6 research outputs found

    Catch-up-ESUS - follow-up in embolic stroke of undetermined source (ESUS) in a prospective, open-label, observational study: study protocol and initial baseline data

    Get PDF
    Introduction. So far there is no uniform, commonly accepted diagnostic and therapeutic algorithm for patients with embolic stroke of undetermined source (ESUS). Recent clinical trials on secondary stroke prevention in ESUS did not support the use of oral anticoagulation. As ESUS comprises heterogeneous subgroups including a wide age-range, concomitant patent foramen ovale (PFO), and variable probability for atrial fibrillation (AF), an individualised approach is urgently needed. This prospective registry study aims to provide initial data towards an individual, structured diagnostic and therapeutic approach in ESUS patients. Methods and analysis. The open-label, investigator-initiated, prospective, single-centre, observational registry study (Catch-up-ESUS) started in 01/2018. Consecutive ESUS patients ≥18 years who give informed consent are included and will be followed up for 3 years. Stratified by age <60 or ≥60 years, the patients are processed following a standardised diagnostic and treatment algorithm with an interdisciplinary design involving neurologists and cardiologists. Depending on the strata, patients receive a transesophageal echocardiogram; all patients receive an implantable cardiac monitor. Patients <60 years with PFO and without evidence of concomitant AF are planned for PFO closure within 6 months after stroke. The current diagnostic and therapeutic workup of ESUS patients requires improvement by both standardisation and a more individualised approach. Catch-up-ESUS will provide important data with respect to AF detection and PFO closure and will estimate stratified stroke recurrence rates after ESUS. Ethics and dissemination. The study has been approved by the responsible ethics committee at the Ludwig Maximilian University, Munich, Germany (project number 17–685). Catch-Up-ESUS is conducted in accordance with the Declaration of Helsinki. All patients will have to give written informed consent or, if unable to give consent themselves, their legal guardian will have to provide written informed consent for their participation. The first observation period of the registry study is 1 year, followed by the first publication of the results including follow-up of the patients. Further publications will be considered according the predefined individual follow-up dates of the stroke patients up to 36 months

    Atrial Fibrillation Risk Assessment after Embolic Stroke of Undetermined Source

    Get PDF
    von Falkenhausen AS, Feil K, Sinner MF, et al. Atrial Fibrillation Risk Assessment after Embolic Stroke of Undetermined Source. Annals of Neurology. 2022.Objective: Approximately 20% of strokes are embolic strokes of undetermined source (ESUS). Undetected atrial fibrillation (AF) remains an important cause. Yet, oral anticoagulation in unselected ESUS patients failed in secondary stroke prevention. Guidance on effective AF detection is lacking. Here, we introduce a novel, non-invasive AF risk assessment after ESUS. Methods: Catch-Up ESUS is an investigator-initiated, observational cohort study conducted between 2018 and 2019 at the Munich University Hospital. Besides clinical characteristics, patients received & GE;72 h digital electrocardiogram recordings to generate the rhythm irregularity burden. Uni- and multivariable regression models predicted the primary endpoint of incident AF, ascertained by standardized follow-up including implantable cardiac monitors. Predictors included the novel rhythm irregularity burden constructed from digital electrocardiogram recordings. We independently validated our model in ESUS patients from the University Hospital Tubingen, Germany. Results: A total of 297 ESUS patients were followed for 15.6 +/- 7.6 months. Incident AF (46 patients, 15.4%) occurred after a median of 105 days (25th to 75th percentile 31-33 days). Secondary outcomes were recurrent stroke in 7.7% and death in 6.1%. Multivariable-adjusted analyses identified the rhythm irregularity burden as the strongest AF-predictor (hazard ratio 3.12, 95% confidence interval 1.62-5.80, p < 0001) while accounting for the known risk factors age, CHA(2)DS(2)-VASc-Score, and NT-proBNP. Independent validation confirmed the rhythm irregularity burden as the most significant AF-predictor (hazard ratio 2.20, 95% confidence interval 1.45-3.33, p < 0001). Interpretation: The novel, non-invasive, electrocardiogram-based rhythm irregularity burden may help adjudicating AF risk after ESUS, and subsequently guide AF-detection after ESUS. Clinical trials need to clarify if high-AF risk patients benefit from tailored secondary stroke prevention

    Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis

    Get PDF
    Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.</p

    Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis

    No full text
    Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis(1). These lesions are precursors for blood cancers(2-6), but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation
    corecore