1,168 research outputs found

    First passage behaviour of fractional Brownian motion in two-dimensional wedge domains

    Full text link
    We study the survival probability and the corresponding first passage time density of fractional Brownian motion confined to a two-dimensional open wedge domain with absorbing boundaries. By analytical arguments and numerical simulation we show that in the long time limit the first passage time density scales as t**{-1+pi*(2H-2)/(2*Theta)} in terms of the Hurst exponent H and the wedge angle Theta. We discuss this scaling behaviour in connection with the reaction kinetics of FBM particles in a one-dimensional domain.Comment: 6 pages, 4 figure

    Photon assisted Levy flights of minority carriers in n-InP

    Full text link
    We study the photoluminescence spectra of n-doped InP bulk wafers, both in the reflection and the transmission geometries relative to the excitation beam. From the observed spectra we estimate the spatial distribution of minority carriers allowing for the spectral filtering due to re-absorption of luminescence in the wafer. This distribution unambiguously demonstrates a non-exponential drop-off with distance from the excitation region. Such a behavior evidences an anomalous photon-assisted transport of minority carriers enhanced owing to the high quantum efficiency of emission. It is shown that the transport conforms very well to the so-called Levy-flights process corresponding to a peculiar random walk that does not reduce to diffusion. The index gamma of the Levy flights distribution is found to be in the range gamma = 0.64 to 0.79, depending on the doping. Thus, we propose the high-efficiency direct-gap semiconductors as a remarkable laboratory system for studying the anomalous transport.Comment: 12 pages, 9 figure

    Emil von Behring (1854 - 1917) an Moritz Schmidt-Metzler (1838 - 1907) : Wiesbaden, 24. VIII, [18]99

    Get PDF
    Postkarte Emil von Behrings an Moritz Schmidt-Metzler mit Fragen zum Frankfurter Oberbürgermeister Franz Adickes

    First passages in bounded domains: When is the mean first passage time meaningful?

    Get PDF
    We study the first passage statistics to adsorbing boundaries of a Brownian motion in bounded two-dimensional domains of different shapes and configurations of the adsorbing and reflecting boundaries. From extensive numerical analysis we obtain the probability P(\omega) distribution of the random variable \omega=\tau_1/(\tau_1+\tau_2), which is a measure for how similar the first passage times \tau_1 and \tau_2 are of two independent realisations of a Brownian walk starting at the same location. We construct a chart for each domain, determining whether P(\omega) represents a unimodal, bell-shaped form, or a bimodal, M-shaped behaviour. While in the former case the mean first passage time (MFPT) is a valid characteristic of the first passage behaviour, in the latter case it is an insufficient measure for the process. Strikingly we find a distinct turnover between the two modes of P(\omega), characteristic for the domain shape and the respective location of absorbing and reflective boundaries. Our results demonstrate that large fluctuations of the first passage times may occur frequently in two-dimensional domains, rendering quite vague the general use of the MFPT as a robust measure of the actual behaviour even in bounded domains, in which all moments of the first passage distribution exist.Comment: 9 pages, 6 figure

    Subdiffusion and weak ergodicity breaking in the presence of a reactive boundary

    Full text link
    We derive the boundary condition for a subdiffusive particle interacting with a reactive boundary with finite reaction rate. Molecular crowding conditions, that are found to cause subdiffusion of larger molecules in biological cells, are shown to effect long-tailed distributions with identical exponent for both the unbinding times from the boundary to the bulk and the rebinding times from the bulk. This causes a weak ergodicity breaking: typically, an individual particle either stays bound or remains in the bulk for very long times. We discuss why this may be beneficial for in vivo gene regulation by DNA-binding proteins, whose typical concentrations are nanomolarComment: 4 pages, 1 figure, REVTeX4, accepted to Phys Rev Lett, some typos correcte

    Origin and pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma as revealed by global gene expression analysis

    Get PDF
    The pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly because of the technical challenge of analyzing its rare neoplastic lymphocytic and histiocytic (L&H) cells, which are dispersed in an abundant nonneoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected L&H lymphoma cells in comparison to normal and other malignant B cells that indicated a relationship of L&H cells to and/or that they originate from germinal center B cells at the transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell–rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype, and deregulation of many apoptosis regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive nuclear factor {kappa}B activity and aberrant extracellular signal-regulated kinase signaling. Thus, these findings shed new light on the nature of L&H cells, reveal several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies

    Exact solution of a linear molecular motor model driven by two-step fluctuations and subject to protein friction

    Full text link
    We investigate by analytical means the stochastic equations of motion of a linear molecular motor model based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by Mogilner et al. (A. Mogilner et al., Phys. Lett. {\bf 237}, 297 (1998)), and averaging over both the two-step internal conformational fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are not readily accessible from numerical solutions. In particular, we find that the model is able to predict physiologically reasonable values for the load-free motor velocity and the motor mobility.Comment: 12 pages revtex, 6 eps-figure

    Bulk-mediated surface diffusion on a cylinder: propagators and crossovers

    Full text link
    We consider the effective surface motion of a particle that freely diffuses in the bulk and intermittently binds to that surface. From an exact approach we derive various regimes of the effective surface motion characterized by physical rates for binding/unbinding and the bulk diffusivity. We obtain a transient regime of superdiffusion and, in particular, a saturation regime characteristic for the cylindrical geometry. This saturation, however, in a finite system is not terminal but eventually turns over to normal surface diffusion. The first passage behavior of particles to the cylinder surface is derived. Consequences for actual systems are discussed.Comment: 4 pages REVTeX4, 2 figure
    • …
    corecore