4 research outputs found

    Adsorption Isotherms of Cellulose-Based Polymers onto Cotton Fibers Determined by Means of a Direct Method of Fluorescence Spectroscopy

    No full text
    We present a novel method for the measurement of polymer adsorption on fibers by employing fluorescently labeled polymers. The method itself can be used for any compound that either shows fluorescence or can be labeled with a fluorescent dye, which renders it ubiquitously applicable for adsorption studies. The main advantage of the method is that the choice of adsorbent is not limited to flat surfaces, thereby allowing the investigation of fibrous and porous systems. As an example of high interest for application we determined the adsorption isotherms of various polysaccharide-based polymers with different charges and different substituents on cotton fibers. These experiments show that the extent of adsorption depends not only on the charge conditions but also very much on the specific interactions between the polymer and fiber. For instance, the cationic hydroxyethyl cellulose can become bound to an extent similar to that of the anionic alginate, while the anionic carboxymethyl cellulose of similar charge density adsorbs much less under these conditions. This shows that the adsorption of polymers depends subtly on the details of the interaction between the polymer and fiber but can be determined with good precision with our direct fluorescence method

    On the Influence of Surfactants on the Adsorption of Polysaccharide-Based Polymers on Cotton Studied by Means of Fluorescence Spectroscopy

    No full text
    In this study, we examined the influence of surfactants on the adsorption of polymers on cotton fibers. The extent of polymer adsorption on cotton was determined directly by means of fluorescence spectroscopy using fluorescently labeled polymers. The investigation of polymer adsorption in the presence of different types of surfactants and for a large range of differently structured polymers allows us to obtain a rather general picture of this important issue. Systematic relationships between the presence of surfactant and the type of polymer can be deduced but cannot be cast in simple terms such as electrostatic interaction but instead depend on the detailed interaction between the surfactant and polymer both in solution and adsorbed on the cotton surface. A particularly complex situation arises for the case of oppositely charged surfactant and polymer because of the possibility of precipitate formation. The study of such complex systems not only is of scientific interest but also is of great commercial interest because both polymers and surfactants are parts of detergent formulations and cotton is one of the most abundantly used materials for fabrics
    corecore