2]

    Get PDF
    The parameters a and b of the length-weight relationship of the form W=aL super(b) are presented for 37 fish species, belonging to 17 families, caught during a demersal trawl survey over the period December 1995 to March 1998 in the Gulf of Salamanca, Colombi

    Organized crime and preventive justice

    Get PDF
    By comparison with the prevention of terrorism, the prevention of acts of organizedcrime might be thought easier to conceptualize precisely and less controversial to legislate against and police. This impression is correct up to a point, because it is possible to arrive at some general characteristics of organized crime, and because legislation against it is not obviously bedevilled by the risk of violating civil or political rights, as in the case of terrorism. But there is a significant residue of legal, moral and political difficulty: legislation against organized crime is hard to make effective; the harm of organized crime is not uniform, and so some preventive legislation seems too sweeping and potentially unjust. More fundamentally, the scale and rewards of organized crime are often dependent on mass public participation in markets for proscribed goods, which may point to a hidden public consensus in favour of some of what is criminalized. Preventive policing and legislation in both areas, then, are less easily justified than first appears

    Transport in Quantum Dots from the Integrability of the Anderson Model

    Full text link
    In this work we exploit the integrability of the two-lead Anderson model to compute transport properties of a quantum dot, in and out of equilibrium. Our method combines the properties of integrable scattering together with a Landauer-Buttiker formalism. Although we use integrability, the nature of the problem is such that our results are not generically exact, but must only be considered as excellent approximations which nonetheless are valid all the way through crossover regimes. The key to our approach is to identify the excitations that correspond to scattering states and then to compute their associated scattering amplitudes. We are able to do so both in and out of equilibrium. In equilibrium and at zero temperature, we reproduce the Friedel sum rule for an arbitrary magnetic field. At finite temperature, we study the linear response conductance at the symmetric point of the Anderson model, and reproduce Costi et al.'s numerical renormalization group computation of this quantity. We then explore the out-of-equilibrium conductance for a near-symmetric Anderson model, and arrive at quantitative expressions for the differential conductance, both in and out of a magnetic field. We find the expected splitting of the differential conductance peak into two in a finite magnetic field, HH. We determine the width, height, and position of these peaks. In particular we find for H >> T_k, the Kondo temperature, the differential conductance has maxima of e^2/h occuring for a bias V close to but smaller than H. The nature of our construction of scattering states suggests that our results for the differential magneto-conductance are not merely approximate but become exact in the large field limit.Comment: 88 pages, 16 figures, uses harvmac.te
    • …
    corecore