4 research outputs found

    Side effects by oral application of atmospheric pressure plasma on the mucosa in mice

    Get PDF
    Cold atmospheric pressure plasma (CAP) has been investigated with promising results for peri-implant diseases treatment. However, prior to in-vivo applications of CAP sources in humans, short-term harmful mucosal damage or other unwanted side effects have to be reviewed. 180 male mice (B6C3F1) were divided into twelve treatment groups (n = 15). The right buccal cheek mucosa was treated with CAP. The first and second group each received continuous 10 sec irradiation with 2 different plasma sources (kINPen09, PS-MWM). The third group was treated with the kINPen09 for one minute. Control groups were treated with a corresponding dose of ultraviolet light for 8 seconds or 48 seconds and the other one was left untreated. The animals were weighed before and after treatment. The animals were sacrificed one day or one week after exposure. Stained tissue samples were histologically examined for tissue damage independently by two experienced pathologists. One day after CAP treatment histological analysis showed focal mucosal erosion with superficial ulceration and necrosis accompanied by a mild inflammatory reaction. One week after CAP treatment, the mucosal defects were completely re-epithelialized, associated with remnants of granulation tissue in the stroma irrespective of treatment duration. Furthermore, no cytological atypia was found and no severe weight loss occurred. The control groups did not show any alterations at all. CAP treatment led to a superficial mucosal damage that healed within few days. Nonetheless, further long-term experiments are necessary to exclude undesirable side effects after longer observation time. Particularly, potential carcinogenic effects must be ruled out prior to the application of CAP treatment in daily dental practice

    Repeated exposure of the oral mucosa over 12 months with cold plasma is not carcinogenic in mice

    Get PDF
    Peri-implantitis may result in the loss of dental implants. Cold atmospheric pressure plasma (CAP) was suggested to promote re-osseointegration, decrease antimicrobial burden, and support wound healing. However, the long-term risk assessment of CAP treatment in the oral cavity has not been addressed. Treatment with two different CAP devices was compared against UV radiation, carcinogen administration, and untreated conditions over 12 months. Histological analysis of 406 animals revealed that repeated CAP exposure did not foster non-invasive lesions or squamous cell carcinoma (SCCs). Carcinogen administration promoted non-invasive lesions and SCCs. Molecular analysis by a qPCR screening of 144 transcripts revealed distinct inflammatory profiles associated with each treatment regimen. Interestingly, CAP treatment of carcinogen-challenged mucosa did not promote but instead left unchanged or reduced the proportion of non-invasive lesions and SCC formation. In conclusion, repeated CAP exposure of murine oral mucosa was well tolerated, and carcinogenic effects did not occur, motivating CAP applications in patients for dental and implant treatments in the future

    Introduction to Surface Avatar: the First Heterogeneous Robotic Team to be Commanded with Scalable Autonomy from the ISS

    Get PDF
    Robotics is vital to the continued development toward Lunar and Martian exploration, in-situ resource utilization, and surface infrastructure construction. Large-scale extra-terrestrial missions will require teams of robots with different, complementary capabilities, together with a powerful, intuitive user interface for effective commanding. We introduce Surface Avatar, the newest ISS-to-Earth telerobotic experiment series, to be conducted in 2022-2024. Spearheaded by DLR, together with ESA, Surface Avatar builds on expertise on commanding robots with different levels of autonomy from our past telerobotic experiments: Kontur-2, Haptics, Interact, SUPVIS Justin, and Analog-1. A team of four heterogeneous robots in a multi-site analog environment at DLR are at the command of a crew member on the ISS. The team has a humanoid robot for dexterous object handling, construction and maintenance; a rover for long traverses and sample acquisition; a quadrupedal robot for scouting and exploring difficult terrains; and a lander with robotic arm for component delivery and sample stowage. The crew's command terminal is multimodal, with an intuitive graphical user interface, 3-DOF joystick, and 7-DOF input device with force-feedback. The autonomy of any robot can be scaled up and down depending on the task and the astronaut's preference: acting as an avatar of the crew in haptically-coupled telepresence, or receiving task-level commands like an intelligent co-worker. Through crew performing collaborative tasks in exploration and construction scenarios, we hope to gain insight into how to optimally command robots in a future space mission. This paper presents findings from the first preliminary session in June 2022, and discusses the way forward in the planned experiment sessions

    3. Sekundärliteratur

    No full text
    corecore